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The Unit Package is an interactive knowledge representation system with representations
for individuals, classes, indefinite individuals, and abstractions. Links between the
nodes are structured with explicit definitional roles, types of inheritance, defaults, and
various data formats. This paper presentsthe general ideas of the Unit Packageand
comparesit with other current knowledgerepresentationlanguages. The Unit Package was
created for a hierarchical planning application, and is now in use by several Al projects.

1 INr1~JDUCTION

When the MOLGEN* project was started, many
ideas about frame systemsand semantic networks
were being widely discussed,bu~~no software
was available. In collaboration with other
members of the MOWENproject, the author
developed a representation system called the
“Unit Package”which becameoperational in July
1977, In some cases (and usually in ignorance),
this work has duplicated other representation
work that was happening at about the same tin’~e.
The Unit Package is now being used by several
other projects inclu3ing two away from
Stanford. It is written in INTERLISP and runs
under the TENEX and WPS2O operating systems.
It is an interactive system for building
knowledge—basedprograms. It also provides a
substantial virtual memory so that knowledge
bases of several thousand nodes can created
without sacrificing the INTERLISP environment.

2 ELEMENTS OF THE REPRESENTATION

Knowledge in the Unit Package is organized as a
partitioned semantic network. Following KRL
[3] terminology, the nodes are alternatively
called units and the links are called slots. A
built—in generalization relationship provides a
hierarchy with several modes of property
inheritance. Conspicuous for its absence is a
comprehensive inferencemechanism. While the
Unit Package provides some built—in inferential
facilities — notably the property inheritance
mechanism, the pattern matchers, and the
attached procedure mechanism— most of the
inference control must be provided by
application—specific methods,The ideas in the
Unit Package will be presented in the following
order.

1) Partitions — The boundaries in the
network which divide it into (possibly
overlapping) explicit sets of nodes.

is a joint project between the Stanford

Computer Science Department, several
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the Computer Science Department at the
University of New Mexico. It is active in the
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2) Units — The nodes in the network. The
Unit Package has nodes for constant
individuals and classes as well as for
undeterminedand abstract entities. For the
latter it permits naming them, anchoring them
to constants, adding details to them, and
indicating whether they are the same or
different (without necessarily anchoring
them).
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3) Slots — The links between the nodes.
The fine structure of links is defined by a
set of “aspects” which define their
inheritance and definitional roles,
datatypes, defaults, and attached procedures.
These aspects provide declarative meta—
knowledge which indicates how a slot is to be
interpreted.

4) Attached procedures— Proceduresmay
be attached to units, slots, or datatype
units, dependingon what they are used for.
They are activated by messages and have
explicit purposes. A small set of purposes
is recognized by the Unit Package to allow
automatic activation under specified
circumstances. Attached procedures are the
chief mechanism for making inferences in the
Unit Package.

2.1 Partitions

While a knowledge base is ultimately composed
of nodes and links, it is often useful to
consider larger organizations of units. For
this purpose the Unit Package provides a
facility for partitioning a network into
explicit sets. This ~s the same idea as the
spaces in Hendrixs partitioned semantic
networks [9]. The Unit Package simply
prov~es an efficient notation for explicit
sets and a number of functions which act on
all ipembers of sets.

2.2 Nodes

In our planning application, it is helpful to
have open—ended descriptions for abstract
entities and to be able to refer to individuals
whose identities have not yet beendetermined.
‘Dc representthis information the Unit Package
provides four kinds of nodes as in Fig. 1
along with the computational machinery for
their interpretation.

Figure 1. Kinds of nodes in the Unit Package

These kinds of nodes are listed here briefly
and discussed in the following sections.

— Constant node that stands
individual. An instance is
a constant in predicate

2) SCHEMA — Constantnode that stands for
a class. A schema describes all of its
potential progeny in the generalization
hierarchy.

3) INDEFINITE NODE — Variable node that
stands for an individual. Analogous to an
existentially quantified variable in
“predicate calculus with equality”.
Fundamental links for reasoning about
equality are (1) “anchor” links which tie
indefinite nodes to instancesand (2) “co—
reference” and “not—co—reference” links which
tie indefinite nodes together.

4) DESCRIPTION NODE — Variable node that
stands for a class. These nodes are used for
matching and reasoning about abstractions,
that is, incompletely described entities.

Section 3.1 compares these node types to
other work on representation.

2.2.1 Nodes for Constants

*We have not yet exploited the set notation for

handling quantification.

**hi could have been indicated with a member—

of slot. Our implementation makes it possible
to tell whether a unit is in a set without
requiring that the unit be core resident.

An “instance” is the simplest kind of node in
the Unit Package. Instancesare analogousto
constant terms in predicatecalculus and are
used to representdistinct entities, that is,
“individuals” Examplesof instancesin the our
application would be domain objects like
Culture—l33, a particular culture of organisms.
Schematastand for classes, that is, implicit
sets and may have subclasses and instances
below them in the hierarchy. Becauseinstances
do not stand for classes, they can have no
nodes below them. A schemadescribes all of
its potential progenyby expressingall of the

Constant

Individual

Class

Variable

Instance Indefinite

Schema Description I

1) INSTANCE
for a unique
analogous to
calculus.
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attributes that are required for membersof the

class.

2.2.2 Indefinite Nodes

“Indefinite” nodes are the simplest variable
nodes in the Unit Package; they stand for
individuals whose identity may be unknown. They
allow us to indicate that two variables are
equal (or not equal) without knowing their
values. This is like the augmentation of
predicatecalculus to predicate calculus with
equality except that it is a three-valuedlogic
permitting the logical possibility that
equality may be “unknown”. For example, we
could have indefinite nodes for Martha’s—
husbandor The—first—president. We may equate
these indefinite nodes to each other by marking
them as “co—referential”. We may also “anchor”
or ground them to an individual unit (e.g.,
George—Washington). Two indefinite nodes are
said to be equal if they have the same anchor
or if they are tagged as being co-referential.
Two indefinite nodesare not equal if they have
different anchors, if they are marked as “not
co—refere~tial”, or if their scopes do not
intersect . In all other cases, equality is
“unknown”. Co—reference and anchor
relationships are represented by slots with
standard names. The need for such nodes in
natural languageprocessing (sometimestensed
“intentional” nodes) has also been recognized
[20]. Our experience has been that the
potentially difficult parts in reasoning with
these entities are (1) deciding when there is
enough evidence to conclude about equality of
identities and (2) combining the (possibly
conflicting) attributes of the various
hypothetical objects once their coninon identity
has beenconcluded.

2.2.3 Description Nodes

Description nodes are variable nodes which
stand for classes instead of individuals.
These nodes are used in our planning
application to represent open—ended goals.
Whereas“anchoring” is the key to equality of
indefinite nodes, matching is the key to
equality of description nodes. The class
defined by a schema is the set of its
specializations in the hierarchy; the class
defined by a description node is the set of

*Scopes, in the Unit Package, are simply a

branch of the generalization hierarchy.
Extending this to a more flexible form of
quantification is part of the planned future
work on the Unit Package.

nodeswithin a specified scopethat match the
description node. Two description nodesare
said to be~equalif they potentially match the
sameunits or if they are indicated as being
co—referential. This limits the expression of
match conditions to a conjunction of slots. We
have found it convenient in our planning
application to augment this notation with
additional “constraint” units that can express
arbitrary predicates involving~ several nodes.
In our planning application, the refinementof
abstract goals is accomplishedby the addition
of constraints to descriptions and the matching
of descriptions to the knowledge base. The
interpretation and manipulation of these
constraints is done by our planning program and
not by the Unit Package.

2.3 Links

As the Unit Package has been developed, it has
become necessary to provide structure for the
links between the nodes. Several different
“aspects” have been created to accornTlodate
this:

1) NAME— Name of the slot.

2) VALUE — Stored value of the slot.
Typically this is the name of a unit but it
may be a different data—structure if the
datatype aspect is other than “unit”. The
Unit Package distinguishes between values
that are valurrestrictions and those that
are “terminal” *

3) DEFINITIONAL ROLE — The role that the
slot plays in the definition of the unit. The
roles “PARr-OF”, “PROPERPY”, “RELATION”,
“SUPER—UNIT”, “EQUIVALENCE”, and
“IX)CUMENTATION” are recognized by the Unit
Package. Definitional roles are explained
further in Section 2.3.1.

4) INHERITANCE ROLE — The mode of
inheritance of the slot by progeny. Four
distinct roles, (“5”, “R”, “0”, and “U”) are
recognizedin the Unit Package. Criteriality
is determinedfrom this role. Inheritance
roles are discussed further in Section
2.3.2.

*The operational test for deciding
descriptions potentially match the

is that the descriptions match each

**In an analogy with units, descriptions are

like schemata and terminal values are like
instances.

whether two
same units

other.
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5) DEFAULT — Default value for the slot
to be used in the absence of specific
information. This aspect was much less
frequently used than we originally expected.

6) DATATYPE — A link in the Unit Package
need not go to another unit; it may go to an
atom, integer, string, list, lamlida
expression, or to a value with sane other
“datatype”. “Unit” is probably the most
important datatype arid is used for most of
the links usually associated with semantic
networks. The datatype aspect facilitates
treating different kinds of values uniformly.
The factoring of procedures to support this
is discussed in Section 2.4.

2.3.1 Definitional Roles

A retrospective examinationof how slots were
being used in our genetics knowledge basemade
us aware that indistinguishable notations were
sometimes used where distinct meanings were
intended. Fig. 2 illustrates some of the
slots from the representationof an organism in
one of our knowledge bases. The slot
chromosomeis used to refer to a part of the
organism; the slot grainstain refers to the
visible character of the organism when a
particular staining agent is applied. Without
the definitional role, a general procedure to
separateor remove the parts of a unit may try
to “remove the gramstain” from an organism.
Thus, the exosomes slot in Fig. 2 indicates
(1) what exosomes the organism has (i.e.
EXOSCMFS(OROANI941) = (PMB9, PSC1O1) ) and (2)
that the exosomes are to be considered parts of
the organism (i.e. PARr—OF (PMB9, OI~3ANI~4l) =

T).

The idea of distinguishing between kinds of
links is not new with our work. Woods [20]
distinguished between “assertional” and
“structural” links. We differentiate between
the definitional roles “PARr-OF”, “PROPERTY”,
“RELATION”, “SUPER—UNIT”, “EQUIVALENCE”, and
“EXJCUMEt~1TATION”. The role “SUPER—UNIT” has the
inverse meaningof “PART—OF” and is used to
annotateslots which point back from the parts
of a larger concept. The role “EQUIVALENCE” is
used to label the special “co—reference” and
“anchor” slots used in description and
indefinite units. The role “IX)CUMENTATION” is
used to tag slots like the modifier slot which
are part of the automatic documentation of a
knowledgebase. More definitional roles will
probably emerge as the Unit Package is used in
additional applications.

Value Definitional
Pole

EXC~Ct4ES:
CHI~4OSC~4E:

(PMB9, PSClOl)
DNA—Structure—92

PART-OF
PART-OF

MORPHOLO3Y:
GRAMSTAIN:

C(~CUS
ROSITIVE

PROPERTY
PROPERTY

CAN—EAT:
KILLED-BY:

NUTRIENT-GEL
TETRAMYCIN

RELATION
RELATION

MODIFIER: Feitelson DC~UMENTATION
MODIFIED: 12—MAR-79 IX)CUME?fl’ATION

Figure 2. Definitional Poles

2.3.2 Inheritance Poles

The idea of the hierarchical inheritance of
properties has its roots in the inferential
machinery discussed in Quillian’s thesis [14].
In its simplest form, a value is defined in the
most general schemato which it applies. Nodes
corresponding to descendantsof the schema
inherit the value• As Brachinan [6] points
out, while a slot in an individual is intended
to assert a property of the individual, a slot
in a schema is often intended to restrict the
legal values of
potential progeny.
of slots (slots
versus slots used
are important
inheritance and
differentiated in

corresponding slots in its
These alternative meanings

used to define properties
to instantiate properties)

for the understanding of
are not always clearly

network formalisms.

In the Unit Packagewe have identified five
standard “inheritance roles” for slots. Fuur
roles (tensed “S”, “R”, “0”, and “U”) that have
been useful in the Units Package are described
below. A fifth role (tensed “M”), which is
probably useful but which has not been
implemented, is also discussed.

1) The simplest role is for direct
inheritance of values by all progeny. This
is tensed the “5” role becausethe slot has
the same value in the defining unit arid all
of its progeny.

2) The “R” role is for the inheritance of
requirements it is for slots that are
criterial to the definition of a schema. The

Slot Name
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values in schemataare interpreted as value—
restrictions for the corresponding slots in
progeny. The values in slots of progenyneed
not be the same as ~n the schema,but may be
further restricted . Usually the value of
the slot in an instancewill be “terminal”,
that is, an actual value instead of a
description of a value. If every “RI’ slot in
an instance has a terminal value, then the
instanceis fully instantiated.

3) The “0” role is similar to the “R” role
except that the slot is optional (ie. not
criterial). The slot in an instanceneednot
be filled in with a terminal value. For
example, in the molecular geneticsdomain,
the organisms slot of the Culture unit has
role “R” and the exosomes slot of the
Bacterium unit has role “0”. This is meant
to indicate that every culture must have
organisms,but every bacteriumneed not have
exosomes.

4) The “U” role is for information about a
node that is not inherited by its progeny.
The slot value is unique at each level in the
hierarchy. As with the other roles, the slot
name, datatype, and role are inherited by
offspring. However, the value is not
inherited or used to limit the value of the
slot in offspring. This role is usedmainly
for our bookkeepingpurposesin the network
such as for the creator slot in units.

The first three roles can be seen as
decreasingly strict. With the “0” role, a
value is optional in instances; with “R” it is
required; with “S” it is directly inherited. In
contrast, the “U” role ignores the nesting of
values in progenyaltogether. One additional
role for inheritance, which we have not
implemented, would allow slots in progenyto
have values that override restrictions from
above. (This might be termed the “M” role
meaningmodifications allowed). This idea was
originally disallowed because it was seenas
counter to the spirit of unit specialization.

*The meaning of “further restricted” is

determined by a function associated with the
datatype of the slot. For the “number”
datatype, the value-restrictions are numeric
ranges or lists. For the “unit” datatype, the
value—restrictions may be description nodesor
ancestor specifications.

instructions for the information and (2)
whether the value is criterial to the
definition of the slot. Inheritance roles are
also used by the interactive component of the
Unit Package to determine what checking is
performed when knowledge is enteredby a user.

Before leaving the subject of inheritance, it
is worth emphasizing that a generalization
hierarchy should be distinguished from other
hierarchical relationships from everydaylife
which do not indicate inheritance paths. Some
coir~non ones are “subset—of”, “element—of”,
“part—of” and “abstraction—of”. These
relationships are represented in a semantic
network by explicit links independent of those
used for the superclass taxonomy.

2.4 Attaching Procedures

The attachmentof proceduresto frames is one
of the representationalideas cam~onto the new
knowledge representation languages. Several
older languages (such as LISP) support
arbitrary attachment of procedures to data
structures; the approach in frame-structured
languagesis more disciplined. This discipline
in the Unit Packagehas two main elements: (1)
standardizedpoints for attachmentand (2) an
explicit purpose for procedures. The “purpose”
of a procedure indicates when a procedure
should be activated.

The Unit Packageprovides three standardplaces
for attaching procedures: (1) unit attachment
(2) slot attachment and (3) datatype
attachment. Unit attachment is used for
operations that act on a unit as a whole. Slot
attachment is used for operations on a
particular slot of a unit. Datatype attachment
is useful for operations on slots located in
units throughout the knowledgebase that have
values of a particular datatype. Although
datatype attachmenthas not been reported in
other frame systems, it has been used
extensively in the Unit Package [17] and is
similar to ideas from SIMULA.

of procedurecall — where the purpose of the
procedure is known to the caller but the name
of the procedure need not be known. The
“purpose” of a procedure is usually associated
with standardized activation conditions (e.g.
“lb-Get”); it also indicates where the

Like definitional roles, inheritance roles We have adapted some terminology from EMALLTALK
provide meta—knowledge about the interpretation
of slots. They indicate (1) transmission

to describe the activation of attached
procedures. A procedure is activated by
“sending it a message” with a token that
matchesits This is indirect form
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procedure’s name is stored. For unit
attachment, the purpose is the nameof a slot
containing the procedure name; for slot
attachment, it is the name of an aspect; for
datatypeattachment, it is the name of the slot
in the unit for the datatype. Functions like
the matcher, which must work for all datatypes,
operate by activating datatype—specific
proceduresusing the messagemechanism.

3 RELATIONSHIP It) OTHERWORK

During the period when the Unit Package was
developed, many other frame-structured
representationsystemshave also appeared. In
some cases,our work has duplicated that of
other groups. This section compares the Unit
Packageto related systems.

3.1 Other Work on Node Types

The idea of distinguishing between node types
in a knowledge representation language has
important implications for the design of
interpreters and matchers. If node types are
not distinguished, then the semantic
information about abstractness and equality
must be carried by some other means. Node
types similar to our four categories have
appeared in other contemporaryrepresentation
languages. Fig. 3 sumarizes what they are
called in AIMDS ([15], [16]), FPL [8], KLONE
([5], [19]), KPL—0 ([1], [3]), Levesque’s
System [11], and C~L([18},[l3}). This is not
to say that the node types correspond exactly
in these systems, but that the ideas seem to be
very similar.

System Instance Schema Indefinite

Several other types of nodes have appeared in
representation languages. For example, KPL—0
supported the additional node categories
“relation”, “proposition”, and “basic”. The
relation category was used to representan
abstract relationship between entities and a
proposition was an instantiation of a
relationship specifying its truth value. (In
our planning application, constraints serve
some of this function although their
interpretation is by the planning program
instead of a general interpreter for the
representation language.) “Basic” categories
partition the world into simple non—overlapping
categories. Categories are meant to allow
quick tests (by categorycomparison) to decide
whether an object fits a description. This
partitioning is partially (but inadequately)
achieved in the simple hierarchical systems by
the approximate rule that two schemata are in
distinct categories if neither is an anc~stor
of the other in the superclass hierarchy . It
is not clear that such categories can be
assigned to domain objects once and for all.
Further aspects of this are discussed in two
recent critical examinations of KRL ([101,
[1]).

*One of the shortcomings of the Unit Packageis

illustrated by this example. There is no
annotation to indicate which branches in the
generalization hierarchy are mutually
exclusive.

Description

AIMDS instance template

KLONE individual
nexus

generic variable
concept nexus

parametric
individual

Levesque ‘S

System
instance class indefinite

instance species

Figure 3. Node types in other representationsystems

FRL instanti-
ated frame

generic
frame

KRL-0 individual special-
ization

manifestation abstract
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The node types in KLONE ([4], [5]) shown in
Fig. 3 do not fit perfectly into the categories
used in the Unit Package; KLONE distinguishes
between patterns (also called descriptions or
concepts) and representations of things. A
generic concept in KLONE is a pattern because
it does not stand directly for its potenti~l
progeny; the class is its extension in so~ne
context. Similarly, an “individual concept” in
KLONE is an individualized pattern; it
describesa potentially unique individual which
may or may not exist (e.g. “the current king of
France”). A nexus is more like the sort of
individual in the Unit Package. A nexus is
either constantor variable. A nexus has an
“existence value” which can be “does not
exist”. It can have “coreference wires” to
other nexuses and “description wires” to
individual concepts. Thus KWNE distinguishes
individualized patterns (individual concepts)
from representationsof individuals (nexuses).
The matrix in Fig. 1 does not make this
distinction. KLONE’s “parametric individual”
is not quite the same as a description node
(i.e. variable class node) in the Unit Package.
Parametric individuals are still patterns —

they describe potentially many individuals ——

but they are not arbitrary generic
descriptions; some of their values are bound by
the context in which they appear, arid thus they
are “parameterized”.

3.2 Other Work on Property Inheritance

The recognition of different forms of
inheritance is not unique to the Unit Package.
Goldstein and Roberts [8] distinguished two
kinds of inheritance in FRL—0 — additive and
restrictive. Pdditive inheritance permitted a
specialization to add new non—contradictory
facts. This correspondsto the “R” and “0”
roles above. Restrictive inheritance is used
when a specialization overrides the information
in a more general schema. This corresponds to
the “M” role above, which we have not
implemented. FRL—0 also encouraged the use of
“idiosyncratic forms” of inheritance by the use
of attached procedures. These procedures
effected the transmissionof values from frames
other than the parent. This seemsto be an
attempt to capture some of the “multiple—
perspectives” idea of KRL using less machinery.

together the parts with different kinds of
links. The details of these links require more
explanation than is convenient here but the
main insight is that inheritance of complex
structures must be supported by a rich
vocabulary of relationships for the parts of
the inherited structure. While the scopeof
their developing system (KtX~E) is broader than
our own, the philosophy is essentially the
same, namely, to develop a concise and
structured representation in which the
important kinds of relationships are explicit
and uniformly represented for processing by
general purposenetwork routines.

4 SUMMARY

The Unit Package is a frame-structured
representationlanguagewhose main elementsare
partitions, nodes, links, and attached
procedures. Our goal has been to developa
concise and structured representationlanguage
in which the important kinds of relationships
are explicit and uniformly represented for
processing by uniform network processing
routines. This has led to formalisms for kinds
of nodes, links, inheritance, and attached
procedures. Some of these formalisms havebeen
inspired by and instrumental for the MOLGEN
planning application. Probably the most
important exampleof this is the idea of a
hierarchical variable to which one can add
information and constraints. Thesevariables
provide a notation for hierarchical planning.

Some shortcomingsof the Unit Packagehave been
noted in passing. These include a need for
allowing multiple generalizations, a need for
explicit indication of mutual exclusion, and a
more adequate use of quantification. These
problems are not difficult to fix. Spacedoes
not permit discussion of more substantial
representational problems beyond the current
research,such as the structured representation
of processes and causal relationships. The
reader interested in a discussion of some
unsolved problems is referred to [171.
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