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Abstract. LOOPS adds data, object, and rule oriented programming to the procedure oriented
programing of Interlisp. In object oriented programming, behavior is determined by responses of
instances of classes o messages sent between these objects. with no direct access to the internal
structure of an object. This approach makes it convenient to define program interfaces in terms of
message protocols. Data oriented programming is a dual of object oriented programming, where
behavior can occur as a side effect of direct access to {permanent) object state. This makes it easy
to write programs which monitor the behavior of other programs. Rule oriented programming is an
alternative to programming in LISP. Programs in this paradigm are organized around recursively
composable sets of pattern-action rules for use in expert system design. Rules make it convenient
for describing flexible responses to a wide range of events. LOOPS is integrated into [nterlisp, and
thus provides access to the standard procedure oriented programming of Lisp, and use of the
extensive environmental support of the Interlisp-D system

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem. The paradigms described here offer distinct
ways of partitioning the organization of a program, as well as distinct ways of viewing the
significance of side effects. LOOPS provides all these paradigms within a single environment. This
manual is intended as the primary documentation for users of LOOPS. [t describes the concepts and

the programming facilities, and gives examples and scenarios for using LOOPS.
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1 INTRODUCTION

Four distinct paradigms of programming svallablic in the com
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languages. [LOOPS is designed o incorporate all of them within the interlisp programming environment,
o allow users to choose the style of programming which best sults thetr application.

Procedure Oriented Programuming: Lisp s a procedure oriented language: the procedure orented paradigm
is the dominant one provided in most programming languages today. Two separate kinds of entues are
distinguished: procedures and data. Procedures are active and data are passive. The abtlity o compose
procedures out of instructions and to invoke them s central to organizing programs using these languages.
This is a major source of leverage in synthesizing programs. Side effects happen when separate procedures
share a data structure and change parts of it independently.

Object Oriented Programming: This paradigm was pioncered by Smalltalk. and has its roots in SIMULA
and in the concept of data abstraction. In contrast with the procedure-oriented paradigm, programs are not
primarily partitioned into procedures and separate data. Rather. a program is organized around entities
called objects that have aspects of both procedures and data. Objects have local procedures (methods)
and local data (variables). All of the action in these languages comes from sending messages between
objects. Objects provide local interpretation of the message form.

The object-oriented paradigm is well suited to applications where the description of entities is simplified
bv the use of uniform protocols. For example in a graphics application. windows, lines and composite
structures could be represented as objects that respond o a uniform set of messages (i.e.. Display.
Move, and Erase). An important feature of these languages is an inheritance network, which makes
it convenient to define objects which are almost like other objects. This works togethér with the use of
uniform protocols because specialized objects usually share the protocols of their super classes.

Data Oriented Programming: In both of the previous paradigms. the invocation of procedures (either by
direct procedure call or by message sending) is convenient for creating a description of a single process.
[n the data-oriented programming, action is potentially triggered when data are accessed. Data oriented
programming makes use of long term storage of objects with implicit links from structures to actions.

Data oriented programming is appropriate for interfacing between nearly independent processes. A good
example of this is the construction of a viewer for an independent traffic simulation process. The viewer
provides a visual display of the changing traffic simulation process without affecting the code for the
simulation. This independence means that the two processes can be written and understood separately.
[t means that the interactions between them can often be controlled without changing them.

Rule Oriented Programming: In rule oriented programming, the behavior of the system 18 determined
by sets of condition-action pairs. These RuleSets play the same role as subroutines in the procedure
oriented metaphor. Within a RuleSet. invocation of rules is guided largely by patterns in the data. [n
the typical case, rules correspond to nearly-independent patterns in the data. The rule-oriented approach
is convenient for describing flexible responses o a wide range of events characterized by the structure of
the data.

Our experience suggests that programs are casier to build in a language when there 1s an avalable
paradigm that matches the structure of the problem. A variety of programming paradigms gives breadth
a programming language. The paradigms described here offer distinct ways of partitioning the organization
of a program, as well as distinct ways of viewing the significance of side effects. LOOPS provides all
these paradigms within the [nterlisp cavironment [Xerox83]. In principle, the data-oriented programming
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ohjects, with no direct access 1o the internal suucture of an Lmi et This apprmch makes it conventent o
define program interfaces in erms of message prowecols. LOOPS provides:
® inheritance of instance behavior and structure from multiple super classes

° user extendible property list descriptions of classes. their variables, and their methods

o composite objects - templates for related objects that are instantiated as a group.

Data oriented programming is a dual of object oriented programming, where behavior can occur as a side
effect of direct access to (permanent) object state. This makes it easy to write programs which monitor
the behavior of other programs. LOOPS provides:

® active values for object variables which can cause a procedure invocation on setting or fetching

e integration with facilities for long term storage of objects in shared knowledge bases
¥

e support for incremental updates (layers), and the representation of multiple alternatives.

Rule oriented programming is an alternative to programming in LISP. Programs in this paradigm are
organized around recursively composable sets of pattern-action rules for use in expert svstem design
Rules make it convenient for describing flexible responses to a wide range of events. LOOPS provides:

® a concise syntax for pattern matching and rule set construction
e use of objects as working memory for rule sets
N primitives for executing, stepping and suspending tasks based on ruleSets

e compilaton of ruleSets into Lisp code for efficient execution

[LOOPS is integrated into interlisp. LOOPS provides:
o classes and instances as [nterlisp file objects

e pseudoClasses to field messages to standard [nterlisp datatypes

This manual is intended as the primary documentation for users of LOOPS. [t describes the concepts and

[
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the programming facilities oy Sy and scenanos for using [LOOPS.

1.1 Inteflectual Precursors

LOOPS grew out of our research in 2 knowledge representation language {called Lore) for use in a
project o creale an expert assisian: tor designers of integrated digital svstems.  Along the wav, we
discovered that we needed to experiment with alternative versions of the representation language. A core
of fearures was identified that we wanted to keep constant in our experiments. This core became a data
and object-oriented programming system with many features not found in other available systems. Many
of the features {¢.g.. active values. data bases. and composite objects) werd motivated by the needs of our
project, but we they would be useful for many other applicatons. LOOPS has been sufficiently useful
and general that we decided to make it available outside of our group.

The design of LOOPS owes an intellectual debt to a number of other systems, including:

(1) Smalltalk ([Goldberg82], [Goldberg81], [Ingalls78]). which has pioneered many of the concepts of
object-oriented programming.

(2} Flavors [Cannon82], which supports this style of programming in the MIT Lisp Machine environment
and which confronted non-hierarchical inheritance.

(3) PIE [Goldstein80], which provided facilities for incremental, sharable data bases.

(4) KRL [Bobrow77], which explored many issues in the design of frame-based knowledgg representation
languages and which provoked much additional wotk in this area.

(5) UNITS [Stefik79]. which provided a substantial testbed for experiments in problem solving that have
guided our decisions about the importance of several language features.

(6) EMYCIN [VanMelle80] which showed the power of rule oriented programming for building expert
systems.

While all of these languages provided ideas. none of them was quite right for our current needs. For
example, Smalltalk supports only hierarchical inheritance and does not have a layered data base. active
values, or property lists on variables. PIE and KRL are not easily supportable or extendable. Flavors
does not run on the machines available to us. UNITS was the closest existing language to our needs,
but we wanted to change many of its features. Since we have compared these languages and traced the
intellectual history elsewhere [Bobrow82], we will not pursue that further in this document.

In designing LOOPS, we wanted 2 general inhentance mechanism, a way of attaching access-triggered
procedures o variables, a way of instanuiating composite objects recursively, and a way of creating
permanent databases of objects that can be shared and updated incrementally.

In tension with the desire for extensive language features was a desire to keep [.OOPS small so that it

would be easy to understand and to implement. To this end we have tried to create a small repertoire of
powerful features that work well together.

1.2 Acknowledgments

Sfrom the LOOPS Manual:
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2 OVERVIEW

Strueture of Classes and Instances

[
[

Classes: A class is a description of one or more similar objects. An insiance 1$ an object described by
a particular class. Every object within [LOOPS is an instance of exactly one class. Classes themselves
are instances of a class. usually the one called Class. Classes whose instances are classes are called
metaclasses.

Variables: L.LOOPS supports two kinds of variables - class variables and instance variables. Class variables
arc used to conuain information shared by all instances of the class. A class variable is typically used
for information about a class taken as a whole. Instance variables contain the information specific to
an instance. Both kinds of variables have names, values, and other properties. A class describes the
structure of its instances by specifying the names and default values of instance variables. For example,
the class Point might specify two instance variables, x and y with default values of 0, and a class
variable, TastSelectedPoint, used by methods associated with all instances of class Point. LOOPS
also allows “variable length™ classes, which have some instance variables that are referenced by numerical
index.

Methods: A class specifies the behavior of its instances in terms of their response t messages. The class
associates selecrors (LISP atoms) with methods, the Interlisp functions that respond to the messages. All
instances of a class use the same selectors and methods. Any difference in response by two instances
of the same class is determined by a difference in the values of their instance variables. For example,
PrintOn is used as a selector for the message which knows hew to print out a representation of an
object on a file.

Properties: LOOPS provides user-extendible property lists for classes. their variables, and their methods.
Property lists provide places for storing documentation and additional kinds of information. A property
list on a variable is used to store additional information about both the variable and its value. For
example, in a knowledge engineering application, a property list for an instance variable could be used
to store such information as support (i.e.. reasons for believing a value), certainty factors (i.e.. numeric
assessments of degree of belief), constraints on values, dependencies (i.¢., relationships to other variables),
and histories (1.e., previous values).

Metaclasses: Classes themselves are instances of some class. When we want to distinguish classes whose
instances are classes, we call them metaclasses, after the Smalltalk usage. When a class is sent a message,
its metaclass determines the response. For example, instances of a class are created by sending the class
the message New. For most classes, this method is provided by the standard metaclass for classes: Class.
The user can create other metaclasses to perform specialized initialization. The metaclass for Class iwself
{called MetaClass) contains the New method for making classes. Another useful metaclass provided in
the system is AbstractClass. [t is used for classes that are placeholders in the inheritance network
that it would not make sense to instantiate. [(S response 0 a New message is 0 cause an error.

[DEFCLASS AreaBudget
(MetaClass Class EditedBy (* dgb "15-Feb-82 14:32 ")
doc
(* * This 1s a sample class chosen to illustrate the syntax
of classes in LOOPS. Commentary on the class is inserted
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in a standard property in the ciass. -- e.g. Bud
{(Supers OwnedObject Budget)
{ClassVariables (maxBase 25000})
(InstanceVariables
(owner #3IVLSI doc {* organizational area that owns budget) )
(base 1000 doc (* The initial amount of money})
{(overhead 2.25 doc (* Multiplied by base to get total.))
(employees NIL doc (* list of employees in this area))
{(manager NIL doc (* manager of this area))
‘(total #(SHARED getTotal UpdateNotAllowed)
doc (* value of total 1i1s computed using active value.))
(Methods
(Report AreaBudget.Report doc (* Prints out a budget report))
(StoreBase AreaBudget.StoreBase
doc (* store base value checking maxBase) )]

[Se]
1)
e
w
o)
"3
[

—

—

Figure 1. Example of a class definition in LOOPS. The class, called AreaBudget, inherits
variables and methods from both of its super classes (OwnedObject and Budget). The form of
the definition here does not show inherited information, only the changes and additions. [n this
example the new class variable maxBase 1s introduced, and six instance variables (owner, base
overhead,. employees, manager. and total)are defined. The Methods declaration names
the Interlisp functions that implement the methods. For example, AreaBudget .Report is
the name of a function that implements the Report method for instances of AreaBudget.

2.2 Inheriting Variables and Vethods

[nheritance is an important tool for organizing information in objects. [t enables the easy creation of
objects that are “almost like” other objects with a few incremental changes. Inheritance avoids the user
have 1o specify redundant information and simplifies updating, since information that is common need
be changed in only one place.

[.OOPS objects exist in an inheritance network of classes. An object inherits its instance variable description
and message responses. All descriptions in a class are inherited by a subclass unless overridden in the
subclass. For methods and class variables, this is implemented by a runtime search for the information.
looking first in the class, and then at the super classes specified by its supers list. For instance variables, no
search is made at run time; default values are cached in the class, and are updated if any super is changed.
thus maintaining the same semantics as the search. Fach class can specify inheritance of structure and
behavior from any number of super classes in its supers list.

Hierarchv: In the simplest case, each class specifies only one super class. If the class A has the supers list
(B), a one element list containing B. thcn all of the instance variables specified local to A are added to
those specified for B, recursively. That is. A gets all those instance variables described in B and all of B's
supers. [n this case one obunnS&ﬁncztnherudncc hierarchy as in Smallalk.

Anv contlict of variable names is resolved by using the description closer to A in traversing up the
hierarchy to its root at the class Object. Method lookup uses the same conflict resolution. The method
o respond to a message is obtained by first searching in B, and then searching recurstvely in 8's supers
list. An example of this is given in figure 2.
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Class Super InstanceVariables Methods
Object NTL none (s4 M5)
C Object {w 7) (s2 M4) (s3 M5)
B C (y 4) (z 3) (sl M2) (s2 M3)
A B (x 1) (y 0) (s1 M1)

Figure 2. In the definitions given in the above chart, an instance of A would be given four
instance variables, w. y, z, and x in that order. The default value for y would be 0. which
overrides the default value of y inherited from B. The instance would also respond to the four
messages with selector s1, s2, s3. and s4. The methed used for responding to s1 is M1,
which is said to override M2 as the implementation of the message s 1. Similarly, M3 overrides
M4 as the implementation of message s2. Notice that the root class in the system, Object,
has no super class. All classes in the system are subclasses of Object, directly or indirectly.

Multiple Super Classes: Classes in LOOPS can have more than one class specified on their supers list.
Multipie super classes admit a modular programming style where (i) methods and associated variables
for implementing a particular feature are placed in a single class and (ii) objects requiring combinations
of independent features inherit them from multiple supers. [f D had the supers list (E A), first the
description from E and its supers would be inherited. and then the description from A and its supers. [n
the simplest usage, the different features have unique variable names and selectors in each super. In ¢ase
of a name conflict, LOOPS uses a depth-first left to right precedence. For example. if any super of E had
a method for s1, then it would be used instead of the method M1 from A. In every case, inheritance from
Object (or any other “common~ super class) is only considered after all other classes on the recursively
defined supers list.

2.3 Data Oriented Programming — Using Active Values

In data oriented programming, one needs a way of specifying for any variable of an object whether any
special procedure is to be invoked on read or write access, and if so which. In LOOPS we check on
every variable access whether the value is marked as an active value. If so. the active value specifies the
procedures to be invoked when the value of a variable (or property) is read or set. This mechanism is
dual to the notion of messages; messages are a way of telling objects to perform operations, which can
change their variables as a side effect: active values are a way of accessing variables, which can send
messages as a side etfect. The following notation for active values illustrates its three parts:

#( localState getF'n putfn)

This notation is converted by a read macro into an instance of the [LISP data tvpe activeValue. The
localState is a place for storing data. The getFn and putFn are the names of functions that are applied
with standard arguments when a program tries to get or put the value of a variable. Every active value
need not specify both a getFn and a putFn. If the getFn is NIL, then a get uperation returns the local
state. If the putFn is NIL. then a put operation replaces the local state.

Active values cnable one process to monitor another one. For example, we have developed a 1.LOOPS
debugging package that uses active values to trace and trap references (o particular variables. Another
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example 1 a graphics package that updates views of particular objects on a display when their variables
are changed. In both cases, the monitoring process is invisible to and solated from the monitored process.
No changes to the code of the monitwred object are necessary o ¢nable mounitoring.

Viodel/ View Controller Example: figure 3 shows an application of this to a simulation model. Suppose that
we want a program that simulates the flow of traffic in a city and displays selected parts of the simulation
on a screen.  Active values enable us to divide the programming of this example into two parts: the
traffic model and the view controller. The tratfic model consists of objects representing automobiles, tratfic
lights, emergency vehicles, and so on. These objects exchange messages to simulate traffic interactions
{e.g.. when a rtraffic light turns green, 1t would send Move messages to start cars moving). The view
controller provides windows into different parts of the city. [t contains information about how the objects
are to be displayed. We want a user to be able to move these windows around to change the view.

(DEFINST Automobile-1
(InstanceVariables
(position #{(Posl NIL UpdateDisplay)
displayObjects {(DispObjl1 DispObj2 DispObj3)
doc (* position of car in traffic coordinate system))
{speed 25))

-]

Figure 3. Instance of an automobile in a traffic simulation model. Other classes describe such
things as traffic lights, city blocks. and emergency vehicles. Instances of these classes exchange
messages while simulating the vehicles moving around in the model. The instance variable
position is used to record the location of an automobile in the traffic coordinate system. I[n
this example, an active value in position is used to update view objects that control pictures
of the traffic patterns on an interactive display. Whenever a simulation method puts a new
value into the position variable, the procedure UpdateDisplay sends update messages to
cach object in a list of view objects. These messages ultimately cause the graphics display to
be updated.

n figure 3, there is an active value in the position variable of an instance of Automobile. This
active value is the interface between the object in the simulation model and the view controller.
Whenever a method in the simulation model changes the value of a position variable, the procedure
UpdateDisplay in the putFn of the active value is invoked. UpdateDisplay updates the local value
and sends a message to each of the view objects in the list stored as a property of position. These
objects respond to a message by updating the view in the windows on the display screen. The important
point of this example is that it shows how the view controller can be invoked as a side etfeét of running
the simulation. The view can be changed without effecting any programs in the simulation model. To
change the set of simulation objects being monitored, only the interface to the view controller needs to be
changed by adding active values. The objects in the view controller may also be changed (e.g., to retlect
changes to relative coordinates of the window and the traffic model).

24 Knowledge Bases

LOOPS was created to support a design environment in which there are community knowledge bases
that people share, and to which thev can add incremental updates. We have chosen the term knowledge
base instead of Jara base 1o emphasize the intended application of LOOPS o expert systems. In expert
systerns, knowledge bases contain inference rules and heurnistics for guiding problem solving. This 18 in

1o
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contrast to the tabular files of facts usually associated with data bases.

Knowledge Bases: Knowledge bases in LOOPS arc files that are built up as a sequence of layers, where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge base (that is, all of the layers) or any subset of layers. The second option
offers the flexibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. [t also provides the capability of referring to or restoring any carlier version.
figure 4 illustrates this with an example.

————————————————————————— Layer 1 ~»------ommmmm e oo o

Obji (x 4)

0bj2 (y 5) (w 3)

————————————————————————— Layer 2 ~=-=--------mmmmmm e e

06j2 (y 7) (w 2)

0bj3 (z 8)

————————————————————————— Layer 3 -=--===-mmmmvmmm o m oo

Obj1l (x 8)

0bj4 (z 9) ;

Figure 4. Knowledge bases in [LOOPS are files that are built-up incrementally as a sequence of
lavers. Each layer contains updated descriptions of objects. When a knowledge base is opened.
the information in the later lavers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will be used when a knowledge base is opened. In this
example, if the knowledge base is opened and only the first 2 layers are used. then Obj 1 will
have an x variable with value 4. 1If all three layers were connected. then the value would be
8.

Community Knowledge Bases: LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge bhase can make tentative changes o a community
knowledge base in his own (isolated) environment. These changes can be saved in a layer of his personal
knowledge base, and are marked as associated with the community knowledge base. [n a separate step.
a data base manager can later copy such layers into a community knowledge base. This separation of
tasks is intended to encourage experimentation with proposed changes. [t separates the responsibility for
exploring possibilities from the responsibility of maintaining consistent and standardized knowledge bases
for shared use by a community. The same mechanisms can be used by two individuals using personal
knowledge bases to work on the same design. They can conveniently exchange and compare layers that
update portions of a design. B
Unique [dentifiers: The ability to determire when different layers are referring to the same entity is critical
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identifiers
(based on the computer’s identification numbers, the date, and an unbounded count) o objects before
they are written t0 a knowledge base. This facility provides a grounding for more sophisticated notions
of equality that might be desired in knowledge representation languages built on LOOPS.

Environments: A user of LOOPS works in a personalized environmens. An environment provides a lookup
table that associates unique identifiers with obiects in the connected knowledge hases. In an environment.
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identifier. the dominance relatonships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
hases.



Knowledge Buases

multiple alternatives in a design). A user can have anv number of environments available
it the same time. Fach environment is fully isolated from the others. Operations that move information
o kace
PASCS.
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Viuliiple Alternarives: An important use of environments is for providing speedy access o alternative

Versions (e.g.,
hetween environments are always done explicitly through knowledge

[



3 CREATING AND USING OBJECTS

In the LOOPS implementation of object-oriented programming, there are three types of objects:
[nstances, Classes. and Metaclasses.  Instances are used like data objects in Lisp: they are commonly
created, passed around, and modified by procedures (although all objects can bej. Classes and metaclasses
are objects which “define”™ a group of objects that are “instances of  that class or metaclass. The
difference between classes and metaclasses is that the instances of a class are instances, and the instances
of a metaclass are classes—all comments about classes apply to metaclasses. except where otherwise stated.

Note that the word “instance™ is used in two separate ways: the phrase “instance of " refers to the relation
hetween any object and the class (or metaclass) that “defines” it. The noun “instance” is only used to
refer to those objects which are instances of classes.

A class contains information about instance variables, class variables, and methods. Instance variables are
local variables stored within each instance of the class. Class variables are variables stored within the class
object, accessable from each instance of the class. Methods are procedures which are used to perform
operations on instances of the class.

Each Class also contains a list of other classe$ called ““super classes™ or “supers”. The super class list
provides a mechanism for inheriting instance variables. class variables. and methods from other classes
(see page 31). :

This section first describes how to create and use objects. Next, “sending a message’™ (the standard way
0 invoke a method). Next. creating and using new instances. Next, defining and editing new classes.
Finally, defining a new method for a class. '

3.1 Sending a Vlessage to an Object

Operations in LOOPS are invoked by sending messages. Sending a message to an object invokes a method
(from the class that the ‘object is an instance of}) to execute the operation. Messages are sent using the
function « as follows:

(e object Selector argy --- argpy) [NLambda NoSpread Function]
Sends the message Selector 10 the object object with the arguments argy --- argp.
Selector 1 always implicidy quoted {Le.. not evaluated): the remaining arguments
are evaluated.

object must be an “internal pointer” to the object. The internal pointer to the object
with the LOOPS name FOO can be extracted by the form ($ F0O).

Note: SEND can be used instead of «. The arrow notation, although less mnemonic,
is usually used to make expressions shorter and hence easier (o type and read.

If 1t 1s necessary o compule the selector. one can use the function « !, which is just
like « except that it also evaluates Us Selector argument.

Example:

{« (% PayRol11) PrintOut filel)



Creating a New lnstance

This sends a PrintOut message to the class PayRo 11 {with a single argument: the value of the Inwerlisp
variable filel).

3.2 Creating a New Instance

To create an instance of a particular class. one sends the message New to the class:

(« class New) [Message]
Returns a new instance of the class class.

In the usual case, initial values for Instance variables are taken from the instance
variable descriptions assoclated with the class. LOOPS provides some other ways to
exercise control over the initialization of values in instances (see page 34).

33 Naming and Pointing to Objects

In order to manipulate a LOOPS object, it is necessary to have a pointer to it. One way to do this is to
save a pointer to the object in an [nterlisp variable, for example: '

(SETQ myVariable (« (§ Transistor) New))

This creates a new instance of the Transistor class. and stores a pointer to this instance in the Interlisp
variable myVariable. Pointers to instances can also be saved in instance variables.

LOOPS objects may be passed around and examined by Lisp functions. The following function is useful:

(Object? X) [Function]
Returns X if it is a LOOPS objects. otherwise NIL.

Another way to manipulate an object is by giving it a unique "LOOPS name”. An object can be given a
[LOOPS name by sending it the message SetName

(« object SetName name) [Message]
Sets the LOOPS name name 1o refer to object. [LOOPS names are unique in a
[LOOPS environment: the name is assigned in the environment specified by the
global variabie CurrentEnvironment (see page 41 for a complete description of
environments).

If an attempt 1S made to assign a name already in use in the environment,
and the global flag ErrorOnNameConflict=T. an error is generated. If
ErrorOnNameConflict=NIL. and there is already an object oldObject with that
name, the name is unset tor oldQObject and set for object without generating an error.

For example. if I1 is an Interlisp variable whose value 1s a pointer (o some instance, the object can be
given the [LOOPS name Foo as follows:

(¢« I1 SetName 'Foo0)

After naming I1 this way. the user can refer to this object as ($ Foo). which returns the object whose
name i$ Foo.

:
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['he user can refer t an object with a compured 1.OOPS name using the form ($! EXPR). For example.
it the value of the lisp variable X is the atom Apple. then (3! X) = ($ Apple).

(lasses having MamedObiject (see page 115} as a super class inherit an instance variable. name. that
contains the name of the objects. [nstances of these classes can be named, as before, with a SetName

message, or alternatively as a side effect of seuing the name instance variable.

Class objects are automatically given a LOOPS name when they are created, as described below.,

3.4 Defining a New Class

The way one creates a new class is 1o send the message New to a metaclass. Usually. the metaclass named

Class is used.

(+ metaClass New className supersList) [Message]
Returns a new instance of the metaclass metaClass. className is the new class name
and supersList is a list of the names of the super classes for this new class. [f the
list of super class names is omitted. supersList defaults to (Object).

Example:
{« ($ Class) New 'StudentEmployee '(Student Employee))

This defines a new class, StudentEmployee as a subclass of the known classes named Student and
Employee.

An abbreviated way of defining a class is to use the function DC:

(OC className supersList) ‘ [Function]
(“define class™) Sends the class Class an appropriate New message:

(¢« ($ Class) className supersList)
Example:
(DC 'StudentEmployee '(Student Employee))

This specifies that the class Student is to be used recursively, inheriting both from Student and all its
supers, and from Employee and all its supers.

After defining the class, one can modify its structure by editing the textual source for the class with EC:

(EC className —) [Function]
(“edit class™) EC envokes the Interlisp editor on the textual source for the class
named className.

The editor can also be envoked by sending the Edit message: (¢ ($ className)
Edit).

For example, (EC 'StudentEmployee) might start the editor editing the expression:

[DEFCLASS StudentEmployee

,_...
LA
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MetaClass Class Edited: (* Tc: "18-0ct-82 14:28"))
Supers Student Employee)
InstanceVariables)

P

Methods ]

One can then change this to:

[DEFCLASS StudentEmployee
(MetaClass Class Edited: (* 1c: "18-0ct-82 14:26"))
(Supers Student Employee)
{InstanceVariables
{(sponsor NIL doc (* Name of sponsor))

(Methods ]

3 doc (* number of months here)))

Leaving the editor successtully at this point would install the two instance vararible descriptions in the
class StudentEmployee. Then, in addition to those instance variables StudentEmployee inherited
from Student and Employee, each instance would also have two new ones, sponsor and stay with
default values of NIL and 3 respectively. A more extensive description of editing and changing classes is
found in section 13.4.

Defining a Method

In order 1o define a method for a class, one can use the Interlisp function DM:

(DM className selector argsOrFnName form) [Function]

Defines a method for the class named className that can be called using the selector
selector. If form is non-NIL. then argsOrFnName is interpreted as the list of
arguments for a function, and form as the body of that function. If the first clement
of the list argsOrFnName is not sel1f. then self is added on the front. DM defines
a function whose name is the concatenation of className, a period, and selector.
For example. Class.List is the funcuon name created for the List selector in
the class Class. The function definition is created by substituting into ( LAMBDA
argsOrFnName . form).

If argsOrFnName and form are NIL, DM creates a skeleton definition for the function
and puts the user into the Interlisp editor, editing the skeleton.

If only form is NIL. argsOrFnName is interpreted as the name ot a function to be
used for implementing the method.

Note: a method can also be defined by sending the DefMethod message to the
class: {« class DefMethod selector argsOrFnName form).

"Increment '(self)
incr my IV) («@ :myValue (ADDL (8 :myValue)))))

This defines a method with selector Increment for the class Number which adds 1 two the instance
variable myValue (the @-notation for accessing variables i1s described on page 18). This form results in

16
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the definition of a funcuon named Number. Increment as rollows:

(DEFINEQ
(Number.Increment
{(LAMBDA (self) (* incr my IV)
(«8 :myValue(ADD1 (@ :myValue)))]

(EM className selector —) [Function]
Calls the Interlisp editor to edit the method for the class named classiName associated
with the selector selector.

Often it s more conveniently to use the LOOPS browser to edit the code for a
method (see page 102).
Example:

To edit the method from the example above. one could type:
(EM 'Number 'Increment)

This will edit the method of class Numbe r which responds to the selector Increment, whether or not it
has a name of the standard form.



4 OBJECT VARIABLES AND PROPERTIES

There are two kinds of variables associated with an instance: s privaie insiance variables and the cluss
variables that it shares with all instances of the class. This sectuon deals with the functons tor zetting
and putting values, and with a compact programming notation for referring to these variables from inside
functions that implement methods. [n addition, there are propertics which are associated with instance
variables and class variables, with the methods of a class. and with classes themselves. Given an object
or a class, one can fetch or set any of these properties. This section describes the functions for accessing
all of these properties and values.

4.1 Access Expressions

B

As mentioned above, there are a number of different types of variables and properties that can be
associated with each class. However., most of the accessing operations {getting and putting) in methods
refer to the values or properties of instance variables or class variables of an instance. LOOPS provides
general functions (described later) for accessing these values. allowing variable names and property names
to be computed. However, most of the ume the programmer knows the variable and property name to
be used, and writing calls to these functions can be cumbersome. ’

Therefore, a simplified notation has been introduced for writing many common accessing operations.
which is translated into calls 1o the appropriate funcuons:

(@ object accessExpr) [Macro]

(@ accessExpr) , [Macro]
Returns the variable or property value of the object object as specified by accessExzpr.
Note that accessExpr is not evaluated: object is evaluated.

If only one argument is given to @, it is assumed that the object is bound to the
variable se1f. This is very useful because by convention the first argument o any
method is named self.

(«@ object accessExpr newValue) [Macro]

(«@ accessExpr newValue) : [Macro]
Similar to @, sets the value of the variable or property specified by accessExpr
{unevaluated) in the object object 10 newValue. Returns newValue. Note that
accessExpr is not evaluated; the other arguments are evaluated.

Like @, if object is ommitted. it defaults to the value of the variable sel1f.
Both @ and «@ take the argument accessExpr, which is an “access expression” which specifies exactly
which variable or property value should be retrieved or set. accessExpr 1S an atom which specifies a

variable name, an optional property name, and whether the variable is an instance vanable or a class
variabie.

Some examples:

(@ :FO00) Retrieve the value of instance variable FOO (from the object that is the value of
self).

(@ XX ::FO0) Retrieve the value of class variable FOO (from the object that is the value of XX).
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5)
Store 5 as the value of the BAR property of class variable FCO (of the object that is
the value of self)

4.2 Getting Variahle and Property Values

The functions GetValue and GetClassValue retrieve from an instance the values of variables or their
properties. [f the value bound to an instance variable or class variable is an active value with a getFn.
then GetValue and GetClassValue of these functions trigger the getFn (see page 25).

(GetValue object varName propName) [Function]

{GetClassValue

Returns the value or property value of the instance variable varName in the object
object. Each instance of a class has its own separate set of instance variables.

[f propName is NIL, GetValue returns the value of the variable. In proper usage,
object is an instance and the local value of the variable is returned. If no local value
has been set. GetValue rewurns the default value from the class. Since this is a
common case. default values inherited from super classes of the class are cached in
the class itself, thus avoiding ‘a runtime search.

If propName is not NIL, GetValue returns the value associated with the property
named propName of the variable varName. [f none 15 found in the instance. it
returns the default property value found in the class or one of its super classes. [f
no property value 1s found in any of the super classes. the default value used is
the value of the global variable NotSetValue (currently bound to ?). Note: this
is different from Interlisp. where if no value of a property is found, then NIL is
returned.

GetValue fetches a value from an insiance of a class. [t is an error to try to use
GetValue to fetch an instance variable from a class. To fetch the default value of
an instance variable from a class. use GetClass IV (see page 22).

object varName propName) [Function]
Returns the value (if propName=NIL} or property value of the class variable
varName for the class of the object {which may be either an instance or a class).

Class variables are inherited from the super classes. If object is an instance, lookup
begins at the class of object since instances do not have class variables stored locally.
If the class does not have a class variable varName. GetClassValue searches
through the super classes of the class untl it finds varName. Since this is thought
to be an relatively rare in code, class variables are stored only in the class in which
they are defined. and the runtime search is necessary.

Conceptually, one should think of a class variable of a class as being shared by
all instances of that class. and by all instances of any of s subclasses.  For
example. suppose Transistor is a class with class variable, TransSeqgNum, and
DepletionTransistor is a subclass of Transistor. Then setting the class
variable TransSegNum from an instance of DepletionTransistor would be
seen by all instances of Transistor.

19
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4.3 Putting Variable Values and Property Values

PutValue and PutClassValue are functions used for storing variable or property values in an instance.
F'hey are analogous w GetValue and GetClassValue: as with these functons. if the value of the
variable or property 1s an active value with a putFa. trving to store a value for that varizble or property
will invoke the putFn (see page 25).

(PutValue object varName newValue propName) [Function]
Stores newValue as the value or property value of the instance variable varName in
the object object. Rewurns newValue.

If propName is NIL. PutValue stores newValue as the value of varName in object.
[f propName is non-NIL, then newValue is stored as the value of the property
propName 0f the instance variable varName.

For example, (PutValue pos 'X 0), stores 0 as the value of the instance variable
X of the object pos.

PutValue works for storing values in an instance of a class. It is an error o try
to store-a default instance variable in a class with Putvalue. To store the default
value for an instance variable directly in the class, use PutClassIV (see page 22).

(PutClassValue object varName newValue propName) [Function]
Similar to PutValue, except it stores new Value as the value or property value of
a class varnable and property. object may either be an instance or a class. Returns
new Value.

If varName is not local to the class, then the value will be put in the first class in
the inheritance list that varName is found.

The following functions push a value on the front of a list already stored in a variable:

(PushValue object varName newValue propName) [Function]
(PushClassValue object varName newValue propName) [Function]
PushValue and PushClassValue add newValue on the front of the list that is

the value of the indicated variable or property, and store the result back in the
variable or property.

These functions are defined so thart if the value accessed is an active value, the getFn
will be triggered when the old value of the list is feched, and the putFn when the
new value is stored back (see page 25).

The following function adds a value on the end of an instance variable list:

(AddValue object varName newValue propName) : [Function]
Similar to PushValue, except that newValue is added 1o the end of the variable list.

There is no funcuon for adding values to the end of class variable lists.



THE LOOPS VIANUAL

4.4 Non-triggering Get and Put

Using active values (page 25). it is possible to ussociate functions with a vartable (or property) that will be
called whenever the vanable {or property) is read or set. In some cases, 1t is useful to be able 1o access a
value from an instance or class variable without triggering anv active value which might be stored. This
can be done using the following functions:

(GetValueOnly object varName propName) [Function]

(GetClassValueOnly object varName propName) [Function]
GetValueOnly and GetClassValueOnly retrieve the value of instance variables
and class variables, respecuvely, without triggering anv active values.

GetValueOnly retricves the default value from the class if none exists in the
instance.

To store a value without triggering any active values, the following functions are provided:

(PutValueOnly object varName newValue propName) [Function]

(PutClassValueOnly object varName newValue propName) : [Function]
These functions store newValue in the instance variable or class variable, without
triggering any active values, and return new Value.

Note that GetClassValueOnly and PutClassValueOnly can take either a class or an instance.
GetValueOnly and PutValueOnly will only take instances.

&

4.5 Local Get Functions

Sometimes it is desirable to find out if a value or property is set in a particular class or instance, without
inheriting any information which is not local, and not activating any active values. This can be done with
the following functions:

(GetIVHere object varName propName) [Function]
object must be an instance. Returns the instance variable value that is found
in the instance: if none is found. then returns the value of the global variable
NotSetValue (initially 7).

(GetCVHere object varName propName) [Function]
object must be a class. Returns the class variable value that is found in the class; if
none i1s found. then returns the value of NotSetValue.

In both GetIVHere and GetCVHere, if the value 1s an active value, the actual active value is returned.
without being triggered.

Note that there are no need to have special local put functions, since all put functions are local t the in-
stance or class. For local nontriggering storage functions. use PutValueOnly and PutClassValueOnly

{page 21).
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4.6 Asccessing Class and MVethod Properties

MVost of the get and put functions described in the preceding sections work with instances, but not
with classes. Some exceptions are GetClassValue, PutClassValue, GetClassValueOnly, and
PutClassVaiueOnly, which can take either an instance or a class. and access class variables. and
Get{VHere which takes a class.

The following functions access the Jefauls value or property value of an instance variable (which is stored
in the class):

(GetClasslIV class varName propName) [Function]
Returns the default value or property value of the instance variable varName in the
class class. '

(PutClassIV class varName newValue propName) [Function]
Stores newValue as the default value or property value of the instance variable
varName in the class class. If varName 1s not local o the class. this will cause an
error. Returns new Value.

Note: GetClassIV and PutClassIV do not trigger active values (page 21).

[LOOPS provides property list storage for classes themselves and for methods of classes. A typical use
of these properties is to document a class and its methods. Like the put and get functions for variables,
these functions can trigger active values. The functions for class properties are:

»

(GetClass class propName) [Function]
Returns the value of the property propName of class. If propName is NIL,
GetClass returns the metaclass of class.

Class properties are inherited like class variables, so GetClass will search through
the super classes of class if propName is not found in class itself.

(PutClass class newValue propName) [Function]
Sets the value of the property propName of class 10 newValue. If propName is NTL,
GetClass sets the metaclass of class 10 newValue.

(GetClassOnly class propName —) [Function]

(PutClassOnly class newValue propName) [Function]
These functions are analogous 1o GetClass and PutClass, except that they never
trigger active values.

(GetClassHere class propName) [Function]
Returns the local value of the property propName of class. If propName
is not found locally, GetClassHere returns the value of the global variable
NotSetValue (initally 7).

The functions for accessing method properties are:

(GetMethod class selector propName) [Function]
[t propName is NIL. GetMethod rewrns the method (Interlisp function name)
which implements the message selector of the class class. [f propName is non-NIL.
it returns the value of the property propName of the method.

b
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Method properties are inherited: the retrieval process involves searching through

super classes of class if the property is not found in class iself.

selector newValue propName) {Function]
If propName s NIL, PutMethod sets the method which implements the message
selector of the class class (0 newValue. If propName is non-NIL. it sets the value of
the property propName of the method (0 newVaiue. Returns newValue.

class selector propName) [Function]
class selector newValue propName) [Function]
Analogous 10 GetMethod and PutMethod except that they never (rigger active
values.

class selector propName) [Function]
Returns the local value of the property propName the the method which implements
the message selector of class. If propName is not found locally, GetMethodHere
returns the value of the global variable NotSetValue (initially ?).

All of the above functions only work directly on classes, not on instances of those classes. In addition, if
a method or class variable is inherited, then the put functions change the property in the class in which
the method or class variable is found in the supers list. not in the clags which was the argument of the

put function.

4.7

&

General Get and Put Functions

The following functions are generalized get and put functions which accept a type argument and invoke
the more specialized functions:

{(Getlt object varOrSelector propName type) [
(Putlt object varOrSelector newValue propName type) : [
(GetItOnly object varOrSelector propName type) » [Function]
(PutltOnly object varOrSelector newValue propName type) [
(GetIltHere object varOrSelector propName type) [

Function]
Function]

Function]
Function]
For all of these functons. the value of the type argument can bhe one of IV. CV,
CLASS. or METHOD for instance variable, class variable, class, or method, respectively.
If type is NIL. IV is assumed. The argument varOrSelector is interpreted as a
variable name if type is IV or CV. a selector name if type is METHOD, and is ignored
if type is CLASS.

These functions are interpreted as follows:

(GetIt .-
{GetlIt -
(GetlIt -
(GetlIt -

"IV)
"CV)

i
i

> {GetValue ---)
=> (GetClassValue - )

i

"CLASS) ==> (GetClass ---)

'METHOD) =

> (GetMethod ---)

The other functions are similar.

Note: Actually, if type=1V. these functions will call different functions depending on whether the object
is a class or instance.
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4.8 Summary of Get and Put Functions

In the following able.

from instances:
Get/Put fns tor
instance variables
Get/Put fns for class
variables

from classes:

Get/Put fns for
instance variables

Get/Put fns tor class
variables

Get/Put fns for class
properties

Get/Put fns for
method propertes

Inherit/Trigger

GetValue /
PutValue

GetClassValue
PutClassValue

GetClassValue
PutClassValue

GetClass /
EutClass

GetMethod /
PutMethod

/

indicates that no functon is available.

Inherit/DontTrizger

GetValueOnly /
PutValueOnly

GetClassValueOnly

/ PutClassValueOnly

GetClassValueOnly

/ PutClassValueOnly

GetClassValueOnly

/ PutClassValueOnly

GetMethodOnly /
PutMethodOnly

Local/DontTrigger

GetIVHere

*

GetClassIV /
PutClassliV

GetCVHere

GetClassHere

GetMethodHere
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Active values provide a way of invoking procedures when the value of a variable (or property) i read
or set. [his mechanism 1 dual to the notion of messages: messages are 4 way of telling objects o
perform operations. which can change their variables as a side effect: actve values are a way of accessing
variables. which can send messages as a side effect. [his section presents the notation for creating active
values. Then, the concept of nested active values is introduced. The nesting property enables many of
the important applications of active values by supporting composition of the access functions. Next is
described how to use active values as the default values in a class, and how 10 share them. Finally, the
standard arguments (o active value access functions are described. along with LOOPS functons that can
be used in user-defined access functions.

3.1 Active Values Notation

The notation for an active value illustrates its three parts:
#( localState getFn putFn)

This notation is converted by a read macro into an instance of the Interlisp data tvpe activeValue.
The localState field is used as a place for storing data. The getFn and putFn are the names of functons
that are applied with standard arguments when a program tries to get or put the value of a variable whose
value is an active value. Every active value need not specify both a getFn and a putFa. If the getFa is
NIL. then a get operation returns the local state. [f the putFn is NIL. then a put operation replaces the
local state.

5.2 Nested Active Values

Often it is destrable to associate multiple access functions with a variable. For example, we may want more
than one process o monitor the state of some objects (e.g., a debugging process and a display process).
To preserve the isolation of these processes, it is important that they be able 1o work independently.
LOOPS uses nested active values as a way of composing these functions.

Nested active values are arranged so that the innermost active value is stored in the localState of the
penultimate localState, and the outermost active value is the immediate value of the variable. Put
operations to a variable through such nested active values trigger the putFns in sequence from the
outermost to the innermost. For example, suppose the variable tracing facility were used to trace access
of the position variable from the model/view controller exampie (page 10). The resuliing active value
would look like

#( #(Posl NIL UpdateDisplay) GettingTracedVar SettingTracedVar)

An attempt to set the position variable would cause the function SettingTracedVar to be called with
the new value as one of its arguments. SettingTracedVar would opcrate and call the [ QOPS function
PutLocalState to set its own localState. This, in wurn. would trigger the inner acuve value causing
UpdateDisplay to be invoked.

Get operations work in the opposite order. If there are three nested active values. a request to get the
value will cause the innermost getFn (If anv) to run. tollowed by the middle getFn (if anv), followed
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bv the outermost getFn (if any) whose value 1s returned by the zet operation. Fach getFn sees only the
K g Y ) 4 P g )
value returned by the next nested getFn. and the innermost getF'n sees the value stored in s localState.

[LOOPS provides functions for embedding and removing active values from variables.  This idea of
funcuonal composition for nested active values is most appropriate when the order of compositon does
not matter. We have resisted the development of other combinators for the functions using the same
parsimony arguments that we used earlier about speclalizing and combining methods. Just as inheritance
from multiple super classes works most simply when the super classes describe independent features, active
values work most simply when they interface hetween independent processes using simple functional
composition. Any more sophisticated control is seen as overioading the active value mechanism. The
escape for more complex cases is to combine the implicit access functions using {nterlisp control structures
1o express the interactions.

5.3 Active Values as Default Values

Suppose that I is an instance of a class with an instance variable V, whose default value is the active value
A. Further suppose that the value of V in the instance I has never been set. The first tme (PutValue
I V exp) is invoked. a copy of A is made. This copy is inserted in the instance itself as the the value of
the instance variable, with pointers to the same contents as A. Then the putFn is invoked. with the copy
as the activeVal argument; this copy of A provides a place where local state can be stored private 1o 1.

[n some cases. one knows that the putFn will not actually write into the active value, and therefore the
active value which is the default could be shared instead of needing o be copied. To indicate this, the
localState of A should be made the atom Shared. In the example below, the user knows that no change
will be made in A itself and thus uses a shared active value.

Example: SUM is a class with three instance variables, top. bottom, and sum; top and bottom start with
default values of 0. and sum is (o be computed when asked for. One cannot update sum independently.

[DEFCLASS SUM
(MetaClass Class)
(Supers Object)
(InstanceVariables
(top 0)
(bottom Q)
(sum #(Shared ComputeSum NoUpdatePermitted))
(ClassVariables)
(Methods
(printOn PrintColumn)]

The method for printOn used in this cxample, and the getFn, ComputeSum, and the putFn.
NoUpdatePermitted. are Lisp functions whose definitions are not shown here. NoUpdatePermittedis
available as part of the kernel.

4 Standard Access Functions

(W}

LOOPS provides a convenient set of functions for some common applications. For example,
NoUpdatePermitted. described in the example above. is used to stop update of the localState of
an active value. FirstFetch is a standard getF'n that expects the localState of its active value to be

26 &
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an Interlisp expression tw be evaluated: on the first fewch. the inswnce variable Is set to the
evaluating the expression. [his is lustrated in figure 5. which shows a class TestDatum that
an instance variable sampleX. o be computed on the first tme that it is fewched. and then cached for
future references. At the time of activation of Firstfetch, Self and varName are bound w the
instance and instance variable name in which the active value was found.

re
de: c*i‘vc.\

(DEFCLASS TestDatum
(MetaClass Class)

(...
{(InstanceVariables (sampleX #{(RAND 0. 100.) FirstFetch)))...)

Figure 5. Using an active value to compute and cache a value for a variable on the first fetch

In some applications it is important to be able to access values indirectly from other instances. For
example, Steele [Steele80] has recommended this as approach for implementing equality constraints.
figure 6 shows a way of achieving this by using using the standard access functions GetIndirect and
PutIndirect.

DEFINST JoeAsFatherPerspective
( p
(InstanceVariables _
(age #((#%JoeAsManPerspective age) GetiIndirect Putlndirect))

Figure 6. Active values can be used to provide indirect access to values. This is useful when it
is desired for a variable in one instance to reflect the value of a variable stored elsewhere. [n
this example, the instance #$JoeAsFatherPerspective has an age variable which always
has the same value as the age variable of the instance JoeAsManPerspective.

For some uses, the user may want to compute a default value if given. but replace the active value by
the value given if the user sets the value of a variable. For this the user can employ the system provided
putFn of ReplaceMe, as in:

#(NIL ComputeGoodValue ReplaceMe)
[f this value is made the default in a class. then when a program tries to set this value, the instance will

contain the value set. However, if the user tried to fewch the value form this variable before setting it
the getFn ComputeGoodValue would be invoked.

5.5 User-Defined Access Functions

The getFn and putFn of an actve value are functions that are called with standard arguments:

(self varName oldOrNewValue propName activeVal type)

h
These arguments are interpreted as follows:
self The object containing this acuve valuc.
varName The name of the variable where this actuve value was stored. This is NIL if it is not

stored in a vanable.



User-1¥efined A\ccess Functions

5ldOrNew Value For a getFn, this is the localState of the active value. For a putFn. this is the new

Bl

value o he stored in the acuve value.

propName 1he name of a property. This is NIL if the active value 18 not associated with the
value of a property (Lo if if 1s associated with the value of the variable itself).

activeVal The actuve value in which this getfFn or putFn was found.

type This specifies where the active value is stored: NIL means a instance variable, CV
means a class variable. CLASS means a class property, or METHOD means a method
property.

The value returned by the getFn is returned as the value of the get operation.

The putFn is expected to make any necessary changes to the localState. This can be done using function
PutlocalState described below. [n changing the localState, embedded active values may be wiggered.

Given an active value, the following functions can be used to retrieve or store its localState:

(GetlocalState activeValue self varName propName type) [Function]
(PutLocalState activeValue newValue self varName propName type) [Function]

GetlLocalState returns the localState of the active value activeValue. PutLocalState

stores newValue as the localState of the active value activeValue. and returns
new Value.

Note that it is necessary (o pass these functions the values for self. varName,
propName, and type, In case any imbedded active values are triggered.
[f the IocalState of the active value is itself an active value. then it will be triggered to obtain the localState
argument for the getFn. For a putFn. an embedded active value will be triggered when the putFn calls
PutLocalState. The following functions can be used to access the localState of an active value without
triggering any embedded active values:

(GettLocalStateOnly activeValue). [Functon]

(PutlocalStateOnly activeValue newValue) [Function]
GetLocalStateOnly returns the value of the localState of the active value
activeValue. PutlLocalStateOnly stores newValue as the localState of the active
value active Value, and returns newValue. Both functions access the localState without
riggering embedded active values.

In some cases. it is important to be able to replace the entire active value expression by some quantity,
independent of the depth of nesting of active values. without destroying the outer levels of nesting:

(ReplaceActiveValue activeVal newValue self varName propName type) [Function]
ReplaceActiveValue overwriles activeVal whereever it is {either directly as the
value or property of an instance variable, or as the local state of an embedded active
value) with newValue -

ReplaceActiveValue scarches the value {property) determined by its arguments
until it finds activeVal in the nesting. If activeVal is not found. an error s invoked.

Example: Suppose that we have a class RandomDatum which describes an instance variable sampleX.
which we want to be computed as a random number on the first time that it s fetched, and then returned
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as a constant on all future ferches. We could do this by defining the class as follows:

(DEFCLASS RandomBatum
(Metallass Class)

(.
)

{InstanceVariables (sampleX #{NIL SmashRandom ReplaceMe)))

where the function SmashRandom is defined as follows:

(LAMBDA (self varName value propiame activeVaiue)
(ReplaceActiveValue activeValue (RAND 0. 100.) self varName]

On the first fetch of the value of sampleX in any instance of RandomDatum, the functon SmashRandom
over-writes the active value with a random number. This is a special case of the active value function
FirstFetch described earlier.

The function MakeActiveValue is used to make the value of some variable or property be an active

value:

(MakeActiveValue self varOrSelector newGetln newPutFn newLocalSt propName type)

[Function]
self is the object. varName is typically the name of a variable when the active value
is being placed in an instance vanable. I[f the active value is being placed in a
method, then varName should be bound to the selector name. Active values can also
be used for class variables. or properties of instance or class variables, or methods.
The interpretation of where to create the active value is determined by the argument
type, which must be one of IV {or BIL), CV. CLASS. or METHQOD.

If newLocalSt = EMBED. then a new active value is always created. containing as
its localState whatever was found by GetItOnly (page 23). For other values of
newLocalSt. an active value is created only if the current value is not an active
value: otherwise the old one is simply updated with newlLocalSt, newGetFn. and
newPutFn.

[f an old active value is being updated. then if newGetFn or newPutFn is NIL, the
old getFn or putFn is not overwritten. If newGetFn or newPutFn is T, the old
getF'n or putfn is reset to NIL.

The easiest way to define a function for use in active values is to use the function De fAVP:

(DefAVP fnName putFlg) [Function]

De fAVP creates a template for defining an active value function and leaves the user
in the [nterlisp editor. faName will be the name of the function and putFlg is T if
this is to be a putFn and NIL if it is to be a getFn.

For getFrs. the template is

[LAMBDA (self varName localSt propName activeVal type)

(* This

is a getfn for ...)

locaiSt]

This template incorporates the standard arguments that a getF'n receives. and the convention that they

RIe
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often return the value that is in their local state.
For putFas, the template is

FTLAMBDA (self varName newValue propName activeVal type)
(* This is a putfn for ...)
(PutlocalState activeVal newValue self varName propName type)]

This template incorporates the standard arguments that a putFn receives, and the convention that they
often put their resulting new Value 10 the localState.

[
[



6 COMBINING INHERITED METHODS

In practice. most methods used to manipulate LOOPS objects are inherited. [n the simplest examples
of multiple inheritance. classes represent independent features and there is no conflict between inherited
methods. However, when features inherited from classes interact. it is essential to be able o describe how
to combine them. Howard Cannon recognized this “mixing issue” as central in the design of Flavors:

“To restate the fundamental problem: there are several separate (orthogonal) ariributes that an
object wants to have: various facets of behavior (features) that want to be independently specified
for an object. For example, a window has a certain behavior as a rectangular arca on a bit-mapped
display. [t also has its behavior as a labeled thing, and as a bordered thing. FEach of these
three behaviors is different. wants to be specified independently for each object, and is essentially
orthogonal to the others. [t is this “essentially™ that causes the trouble.”

“lt is very easy to combine compietely non-interacting behaviors. Each would have its own set
of messages, its own instance variables, and would never need to know about other objects with
which it would be combined. Either the multiple object or simple multiple superciass scheme
could handle this perfectly. The problem arises wheén it is necessary to have modular interactions
between the orthogonal issues. Though the label does not interact strongly with either the window
or the border, it does have some minor interactions. For example it wants to get redrawn when
the window gets refreshed. Handling these sorts of interactions is the Flavor svstem's main goal.”

... from [Cannon82]

This section considers cases where the inherited features interact. and describes some LOOPS facilities
for combining interacting methods. First, we describe a way of combining an inherited method with local
method code. Next, we describe other ways of combining methods inherited from multiple super classes.
Finally, we describe some special functions one can use to “escape’ from the normal method inheritence
conventions.

6.1 Augmenting an Inherited Viethod

The inheritance examples shown previously considered only cases where methods are inherited in toto.
[n these examples, subclasses inherit a method or value unchanged. or they override it completely. No
mechanism was described that would enable a subclass o track changes in a method after it had been
specialized in some way.

For combining an inherited method with local code. LOOPS provides the special method invocation
«Super.

(<Super object selector argy - - argy) [NLambda NoSpread Function] \»
object is the object to which the method s applied (typically sel1f). selector is the
selector for the method and arg; --- arg,y are the arguments for the method. As

with «, selector 1S not cvaluated: the remaining arguments are ¢valuated.

«Super provides a torm of relative addressing: it invokes the next more zeneral
method of the same name even when the specialized method invoking «Super is
inherited over a distance. An example of the use of «Super is given in figure 7.
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Note: SENDSUPER can be used instead of =Super.

(BorderedWindow.Refresh
[LAMBDA (self) (* mjs: "11-JAN-82 19:28")

(* * Method for refreshing a window that has a border)

{* First use the refresh method
inherited from Window.)
{«Super self Refresh)
(* Then Re-display the border.)
(¢« (8 :border) Display)
self])

Figure 7. This Interlisp procedure implements the Re f resh message for the class BorderedWindow.

[t uses «Super to invoke the more general method in the class Window. The object for the
“border” of the bordered window is in the instance variable border. The specialized method
returns the bordered window as its value. [n more complicated examples, calls to «Super and
« can be combined using Interlisp iterative and conditional statements.

6.2 Combining Viultiple Inherited Viethods

Using «Super. a method can invoke the single next general method. However, when a class has multiple
super classes. sometimes it is necessary to invoke the general methods from each of the super classes. In
this situation, one can call «Superfringe:

(«Superfringe object selector arg; --- argpy) [NLambda NoSpread Function]
This is similar to «Super, except that «Superfringe invokes the next more
general method of the same name for each of the super classes on the supers list of
the class of the currently-executing method.

6.3 General Method [nvocation

The functions «Super and «Superfringe have proved to be sufficient for implementing most methods.
However, sometimes it is necessary (0 manipulate multiple inherited methods. and invoke them in some
other order. The following functions provide more general ways of invoking particular methods. [t is
important to note that while these functions are more powerful than «Super or «SuperfFringe, they
are also more “dangerous”, in that they do not conform to the conventions of method inheritence. These
funcrions should only be used as a last resort when a method cannot be implemented in anyv other wav.

(DoMethod object selectorExpr class arg; --- argy) [NT.ambda NoSpread Function]
DoMethod allows computaton of the name of the selector and the class from which
that method should be found: it applies that method to object.

All the arguments o DoMethod are ¢valuated; selectorExpr should evaluate to a
selector name in the class computed from class. [f class is NIL. then the class of
object is used. [f no method for the computed selector is tfound in the compurted class.
an error is generated. [he remaining arguments. arg; --- argx are the arguments

et
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for the method.

In the case where the arguments w the method have already been evaluated. then one can use
ApplyMethod instead of DoMethod:

(ApplyMethod object selector arglist class) {Function]
arglist is a list of all the arguments o the method (except object) already evaluated.
The function applied is the one found by searching from class. If class is NIL, the
class of object is used.

(DoFringeMethods object selectorExpr arg; --- argy) [Nl ambda NoSpread Function|
Like DoMethod. all of the arguments are evaluated. DoFringeMethods calls the
method for selectorExpr in the class of object, if that method is defined in that class.
[f the method is not defined in the class of object, the method of the same name for
each of the super classes on the supers list of the class of object is envoked.



7 INSTANCE CREATION

The standard process of creating an instance of a class 15  send a New messaze to the class. In the
simplest case, this causes the information in the /astance variable descriptions of the class o he used o
establish default values for vanables in the newly created instance. When that process is finished. the
instance can be altered in various ways by sending it messages.

LOOPS provides a variety of facilities for controlling this by using active values, standard access functions,
and metaclasses. This section summarizes some of the common cases. See page 38 for an illustratation of
the use of these facilities to support the imporant example of composite objects.

7.1 Specifying Values at Instance Creation

The NewWithValues message simplifies the case where it is desired to specify values and properties in
an instance when it is created. The form of this message is:

(« class NewWithValues valDescriptionList) [Message]
valDescriptionlist must evaluate to a list of value descriptions, cach of which is a list
of a variable name, variable value. and properties: e.g.

varNamey valuey; propy propVal; ---
1 1 1 1
varNames value )
2 2

)

)
The method for NewWithValues first creates the object with #o other initialization
(e.g. without computing values specified in the class, as described in sections below).
[t then directly installs the values and property lists specified in valDescriptionList and
returns the created object. Variables which have no description in valDescriptionlist
will be given no value in the instance, and thus will inherit the default value from
the class.

7.2 Sending a Message at Instance Creation
A simplification in form is available when one wants o send a message to an instance immediately after
its creation. For example, consider:

(¢« {« (3 Transistor) New) Display windowCenter)

which creates an instance of the Transistor class. and then displays it at a point windowCenter. A
more compact notation for doing this is provided:

(¢New ($ Transistor) Display windowCenter)

where «New (“send New’’) means (o create a new instance and send it a message. The value returned by
«~New 15 the new instance. Any value returned by the method s discarded.

In order to name an object. one can send the message SetName 0 that object. As a simplification. if
one provides an argument (o the New message. the default interpretation of that argument is to use it as
a name, sending the newly created object the SetName message.

[
I
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7.3 Computing a Value at First Fetch

As described earlier, one can use an acuve value (o acuvate arbitrary procedures when values are ferched.
The built-in funcuon FirstFetch can be used as a getFn in an actve value as the default value in the
class. If no value has been assigned to the variable or property before the value is feiched for the first
time. the FirstFetch active value is invoked.

The local state of this active value can be a list which is a form t be evaluated. During the evaluation,
the variables self. varName. and propName arc are appropriately bound. 'The local state of the
FirstFetch active value can also be an atom: if so. it is treated as the name of a function © be applied
to the object, varName and propName. The value of the form or function application is made the value
in the instance as well as being returned as the value of the fetch.

For example. the random number example could have been done as follows:

(DEFCLASS TestDatum
(MetaClass Class)

(...
(InstanceVariables (samplieX #((RAND 0. 100.) FirstFetch}))

-)

In this example FirstFetch evaluates the form (RAND 0. 100.) and replaces the value of the
samp TeX variable of the instance by the random number. [n many cases the form may be a « expression.

7.4 Computing a Value at I[nstance Creation

[n the previous example, FirstFetch initializes the value of an instance variables at first access.
Sometimes it is important to initialize an instance variable when the instance is created. For such cases
LOOPS provides a distinguished getFn. AtCreation. I[f a default value of an instance variable or
property contains an active value with AtCreation as its getFn, then at creation tume, the locaiState of
this active value will be used 1o determine a value to be inserted in the new instance.

As with FirstFetch, if the localState 1S an atom. then it will be treated as the name of a function
to be applied to the object, variable name, and property name. [f it is a list, then that list will be
evaluated in a context in which self. varName, and propName are appropriately bound. Functions
run at initialization time are run in the order in which they appear in the class. Default values of variables
are available to these functions. -

[f an object is created by NewWithValues without a value being supplied for a variable which contains
an AtCreation default value. then at the first fetch of that variable, the function or form will be
evaluated.

Example:

Suppose we want to have an instance variable called creationDate which tells the date that an instance
was created. This can be implemented in LOOPS as follows:

(DEFCLASS DatedObject
(MetaClass Class)

(...

[
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(InstanceVariables {creationDate #({DATE) AtCreation)))

-)

I'he funcaon DATE in Interlisp computes a string which 1s the current date and ume. The value of this
siring at instance creation tme is made the intital value of creationDat

\nother use of an AtCreation active value might be 10 make an index entry to a newly created object.
7.5 Special Actions at [nstance Creation

For some special cases. the user may want to have more control aver the creation of instances. For
example, LOOPS iself uses ditferent LISP data types to represent classes and instances. The New message
for classes is fielded by their metaclass. usually the object MetaClass. This section shows how to create
a new metaclass.

Any metaclass should have Class as one of its super classes and MetaClass as its metaclass. The
easiest way to create a new metaclass is to send a New message to MetaClass as follows:

(¢« (3 MetaClass) New metaClassName supers)

This creates a new metaclass with the name metaClassName and with the super classes named in the list
supers. The default supers for metaclasses is the list containing Class. The metaclass for the the new
class 1s MetaClass.

One then installs the specialized method for New in the new metaclass. This method provides the
mechanism for creations of instances of the class which have this as a metaclass. Sending this metaclass
the message New will cause the creation of a class with the appropriate property.

As a simple example we will define a new metaclass ListMetaClass which will augment the instance
creation process by keeping a list of all instances which have been created. This list will be kept on the
class property allInstances. To create this class we go through the scenario in figure 8.

« (« ($ MetaClass) New 'ListMetaClass '(Class))
#%ListMetaClass - We have now defined a new metaclass

~ This defines the New method for that metaclass
« (DM "ListMetaClass 'New '(self name)
"({* Create an instance and add it to list iam class)
{PROG ((newObj («Super self New name)})
(* newObj created by super method from class)
(PutClass
self
(CONS new(bj
(LISTP (GetClassHere self 'Alllnstances)))
"AllInstances)
(* LISTP returns previous list or NIL if none)
(RETURN new(Obj]
ListMetalClass.New

« (« ($ ListMetaClass) New 'Book)

. .
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#SBook - This creqres a new class {($ Book)
whose metaclass s (5 LisiAeraCluss)
{« (S Book) New 'B1l)

#%81 Creating Z3B1 using ListMetaCluss. New
« {« (% Book) New 'B2)

#3582

< (GetClass ($ Book) '"Alllnstances)

(#5B1 #3B2) ~ The list of instances created so far.

Figure 8. In this scenario. a new metaclass ListMetaClass is defined by the New method
of ($ MetaClass). It has metaclass (S MetaClass). We then define the specialized New
method for ListMetaClass. This includes a call to its super (Class) to actually create the
object; it puts the newly created object on its list of objects. We then create ($ Book) which
has ListMetaClass as its metaclass. W@anWO)nuammsorbookdﬁfmeamd cach 1s placed
on the list Al1Instances which is a class property.



8 COMPOSITE OBJECTS

[LOOPS extends the notion of objects to make it recursive under composition, so that one can instanuate 4
aroup of related objects as an entity. This 1s especiaily usetful when relative relationships between members
of the group must be isomorphic (but not equal) for distinct instances of the group. The implementation
of composite objects combines many of the programming features described above. In particular. it s an
application of the notion of metaclass.

8.1 Basic Concepts for Composite Objects

Parameters and Constants: 1LOOPS supports the use of structural templates to describe compuosite objects
having a fixed set of parts. Composite objects are normal LOOPS objects, created by an instantiation
process and describable in the class inheritance network. This contrasts with the idea of using for templates
data structures that are merely copied to yield composite objects. A primary benefit of making composite
objects be classes is the ability to create slightly modified versions of a template by making a new subclass
which inherits most of the structure of its super.

Creating a Template: To describe a composite object. one creates a class whose metaclass is
Template. One can also use a metaclass one of whose supers is Template. Any class whose
metaclass is Template or one of its subclasses is called a template. In a template, the default values for
instance variables can point to other templates: these will be treated as paramerers and will be recursively
instantiated when the parent template is instantiated. All non-template classes and any other default
values are treated as coastanis that are simply inherited by instances.

Instantiation: Instances of a template are created by sending it a New message. The instantiation process
is recursive through all of the parameters of a template. Every parameter is instantiated when it is
first encountered. Multiple references to the same parameter are always replaced by references to the
same instantiated instance. The instantiated composite object that is created is isomorphic to the original
template structure with constants inherited and with distinct instances substituted for distinct templates
(parameters). Parameters in lists or active values are found and the containing structure is copted with
appropriate substitutions. [f a composite object needs multiple distinct instances of the same type (e.g..
two inverters), then multiple templates are needed in the description.

Example: figure 9 shows an example from digital design - a composite object for BitAmp1ifier thatis
composed of two series-connected inverters. The input of the first inverter is the input of the amplifier.
the output of the first inverter is connected to the input of the second inverter. and the output of the
second inverter is the output of the amplifier. Different instantiations of BitAmp11ifier contain distinct
inverters connected in the same relative way. This example also shows a possible use of active values in
templates. The containing composite object is set up so that its oufput instance variable uses an active
value to track the value of the output variable of the second inverter.

[DEFCLASS BitAmplifier
(MetaClass Template doc
(* * Composite object template for an amplifer
made of two series connected inverters.))
(Supers Amplifier)
{ClassVariables)
{InstanceVariables
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{inputTerminal ($ Inverterl))
(output #{ (($ Inverter2) output) Getlndirect Putlndirect)
doc (* Data is stored and fetched from the variable
output in the instance of Inverteri))

(Methods) |

[DEFCLASS Inverterl
(MetaClass Template partOf (3 BitAmplifier)
doc (* Instance variable Input is inherited from Inverter))

(Supers Inverter)
(ClassVariables)
(InstanceVariables
(output (3 Inverter2)
doc (* -Output connected to second inverter)))
(Methods)]

(DEFCLASS Inverter2
(MetaClass Template partOf ($ BitAmplifier) )
(Supers Inverter)
{ClassVariables)
(InstanceVariables
(input (3 Inverterl)
doc (* Input connected to first inverter)))
(Methods) ]

Figure 9. Composite ohject templates for a BitAmplifier. When instances are made, they
will have distinct instances of the two inverters, with their input and output interconnected.
The instantiation process must be-able to reach (possibly indirectly) all of the parts starting
from the class o which the New message is sent. In this case, Inverteri and Inverter?2
are both mentioned in BitAmplifier. The example also illustrates the use of active values
to provide indirect variable access in LOOPS. [n this example. the active value enables the
output variable of an instance of BitAmplifier to track the corresponding output variable
of an instance of Inverter?2 in the same composite object.

8.2 Specializing Composite Objects

Because the templates are classes. all of the power of the inheritance network is automatically available
for describing and specializing composite objects. To make this convenient, one can send the message
Specialize to any template form. For example:

(« (3% BitAmplifier) Specialize)

This creates a new set of templates such that each template in the new set is a specialization of a template
in the old set. One can then selectively edit the templates describing the new composite object. In
particular. one may want to change the names of the generated classes by sending them the message
SetName. Unchanged portions of the template structure will continue to inherit values from the parent
composite object. A user can specialize a template by overriding instance variables. To add parameters.
one creates references to new templates. Converselv, one can make a parameter into a conswant by
overriding an inherited variable value with a non-template in a subclass.
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8.3 Conditional and Iterative Templates

Because the wemplates are fixed, they are not a sufficient mechanism for describing the instantaton of
composite objects having condiuonal or repetitive parts. Consistent with our stand on control mechanisms,
we have not added conditional or iterative siructural descripiions to LOOPS, but use avatlable [nterlisp
control structures in methods. For these cases. a user defines a new metaclass for the composite object.
{Recall that metaclasses are classes whose instances are classes.) The metaclasses tor templates should
be subclasses of the distinguished metaciass Template. The specialized metaclass should have a New
method that performs the conditional and iterative steps in the instantiation. This approach works well
in conjunction with the LOOPS mechanisms for specializing classes and methods. For cxample. the
specialized New method can use «Super 1w access the standard code for the template-directed portion
of the instantiation process. figure 10 shows an example of a LOOPS template for a ring oscillator. This
composite object is made of a loop of serially connected inverters.

MetaRingOscillator.New
g
LAMBDA (self assoclList numStages) (* mjs: "11-JAN-82 19:28"
g J
(* * Procedure for creating a ring oscillator.)

(PROG (ringOscillator firstinverter lastlnverter invl)
(* Create the inverter chain.)
(SETQ invl (SETQ firstlnverter (¢« (3 Inverter) New)}))
[for 1 to (SUB1 numStages)
do (SETQ lastInverter (« ($ Inverter) New))
(¢ invl Connect lastlnverter)
(SETQ invl lastlnverter]
(* Close the loop)
_(« lastlnverter Connect firstinverter)
(* Make the ringOscillator object.)
(SETQ ringOscillator («Super self New assocList))
(* * the assoclList here is the pairing
of Template classes found in the
instantiation of a template so far)
(@« (ringOscillator input) firstinverter)
(@« (ringOscillator output) lastlnverter)
(RETURN ringOscillator) 1)

Figure 10. Example of an iteratuvely specified composite object, a ring oscillator. The ring
oscillator is composed of a series of inverters serially-connected to torm a loop. To specify the
iteration and interconnection of the inverters, a New method is defined for the metaclass
MetaRingOscillator. The [nterlisp function for this method (MetaRingOscillator.New)
uses «Super to perform the template-driven part of the instantiation. that Is, instantiating the
ring oscillator object iself. In this case. the template-driven portion of the nstantiation s trivial,
but the example shows how it can be combined generally with the procedural description.
MetaRingOscillator. New uses licrative statements to make an instance of Inverter for
cach stage of the oscillator. After connecting the components together, it returns the ring
oscillator object.



9 LOOPS KNOWLEDGE BASES

[Loops was created 10 support a design enviconment in which there are community knowledge bases that
people share. and to which thev can add incremental updates. This section describes our goals for this
factlity. the concepts that we have emploved. and scenarios for using knowledge bases in Loops.

We have chosen the term knowledge base instead of data base to emphasize two things: the kind of
informaton being stored and constraints on the amount of informaton. Loops will be used mainly for
expert system applications where relatvely modest amounts of information are used for guiding reasoning.
This information {i.e.. knowledge) consists of interence rules and heuristics for guiding problem solving.
This is in contrast o potenually enormous files of facts. for example. social security records for California.
Reflecting this difference of scale, we have optmized the implementation to support fast access and
updating to0 a smaller amount of information which is expected to fit in main memory for any one session.
For example, we maintain an index to the object information in compuler memory.

9.1 Review of Knowledge Base Concepts

Knowledge Bases: Knowledge bases in LOOPS are files that are built up as a sequence of layers. where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge hase (that is, all of the layers) or any subset of lavers. The second option
offers the flexibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version.
figure 11 illustrates this with an example.

————————————————————————— Layer 1 -==--rommmm e e e e
Objl (x &)

0bj2 (y 5) (w 3)

————————————————————————— Layer 2 --=-----mmmmmm o e
0bj2 (y 7) (w 2)

0bj3 (z 6) .

————————————————————————— Layer 3 --=---remmmmmmm e e
Obj1l (x 8) .

Obj4 (z 9)

Figure 1. Knowledge bases in LOOPS are files that are built-up incrementally as a sequence of
layers. Each layer contains updated descriptions of objects. When a knowledge base is opened,
the information in the later lavers overrides the information in the earlier lavers. LOOPS
makes it possible 1o select which layvers will be used when a knowledge base is opened. [n this
example, if the knowladge base is opened and only the first 2 lavers are used, then Obj1 will
have an x variable with value 4. If all three layers were connected. then the value would be
8.

Community Knowledge Bases: [LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge base can make tentative changes to a community
knowledge base in his own (isolated) environment. These changes can be saved in a laver of his personal
knowledge base. and are marked as associated with the community knowledge base. [In a separate step,
a data hase manager can later copy such lavers into a community knowledge base. 'This separation of
tasks s intended to encourage experimentation with proposed changes. [t separates the responsibility for
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expluring possibilities from the responsibility of maintaining consistent and standardized knowledge hases
for shared use by a community. The same mechanisms can be used by two individuals using personal
tnowledge bases o work on the same design. They can conveniently exchange and compare lavers that
update portions of a design.

Unigue ldentifiers: The ability to determine when different layers are referring to the same entity is crideal
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identifiers
{based on the computer's identification numbers, the date, and an unbounded count) o objects before
they are written (0 a knowledge base. This facility provides a grounding for more sophisticated notions
of equality that might be desired in knowledge representation languages built on LOOPS.

Ernvironmenis: A user of LOOPS works in a personalized environment. An environment provides a lookup
table that associates unique identifiers with objects in the connected knowledge bases. [n an environment,
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identifier, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases.

Multiple Alternarives: An important use of environments is for providing speedy access to alternative
versions {e.g.. multiple alternatives in a design). A user can have any number of environments available
at the same time. Each environment is fully isolated from the others. Operations that move information
between environments are always done cxplicttly through knowledge bases.

9.2 Environmental Objects and Boot Lavers

Knowledge bases. environments, and layers are represented in [Loops by special objects called environmental
objects. All knowledge base and environment operations are performed by sending messages to these
objects. Environmental objects are accessible from any environment in [Loops.

In this section, we will need to distinguish between environmental objects and the things that they
represent. figure 12 summarizes some of the terminology that we will use.
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[.oops (Jbject Represents Description

[aver file laver Portion of a fle which conrtains
descriptions of objecis.

KB knowledge base A file and sequence of file lavers.
A knowledge is known by the name
field of its file name.

KBState State of a A sequence of file lavers. Used to
knowledge base access a fixed explicit set of file layers
{e.g., a version of a knowledge base that

15 older than the most recent version).

Environment environment An environment assoclates names and
unique identifiers with objects in
working memory.

Figure 12. Summary of terminology for environmental Loops objects and the entities that they
represent.

Environments: An Environment provides a name space in working memory. Each Environment associates
names and unique identifiers with objects. In general. Environments are designed to be independent. For
convenience. Environments are usually named.. An Environment is always assoclated with a particular
knowledge base. The specifications for creating an Environment come from some knowledge base, and
changes to the Environment are stored on that knowledge hase.

Layers: A file layer is a portion of a file which contains descriptions of objects. An object description
consists of a unique identifier and an expression that can be read by Interlisp to create the Loops object. A
different unique identifier is associated with each expression. In addition, a file layer contains a mapping
from names {Interlisp atoms) to unique identifiers. A file layer is represented in L.oops by a [ayer object.
A Layer indicates the file on which it is written, the starting address of the file layer, and the name of
the knowledge base with which it is conceptually associated. A Laver also contains various bookkeeping
information such as the name of its creator and the date of its creation.

K Bs and KBS'1tates: A knowledge base is a set of file layers. Typically, most of the layers of a knowledge
base are located on a single file. A knowledge base is known by its file name. By convention, such files
have the extension “KB”. A KB is a Loops object that represents a knowledge base. A KB has a name
equal to the name field of the file name of the knowledge base that it represents. For example. the KB
with name Test would be associated with a version of the file Test . KB.

A KBState is a generalization of a KB. [t refers to an explicit set of file layers. KBs and KBStates indicate
their Layers using a list on an instance variable named contents. An element of this list must be either
a Laver or a KBState. When a KBState appears in the list. it is as if the Lavers listed in the KBState's
contents variable appeared explicitly in the list. This provides a mechanism for indirect fetching of lavers
from other knowledge bases.

To indicate all of the layers of the most recent version of a knowledge hase, the contents ot the KBState
can be the special value "CURRENT". When such a KBState appears in the list. it is as if the Layers of
the most recent version of the knowledge hase were inserted in the list. These Lavers are retrieved by
retrieving the KB from the referenced knowledge base.
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Root [ayers: Environmental objects are distinguished from other objects when they are acce s:d and
when they are written out [0 a knowledge hase. Thev are accessed ditferently in that thev are kept in a
global name wable accessible in all environments. This means that an Environment can be descr md mn
rerms of the environmental objects before the Environment is made current

Environmental objects are also special in that the file laver that describes them is a special file layer at
the end of a knowledge base called the boot layer. In order to access the contents of a knowledge base.
It 1S necessary to read the boot layer first because it contains the environmental objects that describe
the knowledge base. A boot layer for a knowledge base contains a single KB describing iwself. a Laver
describing each of s file lavers, and the KBStates mentioned (direcdy or indirectlv) in the KB.

The Global Name Table: Loops keeps environmental objects in a giobal name wble that is accessible from
any environment. This name table also includes the basic classes that are part of the Loops kernel. If
Loops is used without exercising the Environments feature, then all created objects are aiso placed in the
global table.

When another environment is opened, objects not in core are first looked for by UID or name in the open
environment. If no object is found there, then the UID or name is looked up in the Global Environment.
Thus, object descriptions in a new environments override those in Global Envrionment, but old objects
which have no counterparts are still available

9.3 Starting With No Preexisting Knowledge Bases

The knowledge base facility in Loops has been designed to cover a number of situations. Because of
this generality, it is not always easy for a newcomer to discover the simplest way of using the features.
The following sections describe all the features of the Knowledge Base system: however each feature is
introduced within a particular scenario that shows how to do some of the most common operations for
which [oops was designed.

In the first scenario, a user wants to start from scratch using no preexisting knowiedgu hases. The results
of this Loops session are saved in a personal knowledge base.

When a user invokes Loops, the Loops name space will contain some objects from the Loops kernel.
Before creating any new objects, the user should type an expression of the form:

(¢« $SKB New 'KBName 'environmentName newVersionFlg)

where KBName is an atom {e.g.. use FOQ 0 create a knowledge hase named FOO.KB) and
environmentName will be the name of the Environment. This will create both 1 new KB corresponding
to the KBName and a new Environment with the name environmentName.

[.oops checks that a knowledge base with KBName does not already exist. {f it does exist and
newVersionFlg is NIL, Loops will report an error. If newVersionFlg is T, then loops will create a
new version of the file. Because of the way the file system works. the name of a KB must be all in upper
case. If the user attempts to use a KBName which contains lowercase letters. Loops will correct the name
to all upper case and print a warning message.

Warning: Objects created before creating and opening an Environment are placed in the global name
table. Hence. any objects so created will be shared by all Environments. However, Loops will not save
such objects in a knowledge base later in the session unless they are explicitly moved to some environment.
Alternatively. such objects can be saved using the Interlisp file package.

14



THE LOOPS MaNUAL

The next step is [0 open the bnvironment:
{« SenvironmentName Open)

This makes the new Environment be the current environment. New objects that are created will he
associated with the KB.

Having created an Environment the user can then proceed to create whatever new objects he desires in
the session. To dump the current state of the environment and continue afterwards, the user can type:

(¢ SenvironmentName Cleanup)

This does not close any files. and leaves the environment as it was. except that all changed objects have
been dumped to the knowledge base, and then marked as unchanged. CTeanup can be done any number
of times in a session.

At the end of a session the user should do a Close:
(¢ SenvironmentName Close)

This writes out all of the objects to a file layer. updates the environmental objects accordingly, and- writes
them out to a boot layer, deletes these objects from memory, and closes all files associated with the
environement. The user can then exit from [nterlisp. After a Close is done. the user must go through
the following scenario to start up again.

9.4 Continuing from a Previous Session

The case where a user wants to create a new knowledge base is less common than the case where he
wants to modify or add objects to a knowledge base that he has previouslv created. In this scenario a
user wants to resume from where he was at the end of his previous session.

The first step is to obtain the user’s knowledge base, and link it to an environment. This is done by a
message to the class KB as follows:

(« $KB 01d ’'KBName 'environmentName)

This reads the boot layer of the knowledge base named KBName and creates an Environment named
environmentName that is then connected to the KB. At this point the user must open the environment
to make the contents of the KB available in this environment:

(¢ S$environmentName Open)

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the associated
KB (named KBName). [t also makes the new Environment be the current environment. Having opened
an kEnvironment, the user can then proceed to define whatever new objects he desires in the session.
New objects that are created will be associated with the KB. When he is done, he should type as in the
previous scenario:

(¢ SenvironmentName Cleanup)

or
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(< SenvironmentName Close)
9.5 Starting from a Community Knowledge Base

Users will not usually start from scratch.  Rather, they will often begin by using previously created
community knowledge bases. This scenario starts with obtaining a single community knowledge base.
The user does not own the community knowledge base, so the results of the session will have o be saved
in a personal knowledge base. The personal knowledge base will contain any new objects that created as
well as any objects from the community knowledge base that have changed.

As in the first or second scenario. the first step is to create a personal knowledge base,
(« $KB New 'KBName 'environmentName newVersionFlg)

or if the user has a personal knowledge base already, by doing a:

(¢« $KB 01d 'KBName 'environmentName)

This obtains both the KB and an Environment. The next step is 10 add the community knowledge base
to the KB as follows:

(« $KBName AddToContents 'communityKBName)
where communityKBName i an atom that is the name of the community knowledge base.

This step should be repeated for each knowledge base to be added to the KB named KBName. The
message creates a KBState describing the “current” state of the community knowledge base and adds that
KBState to the contents of the KB for the personal knowledge base. The effect of this action is that
[Loops will remember (0 associate the community knowledge base with the user’s knowledge base in the
future. (This step need not be repeated in any future session which uses the knowledge base KBName.)

At this point, the user can ¢pen the Environment as before:
(¢ 3environmentName Open)

This causes Loops o read in each Layer contained (possibly implicitly) in the contents of the KB named
KBName. 'The Open message also makes the Environment named environmentName be the current
environment.

Since the KB associated with the environment contains a KBState for communityKBName, those Layers
will also be read. They are found by reading the boot layer of the community knowledge base. The
message AddToContents on KBName will work properly even after the environment is Open. in the
sense that when it 1s done on a KB connected t0 an Open environment, it causes all the layers of the
newly added KB to be read in.

All creation and modification operations will take place in this Current Environment. The user can
create new objects and modify objects in the community knowledge base. When done, the results of the
session can be saved using Cleanup (or Close). This will cause two file lavers to be written out t the
personal knowledge base (and none to the community knowledge base). First a file laver is written out
t0 KBName for changes made to the community knowledge base (if anv). The lLaver for this file laver
is marked as associated with the community knowledge base. Second. a file laver is written out for the



