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Abstract. LOOPS adds data, object. and rule oriented programming to the procedure oriented
programing of Interlisp. In object oriented programming, behavior is determined by responses of
instances of classes to messages sent between these objects. with no direct access to the internal
structure of an object. This approach makes it convenient to define program interfaces in terms of
message protocols. Data oriented programming is a dual of object oriented programming, where
behavior can occur as a side effect of direct access to (permanent) object state. This makes it easy
to write programs which monitor the behavior of other programs. Rule oriented programming is an
alternative to programming in LISP. Programs in this paradigm are organized around recursively
composable sets of pattern-action rules for use in expert system design. Rules make it convenient
for describing flexible responses to a wide range of events. LOOPS is integrated into interlisp, and
thus provides access to the standard procedure oriented programming of Lisp, and use of the
extensive environmental support of the Interlisp-D system

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem. The paradigms described here offer distinct
ways of partitioning the organization of a program, as well as distinct ways of viewing the
significance of side effects. LOOPS provides all these paradigms within a single environment. This
manual is intended as the primary documentation for users of LOOPS, It describes the concepts and
the programming facilities, and gives examples and scenarios for using LOOPS,
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our disti iect paradigms o t p roeramrn.i.na’ evail.ebla n the computer ~ mice coinmunite t.odcmr .i ricn.Lad.

around procedures. objects. data access and rules. Usually these paradigms are embedded in Wft~ererit
I ~ I OOPS is dLs~gncdto nm nor mm ill ot thmn v a the I ~m°~p preen mn tom n iii

to allow users to choose the style of proeramming ~Pica best suits their applmcation.

Procedure Oriented Progrumming: Lisp is a procedure oriented language; the procedure oriented paradicm
is the dominant one provided in most programming languages today. Two separate kmnds of entities are
distinguished: procedures and data. Procedures are active and data are passive. [he ability to compose
procedures out of instructions and to invoke them is central to organizinc programs using these languaces.
This is a major source of leverage in synthesizing programs. Side effects happen when separate procedures
share a data structure and change parts of it independently.

Object Oriented Programming: This paradigm was pioneered by Smalltaik, and has its roots in SIMULA
and in the concept of data abstraction. In contrast with the procedure-oriented paradigm, programs are not
primarily partitioned into procedures and separate data. Rather, a program is organized around entities
called objects that have aspects of both procedures and data. Objects have local procedures (methods)
and local data (variables). All of the action in these languages comes from sending messages between
objects. Objects provide local interpretation of the message form.

The object-oriented paradigm is well suited to applications where the description of entities is simplified
by the tise of uniform protocols. For example in a graphics application, windows, lines and composite
structures could he represented as objects that respond to a uniform set of messages (i.e.. B i sp 1 ay.
Move, and Erase). An important feature of these languages is an inheritance network, which makes
it convenient to define objects which are almost like other objects. This works togetMr with the use of
uniform protocols because specialized objects usually share the protocols of their super clas~ses.

Data Oriented Programming: In both of the previous paradigms. the invocation of procedures leither by
direct procedure call or by message sending) is convenient flit creating a description of a single process.
In the data-oriented programming, action is potentially triggered when data are accessed. Data oriented
programming makes use of long term storage of objects with implicit links from structures to actions.

Data oriented programming is appropriate for interfacing between nearly independent processes .A good
example of this is the construction of a viewer for an independent traffic simulation process. The viewer
provides a visual display of the changing traffic simulation process without affecting the code for the
simulation. This independence means that the two processes can he written and tinderstood separately.
It means that the interactions between them can often he controlled without changing them.

Rule Oriented Programming: In rule oriented programming, the behavior of the system is determined
by sets of condition-action pairs. These RuleSets play the same role as stibroutines in the procedtire
oriented metaphor. Within a RuleSet. invocation of rules is guided largely by patterns in the data. In
the typical case, rules correspond to nearly-independent patterns in the data. The rule-oriented approach
is convenient for describing flexible reSpOnseS to a wide range of events characterized he the structure of
the data.

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem.Avaniety of programming paradigms gives breadth to
m progi miming language I he par sdicms dcscnibvd here offvr distinct ways ot partitioning the organizsoon
of a procram, as well as distinct vva~sof iewing the significance of side effects. LOOPS provides all
these paradigms within the Interlisp environment [Xerox83]. In principle, the data-oriented programming
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CL inhined it mis 0th mOth e~ri he h~em~~m’’~ mom

Po,mtoorv: LOOPS dde do , biec~ md me a ~“ a” rim’ erden. in hject oriented
procramrninc, hehm br 0 determined by respt m ‘~ a~t~trrce~t ~.es m messages mut between these
objects. with no dmrect mess to the internal structure 0 an orpem. I his approach nodes 4 convenient to
define program interfaces in terms of mnessa:e pr tocols. I OOPS po tdes:

• inheritance of instance belies ior and structtire from multiple super classes

• tiser extendible property list descriptions of classes. their variables, and their methods

• composite objects - templates for related objects that are instantiated as a group.

Data oriented programming is a dual of object oriented programming, where behavior can occur as a side
effect of direct access to (permanent) object state. This makes it easy to write programs’ ‘which monitor
the behavior of other programs. LOOPS provides:

• active values for object sariables which can cause a procedure invocation on setting or fetching

• integration with facilities for long term Storage of objects in shared know ledee bases

support for incremental updates (layers), and the representation of multiple alternatives.

Rule oriented programming is an alternative to programming in LISP. Programs in this paradigm are
organized around recursivels composable sets of pattern-action rules for use in expert sestem design.
Rules make it convenient for describing flexible responses to a wide range of events. LOOPS prov ides:

• a concise syntax for pattern matching and rule set construction

use of objects as working memory for rule sets

primitives for executing, stepping and suspending tasks based on ruleSets

• compilation of ruleSets into lisp code for efficient execution

LOOPS is integrated into interlisp. LOOPS provides:

• classes and instances as Interlisp file objects

• pseudoClasses to field messages to standard Interlisp datattpes

[his manual is intended as the primary documentation for tisers of I.OOPS. It describes the concepts and
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~ 7r u tm.rir; f~..il’t~ ~ : :~ •~ ~naci s ~tr using 1.001’S.

1.1 Intellectual Prtcursorc

1.001’S zrc’~out of ~,urreseurn in i kn.w 1cthze -cprcsentauon language (called I ore) tbr use in a
project to create in ~..~perz.zssisiani for d.~sijnersof integrated digital s~stems. .~longthe way, we
discosered that we needed to experiment ‘with ultemause versions of the represeni:ation language. A core
of features was identified that we wanted to keep constant in our experiments. This core became a data
and object-oriented programrrCng “ stem with many rbatures not found in other as ailable systems. Many
uf the features (e.g.. active ~.aiues.data bases, tad c “mpos~teobjects; ssqrê motivated by the needs of our
project, but we they would be usethl for many other applications. LOOPS has been sufficiently usethL
and general that we decided to make it available outside of our group.

l’he design of LOOPS owes an intellectual debt to a number of other systems, including:

(I) Smailtalk ([Ooldberg82j, [Ooldberg8lJ, [Ingalls7SJ), which has pioneered many of the concepts of
object-oriented programming.
(2) Flavors [Cannon82J, which supports this style of programming in the MIT Lisp Machine ens ironment
and which confronted non-hierarchical inheritance.

(3) PIE [GoLdstein8ol, which provided facilities tbr incremental, tharable data bases.

(4) KR!. [Bobrow7’9, which explored many issues ~nttle design of frame-based knowledgq representation
languages and which provoked much additional work in this area.
(5) UNITS [Stefikl9J, which provided a substantial testbed for experiments in problem soLving that have
guided our decisions about the importance ofseveral language features.
(6) EMYCIN [VanMelle8O] which showed the power of rule oriented programming lbr building expert
systems.
While ali of these languages provided ideas, none of them was quite right tbr our current needs. For
example. Smalitalk supports only hierarchical inheritance and does not have i layered data base. active
values, or property lists on variables. PEE and KRL. are not easily supportable or extendable. Flavors
does not run on the machines available to us. L ‘Al’L’S was the closest existing language to our needs,
but we wanted to change many of its features. Since we have compared these languages and traced the
intellectual history elsewhere [BobrowS2J, we will not pursue that further in this document.

In designing LOOPS, we wanted a general inhentance mechanism, a way of attaching access-triggered
procedures to variables, a way of instantiating composite objects recursively, and a way of creating
permanent databases of objects that can be shared and updated incrementally.

In tension with the desire for extensive language features was a desire to keep I OOPS small so that it
would be easy to understand and to implement. To this end we have tried to create a small repertoire of
powerful features that work well together.

1.2 tcknowledgnients

from she lOOPS Wanwi:
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2 OVERVIEW

2.1 Structure of Classes and Instances

foasse.v: -\ class is a description of one or more similar objects. An umsiance is an object described by
a particular class. Every object within LOOPS is an instance of exactly one class. Classes themselves
are inStances of a class. usually the one called Class. Classes whose instances are classes are called
m etaciasses,

Variables: LOOPS supports two kinds of variables - class variables and instance variables. Class sariables
are used to contain information shared by all instances of the class. A class variable is typically used
for information about a class taken as a whole. Instance variables contain the information specific to
an instance. Both kinds of variables have names, values, and other properties. A class describes the
structure of its instances by specifying the names and default values of instance variables. For example,
the class Point might specify two instance variables, x and y with default values of 0, and a class
variable, lastSelectedPoint, used by methods associated with all instances of class Point. LOOPS
also allows “variable length” classes, which have some instance variables that are referenced by numerical
index.

kfethods: A class specifies the behavior of its instances in terms of their response to messages. The class
associates selectors (LISP atoms) with methods, the lnterlisp functions that respond to the messages. All
instances of a class use the same selectors and methods.Any difference in response by two instances
of th~same class is determined by a difference in the values of their instance variables, For example,
Print0n is tised as a selector for the message which knows how to print out a representation of an
object on a file.

Properties: LOOPS provides user-extendible property lists for classes, their variables. and their methods.
Property lists provide places for storing documentation and additional kinds of information.A property
list on a variable is used to store additional information about both the variable and its value. For
example, in a knowledge engineering application, a property list for an instance variable could he used
to store such information as support (i.e.. reasons for believing a value), certainty Jhctors (i.e., numeric
assessments of degree of belief), constraints on values, dependencies (i.e., relationships to other variables),
and histories (i.e.. previous values).

%/etac/asses: Classes themselves are instances of some class. When we want to distinguish classes whose
instances are classes, we call them metaclasses. after the Smalltalk usage. When a class is sent a message.
its metaclass determines the response. For example, instances of a class are created by sending the class
the message New. For most classes, this method is provided by the standard metaclass for classes: Class.
The user can create other metaclasses to perform specialized initialization. The metaclass for Class itself
(called MetaCl ass) contains the New method for making classes. .‘~notheruseful metaclass provided in
the system is AbstractCl ass. It is used for classes that are placeholders in the inheritance network
that it would not make sense to instantiate. Its response to a New message is to cause an error.

[DEFCLASS AreaBudget
(MetaClass Class EditedBy (~‘ dqb “15—Feb—82 14:32 “)

doe
(* * This is a sample class chosen to illustrate the syntax
of classes in LOOPS. Commentary on the class is inserted



Inheriting Variables and Methods

in a standard property in the class. -- e.g. Budgets ar~ ))
(Supers OwnedObiect Budget)
(ClassVariables (maxBase 26000))
(InstanceVariables

(owner #SVLSI doe (~ organizational area that owns budget)
(base 1000 doe (* The initial amount of money))
(overhead 2.26 doe (* Multipl ied by base to get total.))
(employees NIL doe (* list of employees in this area))
(manager NIL doe (* manager of this area))
‘(total #(SHARED getTotal UpdateNotAllowed)

doe (* value of total is computed using active value.))
(Methods

(Report AreaBudget.Report doe (* Prints out a budget report))
(StoreBase AreaBudget. StoreBase

doe (* store base value checking maxBase))]

Figure 1. Example of a class definition in LOOPS. The class, called AreaBudget, inherits
variables and methods from both of its superclasses(OwnedObj ect and Budget). The form of
the definition here does not show inherited information, only the changes and additions. In this
example the new class variable maxBase is introduced, and six instance variahles(owner, base,
overhead, employees.manager. andtotal)aredeflned. TheMethods declarationnames
the Interlisp functions that implement the methods. For example, AreaBudget Report is
the name of a function that implements the Report method for instances ofAreaBudget.

2.2 Inheriting Variables and Methods

Inheritance is an important tool for organizing information in objects. It enables the easy creation of
objects that are “almost like” other objects with a few incremental changes. Inheritance avoids the riser
have to specify redundant information and simplifies updating, since information that is common need
he changed in only one place.

LOOPS objects exist in an inheritance network of classes. An object inherits its instance variable description
and message responses. All descriptions in a class are inherited by a subclass unless overridden in the
subclass. For methods and class variables, this is implemented by a runtime search for the information.
looking first in the class, and then at the super classes specified by its supers list. For instance variables, no
search is made at run time; default values are cached in the class, and are updated if any super is changed.
thus maintaining the same semantics as the search. Each class can specify inheritance of structure and
behavior from any number of super classes in its snipers list.

Hierarchy: In the simplest case. each class specifies only one super class. If the class A has the supers list
(B). a one element list containing B. then all of the instance variables specified local to A are added to
those specified for B, recursively. That is, A gets all those instance variables described in B and all of B’s
snipers. In this case one obtains strict inheritance hierarchy as in Smalltalk.

Any conflict of variable names is resolved by rising the description closer to A in traversing tip the
hierarchy to its root at the class Obj ect. Method lookup uses the same conflict resolution. The method
mm respond to a message is obtained by first searching in B, and then searching recursively in B’s snipers
list. .-\n example of this is given in figure 7.

S
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Class Super Instance Variables ~lethods

Object NIL none (s4 MB)

C Object (w 7) (s2 M4) (s3 MB)

B C (y 4) (z 3) (si M2) (s2 M3)

A B (x 1) (y 0) (s-F Mi)

Figure 2. In the definitions given in the above chart, an instance of A would he given four
instance variables, w, y, z, and x in that order. The default value for y would he 0, which
overrides the default valnie of y inherited from B. The instance would also respond to the four
messages with selector si, s2, s3, and s4. The method used for responding to si is Mi.
which is said to override M2 as the implementation of the message s 1. Similarly, M3 overrides
M4 as the implementation of message s2. Notice that the root class in the system, Object.
has no super class. All classes in the system are subclasses ol’ Object. directly or indirectly.

i/u/tip/c Super Classes: Classes in LOOPS can have more than one class specified on their snipers list.
Multiple super classes admit a modular programming style where (i) methods and associated variables
for implementing a particular feature are placed in a single class and (ii) objects reqniining combinations
of independent features inherit them frtm multiple snipers. If D had the supers list ( E A), first the
description from E and its supers would he inherited, and then the description from A and its snipers. In
the simplest usage, the different features have unique variable names and selectors in each super. In case
of a name conflict, LOOPS uses a depth-first left to right precedence. For example. if any sniper of E had
a method for Si, then it would he used instead of the method Ml from A. In every case, inheritance from
Object (or any other “common” super class) is only considered after all other classes on the recursively
defined snipers list.

2.3 Data Oriented Programming Using ictive Values -

In data oriented programming, one needs a way of specifying for any variable of an object whether any
special procedure is to he invoked on read or write access, and if so which. In LOOPS we check on
every variable access whether the value is marked as an active value. If so, the active value specifies the
procedures to be invoked when the value of a variable (or property) is read or set. This mechanism is
dual to the notion of messages; messages are a way of telling objects to perform operations, which can
change their variables as a side effect: acti\e valnies are a way of accessing variables, which can send
messages as a side effect. The following notation for active v-aloes illustrates its three parts:

#(IocalState getFn putFn)

This notation is converted by a read macro into an instance of the LISP data type act i veVal ue. The
IocalState is a place for storing data. The getFn and putFn are the names of functions that are applied
with standard arguments w-hen a program tries to get or pnit the value of a variable. Every active value
need not specify both a getFn and a putFn. If the getFn is NIL, then a get operation returns the local
state. If the putFu is hI IL. then a pnit operation replaces the local state.

Active values enable one process to monitor another one. For example. we have developed a LOOPS
debugging package that uses active values to trace and trap references to particular variables. Another
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exempe P m graphics package that updates ie’~ss f particular objects on a display vs hen their variables
ire chanced. In both cases, the monitoring proccss ms ins isible to ,mnd isolated from the monitored process.
No changes to the code of the monitored object ire necessary to enable monitoring.

Mw Controller Example.’ figure i shows an application (If this to a simnibition model. Suppose that
vse want a program that simulates the flow of traffic in a city and displays selected parts of the simulation
on a screen. \ctise values enable us to divide the programming of this example into two parts: the
traffic model and the view controller. [he traffic model consists of objects representing automobiles, traffic
lights, emergency vehicles, and so on. these objects exchange messages to simulate traffic interactions
(e.g.. when a traffic light turns green, in would send Move messages to start cars moving). [he view
controller provides windows into different parts of the city. It contains information about how the objects
are to he displayed. We want a riser to be able to move these window-s aronind to change the view.

(DEFINST Automobile-i
(InstanceVari abl es

(position #(Posi NIL UpdateDisplay)
displayObjects (DispObji DispObj2 DispObj3)
doe (~position of car in traffic coordinate system))

(speed 25))

Figure 3. Instance Of an automobile in a traffic simulation model. Other classes describe such
things as traffic lights, city blocks, and emergency vehicles. Instances of these classes exchange
messages vvhiie simulating the vehicles moving around in the model. The instance variable
position is used to record the location of an automobile in the traffic coordinate system. In
this example, an active value in position is used to update view objects that control pictnires
of the traffic patterns on an interactive display. Whenever a simulation method puts a new
value into the position variable. the procedure UpdateD isplay sends update messages to
each object in a list of view objects. [hose messages ultimately cause the graphics display to
he updated.

In figure 3, there is an active value in the pos i t ion variable of an instance of Au tomob 11 e. [his
active value is the interface between the object in the simulation model and the view controller.
Whenever a method in the simulation model changes the value of a position variable, the procedure
UpdateDisplay in the putFn of the active value is invoked. UpdateDisplay tipdates the local value
and sends a message to each of the view objects in the list stored as a property of pos it ion. Ihese
objects respond to a message by updating the view in the windows on the display screen. The important
point of this example is that it shows how the view controller can he invoked as a side effeft of running
the simulation. The view can he changed without effecting any programs in the simulation model. To
change the set of simulation objects being monitored, only the interface to the view controller needs to he
changed by adding active values. The objects in the view controller may also he changed (e.g., to reflect
changes to relative coordinates of the window and the traffic model).

2.4 Knowledge Bases

LOOPS was created to snipport a design environment in which there are commninity knowledge bases
that people share. and to which they can add incremental updates. We have chosen the term knowledge
base instead of data base to emphasize the intended application of LOOPS to expert systems. In expert
systems, knowledge bases contain inference rules and heuristics for guiding problem solving. I his is in
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contrast to the tabular files of facts usually associated vs ith data bases.

ktmomv/n/ge Bases: Knovvledge bases in LOOPS are files that are built up as a sequence of layers, where
each laser contains changes to the information in pre. mous layers. ;\ user can choose to get the must
recent version of a knowledge base (that is, all of the layers) or ant subset of lasers. The second option
offers the flexibility of being able to share a community knowledge base winhsut necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version,
figure 4 illustrates this with an example.

Layer i
Obji (x 4) .. . -

Obj2 (y 5) (w 3) .

Layer 2
Obj2 (y 7) (w 2) .

Obj3 (z 6) .

Layer 3
Obji (x 8) .

Obj4 (z 9) . .

Figure 4. Knowledge bases in LOOPS are files that are built-up incrementally as a seque,nce of
layers. Each layer contains updated descriptions of objects. When a knowledge base is ripened.
the information in the later layers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will be used when a knowledge base is opened. In this

- example, if the knowledge base is opened and only the first 2 layers are used. then Obj 1 will
have an x variable with value 4. If all three layers were connected. then the valnie would be
8.

Combnunity Know/edge Bases: LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge base can make tentativ-e changes to a community
knowledge base in his own (isolated) environment, These changes can be saved in a layer of his personal
knowledge base, and are marked as associated with the commninity knowledge base. In a separate step,
a data base manager can later copy such layers into a community knowledge base. This separation of
tasks is intended to encourage experimentation with proposed changes. It separates the responsibility for
exploring possibilities from the responsibility of maintaining consistent and standardized knowledge bases
for shared use by a community. The same mechanisms can he nised by two individuals nising personal
knowledge bases to work on the same design. They can conveniently exchange and compare layers that
update portions of a design.

Unique Ident~tiers:The ability to determire when different layers are referring to the same entity is critical
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identifiers
(based on the computer’s identification nnimhers, the date, and an tinboninded count) to objects before
they are written to a knowledge base. This facility provides a groninding for more sophisticated notions
of equality that might be desired in knowledge representation languages hnult on LOOPS.

Environments: A riser of LOOPS works in a personalized environment. An environment provides a lookup
table that associates unique identifiers with objects in the connected knowledge bases. In an environment,
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identifier, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases. -
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Vu/tip/c -L’ternatives.’ \n mporrant ise C ens imonments is for 7rov iding spee~accms to alternative
Versions (e.g.. multiple alternatives in 1 design t \ riser can have any number of environments available
,t the same time. Each ens ironment is mIilI~ ~soIatedfrom the others. Operations that move information
between environments are ilvvass done explicitl’ mbroueh knowledge hoses.

7
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3 CREATING ANT) USING OBJECTS

In the LOOPS implementation of object-oriented programming, there are three types of objects:
Instances, Classes, and Metaclasses. Instances are used like data objects in Lisp: they are commonly
created, passed around. and modified by procedures (although all objects can be). Classes and metaclasses
are objects which “define” a group of objects that are “instances of’ that class or metaclass, The
difference between classes and metaclasses is that the instances of a class are instances, and the instances
of a metaclass are classes—all comments about classes apply to metaclasses, except where otherwise stated.

Note that the svord “instance” is used in two separate ways: the phrase “instance of’ refers to the relation
between any object and the class (or mnetaclass) that “defines” it. The nonin “instance” is only used to
refer to those objects which are instances of classes.

A class contains information about instance variables, class variables, and methods. Instance variables are
local variables stored within each instance of the class. Class variables are variables stored within the class
object, accessable from each instance of the class. Methods are procedures which are used to perform
operations on instances of the class.

Each Class also contains a list of other cIasse~called “super classes” or “supers”. The super class list
provides a mechanism for inheriting instance variables, class variables, and methods from other classes
(see page 31).

This section first describes how to create and use objects. Next, “sending a message” (the standard way
to invoke a method). Next, creating and rising new instances. Next, defining and editing new classes.
Finally, defining a new method for a class.

3.1 Sending a Message to an Object

Operations in LOOPS are invoked by sending messages. Sending a message to an object invokes a method
(from the class that the object is an instance of) to execute the operation. Messages are sent rising the
function ~ as follows:

(~-object Selector arg1 ‘‘‘ arg1~) [N Lambda NoSpread Functionj
Sends the message Selector to the object object with the argniments arg1 arg,~.
Selector is always implicitly quoted (i.e.. not evaluated); the remaining argniments
are evaluated.

object must he an “internal pointer” to the object. The internal pointer to the object
with the LOOPS name FOO can be extracted by the form ($ F 00).

Note: SEND can he used instead of ~. The arrow notation, althonigh less mnemonic.
is usually used to make expressions shorter and hence easier to type and read.

If it is necessary to compute the selector. one can use the function ~-!, which is just
like ~- except that it also evaluates its Selector argument.

Example: -

(~- (~PayRoll) PrintOut filei)
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This sends a PrintOut message to the class PayRoll I with a single ergument: the value of the Intrerlisp
variable filel).

3.2 Creating a New Instance

To create an instance of a particular class, one sends the message New to the class:

(~— class New) [Messagej
Returns a new instance of the class class,

In the usnial case, /nitiai valnies for instance variables are taken from the instance
variable descriptions associated with the class. LOOPS provides some other ways to
exercise control over the initialization of values in instances (see page 34).

3.3 Naming and Pointing to Objects

In order to manipialate a LOOPS object, it is necessary to have a pointer to it. One way to do this is to
save a pointer to the object in an Interlisp variable, fbr example: -

(SETQmyVariable (4- ($ Transistor) New))

This creates a new- instance of the T ran s i s to r class, and stores a pointer to this instance in the Interlisp
variable myVariable. Pointers to instances can also be saved in instance ‘iariahles.

LOOPS objects may he passed around and examined by Lisp fninctions. The following function is Lisetul:

(Object? K) [Function]

Retnirns K if it is a LOOPS objects. otherwise N IL.

Another way to manipulate an object is by giving it a unique “LOOPS name”. An object can he given a
LOOPS name by sending it the message SetName

(4- object SetName name) [Message~
Sets the LOOPS name name to refer to object. LOOPS names are unique in a
LOOPS environment; the name is assigned in the environment specified by the
global variable CurrentEnvi ronment (see page 41 for a complete description of
environmencs).

If an attempt is made to assign a name already in rise in the environment,
and the global flag ErrorOnNameConfl ict=T. an error is generated. If
ErrorOnNameConfl ict=NIL. and there is already an object oldObject with that
name, the name is unset for oldObject and set for object withonit generating an error.

For example, if Ii is an Interlisp variable whose value is a pointer to some instance, the object can he
given the LOOPS name Foo as follows:

(4- Ii SetName Foo)

After naming Ii this way, the user can refer to this object as (S Foo). which returns the object whose

name is Foo.
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I he riser can refer to an object with a computed I MOPS name using the form (S I fiXER). For example.
if the value of the lisp variable X is the atom Apple. then (SI X) = (S Apple),

Classes having NamedObj ect (see page 115) as a sriper class inherit an instance variable, name, that
contains the name of the rThjects. Instances of these classes can he named, as before, with a SetName
message. or alternatively’ as a side effect of setting the name instance variable.

Class objects are automatically given a LOOPS name svhen they are created, as described below-.

3.4 Defining a New Class

l’he way one creates a new class is to send the message New to a metaclass. Usually. the metaclass named
Class is used.

(~-metaClass New classN’ame supersList) [Message]
Returns a new instance of the metaclass mnetaClass. classf’[ame is the new class name
and supersList is a list of the names of the super classes for this new- class. If the
list of super class names is omitted. supersList defanilts to (Obj ect).

Example:

(~- (S Class) New ‘StudentErnployee ‘(Student Employee))

This defines a new class, StudentEmployee as a subclass of the known classes named Student and
Empi oyee.

An abbreviated way of defining a class is to rise the function DC:

(DC className supersList) - [Function]

(“define class”) Sends the class Cl ass an appropriate New message:
(~- (S Cl ass ) className supersList)

Example:

(DC ‘StudentEmployee ‘(Student Employee))

This specifies that the class Student is to he used recursively, inheriting both from Student and all its
supers, and from Employee and all its snipers.

After defining the class, one can modify its structure by editing the textual source for the class with EC:

(EC className -----) [Fninctionj
(“edit class”) EC envokes the lnterlisp editor on the textual sonirce for the class
named className.

The editor can also he envoked fit semiding the Edit message: (~- (S className)
Edit).

For example. ([C ‘StudentEmployee) might start the editor editing the expression:

[DEFCLASS StudentEmployee
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(MetaClass Class Edited: (* lc: “18-Oct-82 14:26”))
(Supers Student Employee)
(InstanceVariables)
(Methods]

One can then change this to:

[DEFCLASS StudentEmployee
(MetaClass Class Edited: (* lc: “18-Oct—82 14:26”))
(Supers Student Employee)
(Ins tanceVar i abl us

(sponsor NIL doe (* Name of sponsor))
(stay 3 doe (* number of months here)))

(Methods]

Leaving the editor successfully at this point would install the two instance vararible descriptions in the
class StudentEmployee. Then, in addition to those instance variables StudentEmployee inherited
from Student and Employee, each instance would also have two new ones, sponsor and stay with
default values of N I L and 3 respectively. A more extensiv-e description of editing and changing classes is
fonind in section 13.4.

3.5 Defining a Method

In order to define a- method for a class, tine can rise the lnterlisp ftinction DM:

(DM ciassVame selector argsOrFnName form) [Function]
Defines a method for the class named className that can he called rising the selector
selector, if form is non-N I L, then argsOrflnName is interpre~d as the list of
arguments for a function, and form as the body of that function. If the first element
of the list argsOrFnName is not self, then self is added tin the front. 3M defines
a function w-hose name is the concatenation of className, a period, and selector.
For example. C 1 ass. L i st is the function name created for the Li st selector in
the class Cl ass. The function definition is created by substituting into (LAMBDA
argsOrFnName . form).

If argsOrFnName and form are NIL, DM creates a skeleton definition for the function
and puts the niser into the lnterlisp editor, editing the skeleton.

If only form is hIlL, argsOrfloName is interpreted as the name of a function to he
rised for implementing the method.

Note: a method can also he defined by sending the DefMethod message to the
class: (‘- class DefMethod selector argsOrflnName form).

Example:

(DM ‘Number ‘Increment ‘(self)
((* incr my IV) (~@ :myValue (ADD1 (@ :myValue)))))

This defines a method vvith selector Inc rement for the class Number which adds 1 to the instance

variable myVal ue (the 8-notation for accessing variables is described on page 15). lhis form results in
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the definitiomi (If a function nams~edNumb e r , I nc reme n t as 6~i1ovvs:

(DEF INEQ
(Number. Increment

(LAMBDA (self) (* incr my IV)
(~@ :myValue(ADD1 (8 :myValue)))]

EM className selector —) [Function]
Calls the [nterlisp editor to edit the method for the class named className associated
with the selector selector.
Often it is more conveniently to use the LOOPS browser to edit the code for a

method (see page 102).

Example:

To edit the method from the example above. one could type:

(EM ‘Number Increment)

This will edit the method of class Number which responds to the selector Increment, whether or not it
has a name o.f the standard form.



4 OR.IFCT V yRl kBLFS yNi) PROPERTIES

There are two kinds of ~, ariahies assocmated with an nstance: its prmv ate o:sronce mriobiev and the c/ass
mar~abtesthat it shares vvith all instances of the class. This section deals with the frmnctiruis for getting
and putting valries, and with a compact programming notation for referring to these variables from inside
functions that implement methods. In addition, there are properties which are associated with instance
variables and class variables, with the methods of a class, and with classes themselves. Given an object
or a class, one can fetch or set ant of these properties. This section describes the functions for accessing
all of these properties and values,

4.1 Access Expressions

As mentioned above, there are a number of different types of variables and properties that can he
associated with each class. However, most of the accessing operations (getting and pnitting) in methods
refer to the values or properties of instance variables or class variables of an instance. LOOPS provides
general functions (described later) for accessing these values, allowing variable names and property names
to be computed. However, most of the time the programmer knows the variable and property name to
he used, and writing calls to these functions can he cumbersome.

Therefore, a simplified notation has been introdniced for writing many common accessing operations.
which is translated into calls to the appropriate functions:

(8 object accessflxpr) [Macro]
(8 accessExpr) [Macroj

Retnirns the variable or property value of the object object as specified by accessflxpr.
Note that accessflxpr is not evaluated: object is evaluated.

If only one argument is given to 8. it is assumed that the object is hound to the
variable self. This is very useful because by convention the first argument to any
method is named self.

(~@object accessflxpr newValue) [Macro]
(~@accessflxpr newValue) [Macro]

Similar to @, sets the value of the variable or property specified by accessflxpr
(unevaluated) in the object object to newValue. Returns new Value, Note that
accessExpr is not evaluated; the other arguments are evaluated.

Like 8. if object is ommitted, it defanilts to the value of the variable self.

Both 8 and ~@ take the argument accessflxpr, which is an “access expression” which specifies exactly
which variable or property value should he retrieved or set. access flxpm’ is an atom which specifies a
variable name, an optional property name, and whether the variable is an instance variable or a class
variable.

Some examples:

(8 : FOO) Retrieve the value of instance variable FOO (from the object that is the valrme of
self).

(8 XX : : FOO) Retrieve the v alrie (If class varmable FOO (from the object that is the value of XX).
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(~@ ::FOO:,BAR 5)
Store 5 as the value of the BAR property of class variable FOO (of the object that is
the value of se 1 f).

4.2 Getting Variable and Property Values

The functions GetVal ue and GetC 1 as sVal ue retrieve from an instance the values of variables or their
properties. If the value honind to ,mn instance variable or class variable is an active value with a getfln.
then GetVal ue and GetCl assVal ue of these frmnctions trigger the getfln (see page 25).

(GetVal ue object varName propName) [Function]
Returns the value or property value of the instance variable varName in the object
object. Each instance of a class has its ow-n separate set of instance variables,

If propName is NIL, GetValue returns the value of the variable. In proper usage.
object is an instance and the local value of the variable is retumed. If no local value
has been set, GetVal ue returns the default value from the class. Since this is a
common case. default values inherited from super classes of the class are cached in
the class itself, thus avoiding a runtime search.

If propName is not hIlL, GetVal ue returns the value associated with the property
named propName of the variable varName. If none is found in the instance. it
returns the default property value found in the class or tine of its super classes. If
no property value is found in any of the super classes, the default value used is
the value of the global variable NotSetValue (currently hound to ?). Note: this
is different from Interlisp, where if no value of a property is found. then N IL is
returned.

GetVal ue fetches a value from an instance of a class. It is an error to try to use
GetValue to fetch an instance variable from a class. To fetch the default value of
an instance variable from a class, rise GetClasslV (see page 22).

(GetC 1 as sVal u e object varName propName) [Function]
Returns the value (if propName=NIL) or property value of the class variable
varName for the class of the object (which may be either an instance or a class).

Class variables are inherited from the sniper classes. If object is an instance, lookup
begins at the class of object since instances do not have class variables stored locally.
If the class does not have a class variable varName. GetClassValue searches
through the sniper classes rif the class until it finds varName. Since this is thought
to be an relatively rare in code, class variables are stored only in the class in which
they are defined, and the runtime search is necessary.

Conceptually, tine should think of a class variable of a class as being shared by
all instances of that class,, and by all instances of any rif its subclasses. Frir
example. suppose Transistor is a class with class variable. TransSeqNum. and
Deplet ionT rans i stor is a subclass of Trans i stor. Then setting the class
variable TransSeqNum from an instance of Depletionlransistor would he
seen by all instances of Trans i s to r.
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4.3 Putting Variable \ alues and Propcrt~Values

Pu tVa 1 ue and Pu tC I as sVa 1 u e are functions rtscd for storing variahIe or property values in an instance.
[hey are analogous to Ge tVal ue and Ge tC 1 ass Val ue’, as with these funcuons, if the valnie of the
variable or property is an active value with a put fin, trying to store a value for that variable or property
will invoke the putfin (see page 25).

(PutVal ue object varName new1/alue propName) [Function]
Stores newValue as the value or property value of the instance variable varName in
the object object. Returns new Value.

If propName is N IL. PutVal ue stores newValue as the value of varName in object.
If propName is non-NIL, then newValue is stored as the value of the property
propName of the instance variable varName.

For example, (PutVal ue pos ‘X 0), stores 0 as the value of the instance variable
X of the object pos.

PutVal ue works for storing values in an instance (If a class. It is an error to try
to store a default instance variable in a class with PutVal ue. To store the default
value for an instance variable directly in the class, rise Pu tCl ass IV (see page 22).

(PutClassValue object varNarne riewValue propName) [Function]
Similar to PutVal ue. except it stores newValue as the value or property value of
a class variable arid property. object may either he an instance or ~ class. Returns
newValue.

If varName is not local to the class, then the value will be put in the first class in
the inheritance list that varName is found.

The following functions push a valnie tin the front of a list already stored in a variable:

(Pus hVal ue object varName newValue propName) [Function]
(PushCl assVal ue object varName newValue propName) [Function]

PushValue and PushClassValue add newValue on the front of the list that is
the value of the indicated variable or property, and store the result back in the
variable or property.

These functions are defined so that if the value accessed is an active value, the getF’n
will he triggered when the old value of the list is fetched, and the putfin when the
new value is stored hack (see page 25).

The following function adds a value on the end of an instance variable list:

(AddVal ue object varName newVaiue propName) [Frinction]
Similar to PushValue, except that newVblue is added to the end of the variable list.
There is no function for adding values to the end of class variable lists.
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4.4 Non-triggering Get and Put

Using active valries (page 25). it is possible to associate functions with a variable (or property) that will he
called ‘~vhcne’.er the variable (or propertY) is read or set. In some cases, it is risefril to he able to access a
airme from an instance or class variable w-ithriut triggering any activ-e value which might he stored. [his

can be done rising the following functions:

(GetVal ueOn 1 y object varName propName) [Function]
(GetClassValueonly object varName propName) [Function]

GetVal ueOnl y and Ge tCl as sVal ueOnl y retrieve the value of instance variables
and class variables, respectively, without triggering any active values.

GetValue0niy retrieves the default value from the class if none exists in the
instance.

To store a value without triggering any active values, the following functions are provided:

(PutValueonly object varName newValue propName) [Function]
(PutCiassValue0nly object varName newValue propm’\Tame) [Function]

I’hese functions store newValue in the instance variable or class variable, without
triggering any active values, and return newValue.

Note that GetClassValue0nly and PutClassValueoniy can take either a class or an instance.
GetValueonly and PutValueonly will only take instances.

4.5 Local Get Functions

Sometimes it is desirable to find out if a value or property is set in a particular class or instance, without
inheriting any information which is not local, and not activating any active values. This can he done with
the following functions:

(GetlVHere object varName propName) [Function]
object must be an instance. Returns the instance variable value that is found
in the instance: if none is found, then retnirns the value of the global variable
NotSetValue (initially ?).

(Ge tCVHe re object varName propName) [Function]
object must he a class. Returns the class variable value that is fonind in the class; if
none is found, then returns the value of NotSetValue.

In both GetlVHere and GetCVHere, if the value is an active s’alue, the actual active valnie is returned,
without being triggered.

Note that there are no need to have special local put functions, since all put functions are local to the in-
stance orclass. For local nontriggering storage functions, rise PutValueonly and PutClassValueOnly
(page 21).
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4.6 Accessing Class and Method Properties

Most of the get and pnmn functions described in the preceding sections work with instances, hut not
with classes. Some exceptions are GetClassValue. PutClassValue, GetClassValueOnly. and
PutCl assVai ueOnly, which can take either an instance or a class. and access class variables, and
GetCVHere which takes a class.

[he following functions access the deJ/sult value or property value of an instance variable (which is stored
in the class):

(GetClasslV class varName propName) [Function]
Returns the dejdult value or property value of the instance variable varName in the
class class.

(PutClasslV class varf”fame newValue propName) [Function]
Stores newValue as the det~ult value or property value of the instance variable
varName in the class class. If varName is not local to the class, this will cause an
error. Returns new Value.

Note: GetCi ass IV and PutCl ass IV do not trigger active values (page 21).

LOOPS pros-ides property list storage for classes themselves and for methods of classes. A typical use
of these properties is to document a class and its methods. Like the put and get functions for variables,
these functions can trigger active valnies. ‘[he functions for class properties are:

(GetC 1 ass class propName) [Function]
Returns the value of’ the property propName of class, If propName is NIL,
GetCi ass retnirns the metaclass of class.

Class properties are inherited like class variables, so GetC lass will search thronigh
the super classes of class if propName is not found in class itself.

(PutCiass class newValue propName) [Function]
Sets the value of the property propName of class to newValue. If propName is NI L,
GetCi ass sets the metaclass of class to new Value,

(GetCl as sOn 1 y class propName —) [Function]
(PutCl as sOn ly class newValue propName) [Function]

These functions are analogous to GetC lass and PutClass, except that they never
trigger active valnies.

(Ge tC 1 ass He re class propName) [Function]
Returns the local value of the property propName of class. If propName
is not found locally, GetCi assHere returns the value of the global variable
NotSetValue (initially ?).

The functions for accessing method properties are:

(Ge tMeth od class selector propName) [Function]
- If propName is hIlL, GetMethod retnirns the method (Interlisp fninction name)

vvhich implements the message selector of the class class, If propName is non-N IL.
it returns the value of the property propName of the method.
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Method properties are inherited: the retrieval process involves searching thrrrmgh
sniper classes of c/ass if the property ms not formnd in class itself.

Pu tMet hod class selector oewV/slue propNarne) [Function]
If propName is NIL. PutMethod sets the method which implements the message
selector of the class class to newValue. If propName is non-N IL. it sets the value of
the property pro pName of the method to nesvValue, Returns newValue.

(Ge tMethodOn 1 y class selector propName) [Function]
(PutMethodOnly class selector newValue propName) [Function]

-\nalogous to GetMethod arid PutMethod except that they never trigger active
v’ aloes.

(GetMethod Here class selector propiVame) [Function]
Returns the local value of the property propName the the method which implements
the message selector of class, If propName is not found locally, GetMethodHere
returns the value of the global variable NotSetVal ue (initially ?).

All of the above functions only work directly tin classes, not on instances of those classes. In addition, if
a method or class variable is inherited, then the put functions change the property in the class in which
the method or class variable is found in the snipers list, not in the class which was the argument of the
put function.

4.7 General Get and Put Functions

The following functions are generalized get and put functions which accept a type argniment and invoke
the more specialized functions:

(Getlt object varOrSelector propName type) [Function]
(Putlt object varOrSelector newValue propName type) [Function]
(GetltOnly object varOrSelector propName type) - [Function]
(PutltOnly object varOrSelector newValue propName type) [Function]
(GetltHere object varOrSelector propName type) [Function]

For all of these functions, the value of the type argument can he one of IV. CV,
CLASS. or METHOD for instance variable, class variable, class, or method, respectively.
If type is NIL, IV is assumed. [he argniment varOrSelector is interpreted as a
variable name if type is IV or CV. a selector name if type is METHOD, and is ignored
if type is CLASS.

These functions are interpreted as follows:

(Getlt ‘IV) ==> (GetValue -

(Getlt - ‘CV) ==> (GetClassValue -

(Getlt -- ‘CLASS) ==> (GetCiass -)

(Getlt -.. ‘METHOD) ==> (GetMethod - - -)

The tither functions are similar.

Note: Actually, if type= IV. these functions will call different functions depending on whether the object
is a class or instance.



Summary of Get and Put l”urictions

4.8 Sumniarv of Get and Put Functions

In the foilovvimig table, indicates that no frim~ction is available.

Inherit/Trigger Enhermt/Donti’rieger I rical/DontIri~ger

from instances:

Get/Put fns for GetValue / GetValueOniy / GetlVHere

instance variables PutValue PutValueOnly
Get/Put fns for class GetClassValue / GetClassValueOnly
variables PutClassValue / PutClassValueOnly

from classes:

Get/Put fns for GetClassIV /
instance variables PutCi ass IV
Get/Put fns for class GetClassValue / GetClassValueOnly Ge-tCVHere
variables PutClassValue / PutClassValueOnly

Get/Put fns for class GetCiass / GetClassValueOnly GetClassHere
properties PutCiass / PutClassValueOnly

Get/Put fns for GetMethod / GetMethodOnly / GetMethodHere
method properties PutMethod PutMethodOnly



5 AC~lVEVALUF.S

Active values provide a way of invoking procedures when the value of a variable (or property) is read
or set. This mechanism is dual to the notion of messages: messages are a way of telling objects to
perform operations, which can change their variables as a side effect: active values are a way of accessing
variables, which can send messages as a side effect This section presents the notation for creating active
values. Then, the concept of nested active values is introduced. The nesting property enables many of
the important applications of active values by supporting composition of the access functions. Next is
described how to use active values as the default values in a class, and how to share them. Finally, the
standard arguments to active value access functions are described, along with LOOPS functions that can
be used in userdefined access functions.

5.1 Active Values Notation

The notation fur an active value illustrates its three parts:

#(IocalState getFu puttu)

This notation is converted by a read macro into an instance of the Enterlisp data type act IveVal ue.
The IocalState field is used as a place for storing data. The getFn and putFu are the names of functions
that are applied with standard arguments when a program thes to get or putthe value ofa variable whose
yalue is an active value. Every active value need not speci& both a getFn and a putFn. If the getPn is
14!L then a get operation returns the local state. If the putFn is NIL, then a put operation replaces the
local stat

5.2 Nested Active Values

Often it is desirable to associatemultiple access functions with a variable. Forexample. we may wantmore
than one process to monitor the state of some objects (e.g., a debugging process and a display process).
To preserve the isolation of these processes. it is important that they be able to work independently.
LOOPS uses nested active values as a way of composing these functions.

Nested active values are arranged so that the innermost active value is stored in the IocalState of the
penultimate IocalStatt and the outermost active value is the immediate value of the variable. Put
operations to a variable through such nested active values trigger the putFns in sequence from the
outermost to the innermost For example, suppose the variable tracing facility were used to trace access
of the pos I t ion variable from the model/view controller example (page 10). The resulting active value
would look like

#( #(Posl NIL Updateoisplay) GettingTracedVar SettingTracedVar)

An attempt to set the position variable would cause the function SettingTracedVar to be called with
the new value as one of its arguments. SettingTracedVar would operate and call the [.001’S function
PutLocalState to set its own IocaiState. This. in turn, would trigger the inner active value causing
UpdateDlsplay to be invoked.

Get operations work in the opposite order. If there are three nested active values, a requcst to get the
value will cause the innermost getFn (if any) to run. followed by the middle getP’n (if any), followed
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Lv the autemarnist getFn (if taG ahose ilue is returned LI the act operation. Each ~u”r. SLCS amG, the
alue returned by Lhe next nested getF~i. aid tile nnermost ~stF n sCCs the alue stored in its localState

LOOPS pros ides ftmnctions for embeddine md remus ing ~ctmve aloes from sari mbie~, I his idea at’
unctionam composition for miested ictive values is most appropriate Nhemi the order of composition does
not matter. We have resisted the development of other cambinators for the hmnctions using the same
parsimon~arguments that sve used earlier about specializing and combining methods. Jtist as inheritance
from multiple super classes works most simpl~ss hen the super classes describe independent features, active
alues work most simply when they interface between independent processes using simple functional
composition. ~~\nymore sophisticated control is seen as overloading the active value mechanism. [‘he
escape for more complex cases is to combine the implicit access functions using lnterlisp control structures
to express the interactions.

5.3 Active Values as Default Values

Suppose that I is an instance of a class with an instance variable V, whose default value is the active salue
A. Further SU~~O5~that the value of V in the instance I has never been set. ftc ~rsttime (PutValue
I V exp) is invoked, a copy of A is made. This copy is inserted in the instance itself as the the value of
the instance variable, with pointers to the same contents as A. Then the putFu is invoked, with the copy
as the activeVaJ argument: this copy of A provides a place where local state can he stored private to I.

In some cases. one knows that the putFri will not actually ‘~rmteinto the active salue, and therefore the
active value which is the default could he shared instead of needing to he copied. [‘o indicate this, the
locaiState of A should he made the atom Shared. In the example below, the user knows that no change
will be made in A itself and thus uses a shared active value.

Example: SUM is a class with three instance s’ariahles. top, bottom, and sum~top and bottom start with
default values of 0, and sum is to be computed when asked for. One cannot update sum independently.

[DEFCLASS SUM
(MetaClass Class)
(Supers Object)
(InstanceVariables

(top 0)
(bottom 0)
(sum #(Shared ComputeSuni NoUpdatePermitted))

(ClassVariables)
(Methods

(printOn PrintColumn)]

The method for printOn used in this example. and the getFn, ComputeSum, and the putFo.
NoUpdatePe rmi tted, are Lisp I’unctions whose definitions are not shown here. NoUpdatePe rmi tted is
available as part of the kernel.

5.4 Standard ~ccess Functions

[,00PS provides a convenient set of functions tar some common applications. For example,
N oUpd ate Pc rm I t ted, described in the example aL )s a. is used to stop update of the /ocalState of
an ictive value. F I rstFetch is a standard getFn that expects the IocalState of its ,mctise v mIne to he
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in I nteriisp exprecsh n to he es ciucted: on the hr~t fetch. the miistanae variable u set to the resLmlt of
e’ aluatina the expreysmun. [his is illuctrared’ in heure ~, vs Lieu shows m class Ic s tDatum ‘ii it descriLes
in nstance amiable s amp 1 eX. to be computed umi the Lrst umue Lh mt it is ~‘etched,and themi Ladled tar
future references. \t the t:me ‘ mcd, an n f F i rstFetch, self and varNane mm hr mao ‘a Jle
instance and instance variable name a which the active value vsas d)und.

(DEFCLASS l’estDatum

(MetaClass Class)

(InstanceVariables (sampleX ~((RAND 0. 100.) FirstFetch)))...)

Figure 5. L’sing an active value tu compute and cache a value for a variable on the first fetch.

In some applications it is important to he able to access values indirectly from other instances. For
example. Steele [Steele8O] has recommended this as approach for implementing equality constraints.
figure 6 shows a way of achieving this by using using the standard access functions Getlndi rect and
Putlndi rect.

(DEFINSI JoeAsFatherPerspective
(InstanceVariables

(age #((#$JoeAsManPerspective age) Getlndirect Putlndirect))

Figure 6. Active values can he used to provide indirect access to values. Ihis is useful when it
is desired for a variable in one instance to reflect the value of a variable stored elsewhere. in
this example, the instance #SJoeAsFatherPerspective has an age variable which alsvays
has the same value as the age variable of the instance JoeAsManPer’spective.

For some tises, the user may want to compute a default value if given. hut replace the active value by
the value given if the user sets the value of a variable. For this the user can employ the system provided
putFu of ReplaceMe. as in:

#(NIL ComputeGoodValue ReplaceMe)

If this value is made the default in a class, then when a program tries to set this value, the instance will
contain the value set. However, if the user tried to fetch the value form this variable before setting it,
the getFn ComputeGoodVal ue would be invoked.

5.5 User Defined Access Functions

Fhe getFn and putFn of an active value are functions that are called with standard arguments:

(self varName oldOrNewValue prop~Vame activeVal type)

Chese arguments are interpreted as follows:

self 1 he object containing this active value.

varName [‘he name of the variable where this active value was stored. [his is NIL if it is not
stored in a variable.
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:dor.’.ewt slim I or i rcmn. his is h~.. rsN’ate t’ lie teuse ‘.al ze. I-or t ps.nFn. th~cis the ne:~
balue to be stored in the .tcu%e title.

the name ota oro~er. Ibis is Nil if the tcti e ‘Jue c n t a’,’sociared .sth the
ilue of i 1iropert} (.c.. if :t is assec:ated hlth me ‘.tlue of the sariable itself).

activeVal the acti~e‘alue in which this gecFn or putFn was found.

type Ibis specifies where the actt~esalue is stored: NIL means i instance ~ariable.CV
means a class variable. CLASS means a class property, or METHOD means a method
propert~.

1 he ~aluereturned by the getFn is returned is the value of the get operation.

The putFn is expected to make any necessary changes to the localState. l’his can be done using function
PutLocal State described below. In changing the localStace, embedded active values may be thggered.
Given an active value, the following functions can be used to retrieve or store its local8tate:

(GetLocaiState activeValue self varName psopName type) [FunctionJ
(PutLocalState activeValue newValue self varName pzopNa,rne type) [Functionj

GetLocaiState returnsthelocalStateoftheactise talueactzveValue. PutLocal5tate
stores newValue as the localState of the active value activeValue, and returns
newValue.

Note that it is necessary to pass these functions the values for self. varNanze,
propNamt and type, in case any imbedded active values are triggered.

If the IocalState of the active value is itself an active value, then it will be thggered to obtain the localState
argument for the getFn. For a putFn. an embedded active value will be triggered when the putFn calls
PutLocal State. l’he following functions can be used to access the localState ofan active value without
triggering any embedded active values:

(GetLocaiStateOnly activeValue) . [Functionj
(PutLocal StateOn ly activeValue newValue ) [Functionj

GetLocaiStateOnly returns the value of the localState of the active value
activeValue. PutLocaiStateOnly stores newValue as the localState of the active
valueactiveValut and returns newValue. Both functions access the localState without
triggering embedded ictive values.

In some cases, it is important to be able to replace the entire active value expression by some quantity.
independent of the depth of nesting of active values, without destroying the outer levels of nesting:

(Rep1 aceAct IveVal ue activeVal newValue self varName propNarne type) [Functioni
ReplaceActiveValue overwrites activeVai whereever it is (either directly is the
value or property of an instance variable, or as the local state ofan embedded active
value) with newValue ,

ReplaceActiveValue searches the value (property) determined by its arguments
until it finds activeVal in the nesting. Ifactive Val is not found, an error is invoked.

Eumple: Suppose that we have a class RandomDatum which describes an instance ‘anable sampleX.
which we want to be computed as a random number on the first time that it is fetched, and then returned
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iS I ~onsidIvt n all ruture idtch~v.v~e could do thu dv Jebnin~~he cLu~u tollovvs:

(DEFCLASS RandomDaturn
(SletaClass Class)

(InstanceVariables (sampleX #(NIL SmashRandom ReplaceMe)))

vvhere the ftinction SmashRandom is defined is tbllows:

(LAMBDA (self varName value propName activeValue)
(ReplaceActiveValue activeValue (RAND 0. 100.) self varName]

On the first fetch of the value of samp eX in any instance otRandomDatum, the ftinction SmashRandom
over-writes the active value with a random number. This is a special case of the active value function
F i rstFetch described earlier.

The function MakeActiveValue is used to make the value of some variable or property he an active
value:

(MakeAc t i v eVal ue self varOrSelector newGetFn riewPutFri newLocalSt propName type)
[FtinctionJ

self is the object. varName is tvpicalI~the name of a variable when the active value
is being placed in an instance variable. If the active value is being placed in a
method, then varN’ame should he hound to the selector name. Active values can also
be used for class variables, or properties of instance or class variables, or methods.
[he interpretation of where to create the active value is determined by the argument
type, which must he one Of IV (or NIL), CV. CLASS. or METHOD.

If newLocalSt = EMBED, then a new active value is always created, containing as
its localState whatever was found by Get I tOn 1 y (page 23), For other values of
newLocalSt. an active value is created only if the current value is not an active
value: otherwise the old one is simply updated with newLocalSt, newGetFn. and
newPu tFn.

If an old active value is being updated. then if riewGetFn or newPutFn is NIL, the
old getFn or putFn is not overwritten, If newGetFn or newPutFn is 1, the old
getFn or putFu is reset to N I L.

The easiest way to define a function for use in active values is to vise the ftinction DefAVP:

(DefAVP fnName putFlg) [Functioni
DeTAVP creates a template for defining an active value function and leaves the user
in the lnterlisp editor. fnName will be the name of the (‘unction and putFlg is T if
this is to he a putFn and N IL it it is to he a getF’n.

For getFns, the ten’~lateis

[LAMBDA (self varName localSt propName activeVal type)
(* This is a getFn for . .

local St]

I his template ncorporates the standard arguments that a getFn receives. ann the convention that they
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often return the value that is in their local state.

For putFns. the template is

[LAMBDA (self varName newValue propName activeVal type)
(S This is a putFn for ...)

(PutLocalState activeVal newValue self yarName propName type)]

This tempLate incorporates the standard arguments that a putFn receives, and the convention that they
often put their resulting newValue in the IocalState.
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6 COMBIN1NG INHFR1TE.D METHODS

in practice, most methods used to manipulate LOOPS objects are inherited. In the simplest examples
of multipie inheritance, classes represent independent features and there is no conflict between inherited
methods, However, when features inherited from classes interact, it is essential to he able to describe how
to combine them. Howard Cannon recognized this “mixing issue’ as central in the design of Flavors:

“To restate the fundamental problem: there are several separate (orthogonal) attributes that an
object wants to have: various Jdcets of hehm ior 1 features) that want to he independently specified
for an object. For example, a window has a certain behavior as a rectangular area on a hit-mapped
display. It also has its behavior as a labeled thing, and as a bordered thing. Each of these
three behaviors is different, wants to he specified independently for each object, and is essential/v
orthogonal to the others. It is this “essentially” that causes the trouble.”

“It is very easy to combine completely non-interacting behaviors. Each would have its own set
of messages, its own instance variables, and would never need to know about other objects with
which it would be combined. Either the multiple object or simple multiple superclass scheme
could handle this perfectly. The problem arises when it is necessary to have modular interactions
between the orthogonal issues. ‘Though the label does not interact strongly with either the window
or the border, it does have some minor interactions. For example it wants to get redrawn when
the window gets refreshed. Handling these sorts of interactions is the Flavor sYstem’s main goal.’

from [Cannon82l

This section considers cases where the inherited features interact, and describes some LOOPS facilities
For combining interacting methods. First, we describe a way of combining an inherited method with local
method code. Next, we describe other ways of combining methods inherited from multiple super classes.
Finally, we describe some special functions one can use to “escape” from the normal method inheritence
conventions.

6.1 Augmenting an Inherited Method

The inheritance examples shown previously considered only cases where methods are inherited in toto.
In these examples. subclasses inherit a method or value unchanged, or they override it completely. No
mechanism was described that would enable a subclass to track changes in a method after it had been
specialized in some way,

For combining an inherited method with local code, LOOPS provides the special method invocation
~Supe r.

(~Super object selector argj arg~) [NLamhda NoSpread Eunctioni
object is the object to which the method is applied (typically se 1 f), selector is the
selector for the method and arg’1 arg~j are the arguments for the method. :\s
with ~, selector is not evaluated: the remaining argtiments are evalLiated.

~-Supe r provides a form of relative addressing; it invokes the next more general
method of the same name even when the specialized method invoking f-Super is
inherited over a distance. ~\nexample of the tise of ~-Supe r is given in figure 7.
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~ote: SENDSUPEP can he used tnstead of~Super.

(BorderedWindow.Refresh
[LAMBDA (self’) (~mjs: “11-JAN-82 19:28”)

* Method for refreshing a window that has a border)

(* First use the refresh method
inherited from Window.)

(~-Super self Refresh)
(* Then Re-display the border.)

(~-(@ :border) Display)
sel f])

Figure 7. This Interlisp procedure implements the Refresh message for the class Ba rde re dW i n dow.
It uses i-Super to invoke the more general method in the class Window. The object for the
“border” of the bordered window is in the instance variable border. The specialized method
returns the bordered window as its valtie. In more complicated examples, calls to i-Super and
~ can he combined using Enterlisp iterative and conditional statements.

6.2 Combining Multiple Inherited Methods

Using ~-Supe r, a method can invoke the single next general method. However, when a class has multiple
super classes, sometimes it is necessary to invoke the general methods from each of the super classes. In
this situation, one can call ~-SuperFringe:

(~-SuperFringe object selector arg1 arg~) [NLamhda NoSpread Functionj
This is similar to ~-Supe r, except that ~‘Supe rF r i nge invokes the next more
general method of the same name for each of the super classes on the supers list of
the class of the currently-executing method.

6.3 General Method Invocation

The functions ~-Super and ~-SuperFringe have proved to he sufficient for implementing most methods.
However, sometimes it is necessary to manipulate multiple inherited methods. and invoke them in some
other order. The following functions provide more general ways of invoking particular methods. It is
important to note that while these functions are more powerful than f-Super or ~‘-SuperFringe, they
are also more “dangerous”, in that they do not conform to the conventions of method inheritance. These
functions should only he vised as a last resort when a method cannot be implemented in any other way.

(DoMethod object selectorExpr class arg1 ‘ arg~) [N’Iamhda NoSpread Function!
DoMethod allows computation of the name of the selector and the class from which
that method should he found: it applies that method to objecc.

All the arguments to DoMe thod are evaluated: selecvorExpr should evaluate to a
selector name in the class computed from class. If class is N IL, then the class of
object is used, If no method (‘or the computed selector is tound in the computed class.
an error is generated. (‘he remaining arguments. arg1 . ‘ . arg~are the arguments
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for .the method.
En the case where the arguments to the method have already been evaluated, then one can use
ApplyMethod instead ofDoMethod:

(App 1 yMethod object selector azgtist class) [Functionj
argList is a list of all the arguments to the method (except object) already evaluated.
The ftznction applied is the one found by searching from class. If class is NIL, the
class of object is used.

(D0Fr ingeMethods object selectorErpr argj •‘• arg~) [NLambda NoSpread Functioni
Like DoMethod. all of the arguments are evaluated. DoE ringeMethods calls the
method for selectorEzpr in the class ofobject, if that method is defined in that class.
If themethod is not defined in the class ofobject, the method of the same name for
each of the super classes on the supers list of the class ofobject is envoked.
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7 I~STA~CECREATION

The standard process of creating an instance of a class is to send a New message to the class, 10 We
simplest case, this causes the information in the /usfance var~abiedesctvptihns of the class to he used to
est thlish dethult clues tor in ib1~sin nc ic~l\ C ~ited asni~ce \~hen LOOt oroe~s~i~t nish~u Ok
instance can he altered in various ways by sending it messages.

LOOPS provides a variety of facilities for controlling this by using active values, standard access functions,
and metaclasses. ‘[his section summarizes some of the common cases. See page 38 for an illustratatiob of
the use of these facilities to support the important example of composite objects.

7.1 Specifying Values at Instance Creation

The NewWithValues message simplifies the case where it is desired to specify values and properties in
an instance when it is created. The form of this message is:

(4- class NewW I t hVal ue S valDescriptionList) [Message]
valDescriptionlist must evaluate to a list of value descriptions, each of which is a list
of a variable name, variable value, and properties: e.g.

((varName1 value1 prop1 propValj ‘‘)

(varName2 value2 ‘‘‘)

The method for NewWi thVal ues first creates the object with /70 other initialization
(e.g. without computing values specified in the class, as described in sections below).
It then directly installs the values and property lists specified in valDescriptionList and
returns the created object. Variables which have no description in vaiDescriptionList
will be given no value in the instance, and thus will inherit the default value from
the class.

7.2 Sending a Message at Instance Creation

A simplification in form is available when one wants to send a message to an instance immediately after
its creation. For example, consider:

(~ (~-‘ (S Transistor) New) Display windowCenter)

which creates an instance of the Transistor class, and then displays it at a point wi ndowCenter. A

more compact notatioh for doing this is provided:
(~New (S Transistor) Display windowCenter)

where ~New (“send New”) means to create a new instance and send it a message. ‘[he value returned by
~New is the new instance. ~-\nyvalue returned by the method is discarded.

In order to name an object. one can send the message SetMame to that object. As a simplification, if
one provides an argument to the New message, the defatult interpretation of that argument is to use it as
a name, sending the newly created object the SetName message.
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7.3 Computing a Value at First Fetch

As described earlier, one can vise an active value vo activ ate arbitrary procedures when values are [etched.
[‘he huiltdn fiincfion F i r s t Fetch can be vised as a gerlcu in an ective alue as the default value in the
class. If no value has been assigned to the variable or property before the value is fetched for the first
time, the F I rstFetch active value is invoked.

The local state of this active value can he a list which is a ft)i’m to he evaluated. During the evaluation,
the variables self. varName, and propName are are appropriately hound, ‘[he local state of the
F i rs tEe tch active value can also he an atom: if so. it is treated as the name of a function to he applied
to the object. varName and propName. ‘l’he value of the form or function application is made the value
in the instance as well as being returned as the value of the fetch,

For example. the random number example could have been done as follows:

(DEFCLASS TestDatum

(MetaClass Class)
(InstanceVariables (sampleX #((RAND 0. 100.) FirstFetch)))

In this example F I rstFetch evaluates the form (RAND 0. 100. ) and replaces the value of the
sampleX variable of the instance by the random number. In many cases the form may be a ~‘- expression.

7.4 Computing a Value at Instance Creation

In the previous example, F I rstFetch initializes the value of an instance variables at first access.
Sometimes it is important to initialize an instance variable when the instance is created, For such cases
LOOPS provides a distinguished getFo. AtCreation. If a default value of an instance variable or
property contains an active value with AtCreation as its getPn, then at creation time, the localState of
this active value will he used to determine a value LO be inserted in the new’ instance.

As with F I rstFetch, if the localState is an atom. then it will he treated as the name of a function
to be applied to the object, variable name, and property name. If it is a list, then that list will he
evaluated in a context in which sel f’. varName, and propNarne are appropriately bound. Functions
run at initialization time are run in the order in which they appear in the class. Default values of variables
are available to these functions.

If an object is created by NewWi thValues without a value being supplied for a variable which contains
an AtCreation default value, then at the first fetch of that variable, the function or form will he
evaluated.

Fxample:

Suppose we want to have an instance variable called creationDate which tells the date that an instance
was created. This can be implemented in LOOPS as follows:
(DEFCLASS DatedObject

(MetaClass Class)
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(InstanceVariables (creationDate #((DATE) Atflreation)))

l’he t’unction DAlE in lnterlisp compvites a string which is vhe cvirrent date and time, [he valvie ot’ vhF
yvr’~rigat instance creation time is made vhe invivial ,nvie of c reat i o nfl ate,

\nother vise of an AtC reat ion active value might he mu make an index entry to a newly created oh~ect.

7.5 Special Actions at Instance Creation

For some special cases, the viser may want to have more control over the creation of instances. For
example. LOOPS itself uses different LISP data types to represent classes and instances. ‘[he New message
for classes is fielded by their metaclass, usually the object MetaCi ass. This section shows how to create
a new metaclass.

Any metaclass should have Class as one of its super classes and MetaCl ass as its metaclass. ‘[he
easiest way to create a new metaclass is to send a New message to MetaCl ass as follows:

(~ ~S MetaClass) New metaClassName supers)

This creates a new metaclass with the name metaClassName and with the super classes named in the list
supers. The default supers for metaclasses is the list containing Class. ‘[he metaclass for the the new’
class is MetaClass.

One then installs the specialized method for New in the new metaclass. This method provides the
mechanism for creations of instances oF the class which have this as a metaclass. Sending this metaclass
the message New will cause the creation of a class with the appropriate property.

As a simple example we will define a new’ metaclass ListMetaClass which will augment the instance
creation process by keeping a list of all instances which have been created. ‘T’his list will be kept ‘on the
class property all Instances. ‘i’o create this class we go through the scenario in figure 8.

~ (~($ MetaClass) New ListMetaClass (Class))
#$ListMetaClass — We have now defined a new metac/ass

This dednes the New method jhr that metaclass
(DM ~ListMetaClass ~New ~(self name)
((* Create an instance and add it to list in class)
(PROG ((newObj (4-Super self New name)))

(* newObj created by super method from class)
(PutClass
self
(CONS newObj

(LISTP (GetClassHere self Alllnstances)))
All Instances)

(* LISTP returns previous list or NIL if none)
(RETURN newObj]

ListMetaClass .New

(~- (S ListMetaClass) New ‘Book)



IIIF 1.001’S \RNI U

#SBook rn’s creilu a not cas.s (3 & ciA)
n’zs w me i~c’nc ç (5 1 ci If. laC ‘‘V I

(,. (S Book) New ‘Bi)
#SBI C ai’ng .rilh/ uc’ng I’si%fci,(.’r,s \.~.

(i- (S Book) New ‘B2)
#S82

(GetClass (S Book) ‘Alllnstances)
(#SB1 #5B2) - rhe list of instances created soJiM
Figure 8. In this scenario, a new metaclass ListMetaClass is defined by the New method
of(S MetaClass). It has metaclass (S MetaClass). We then define the specialiied New
method fix ListMetaClass. this includes a call to its super (Class) to actually create the
objecg it puts the newly created object on its list of objects. We then create (S Book) which
has ListMetaClass as its metaclass. When two instances of book are created, each is placed
on the list All Instances which is a class property.



S CO~lPOSI’IEOBJECTS

LOOPS extends vhe notion of objects vo make jt recursive unoer composition, so that one can instantiate a
aroup of related obJects as an entity. ibis’s cspec~ail~viseful when relative relationships betw ceo members
of the group must he isomorpnic (hut not equal) tor d~sminctinstances of the group. I’he implementation
or composite objects combines many of the programming features described above, in particular, it is an
application of the notion of metaclass.

8.1 Basic Concepts for Composite Objects

Parameters and Constants: L,00PS supports the use of structural templates to describe composite objects
having a fixed set of parts. Composite objects are normal LOOPS objects, created by an instantiation
process and describable in the class inheritance network. This.contrasts with the idea of using for templates
data structures that are merely copied to yield composite objects. A primary benefit of making composite
objects be classes is the ability to create slightly modified versions ofa template by making a new’ subclass
which inherits most of the structure of its super.

Creating a Template: To describe a composite object. one creates a class whose metaclass is
Template. One can also ‘use a metaclass one of whose supers is Template . :\nyclass whose
metaclass is Templ ate or one of its subclasses is called a template. In a template. the default values for
instance variables can point to other templates: these will he treated as parameters and will he recursively
instantiated when the parent template is instantiated. All non-template classes and any other default
values are treated as constants that are simply inherited by instances.

Jnstantiation: Instances of a template are created by sending it a New message. The instantiation process
is recursive through all of the parameters of a template. Every parameter is instantiated when it is
first encountered. Multiple references to the same parameter are always replaced by references to the
same instantiated instance. ‘[he instantiated composite object that is created is isomorphic to the original
template structure with constants inherited and with distinct instances substituted for distinct templates
(parameters). Parameters in lists or active values are found and the containing structure is copied with
appropriate substitutions. If a composite object needs multiple distinct instances of the same type (e.g..
two inverters), then multiple templates are needed in the description.

Example: figure 9 show’s an example from digital design - a composite object for 8 i tAmp 11 f i e r that is
composed of two series-connected inverters. ‘T’he input of the first inverter is the input of the amplifier.
the output of the first inserter is connected to the input of the second inverrer. and the output of the
second inverter is the output of the amplifier. l)ifferent instantiations of B I tAmp 11 f i e r contain distinct
inverters connected in the same relative way. ‘l’his example also shows a possible use of ictive values in
templates. [he containing composite object is set vip so that its output instance variable uses an active
value to track the value of the output variable of the second inverter.

[DEFCLASS Bi’tAmplifier
(MetaClass Template doc

(* * Composite object template for an amplifer
made of two series connected inverters.))

(Supers Amplifier)
(ClassVariables)
(Ins tan ceVa r I abl es
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(inputTerminal (S inverterl))
(output #( ((S lnverter2) output) GetIndirect Pvit{ndirect)

doe (* Data is stored and fetched from the variable
output In the instance of Inverter2))

(Methods)]

[DEFCLASS Inverterl
(MetaClass Template partOf (S BitAmplifier)

doe (* Instance variable Input is inherited from Inverter))

(Supers Inverter)
(ClassVariables)
(InstanceVari’ables

(output (5 Inverter2)
doe (* ‘Output connected to second inverter)))

(Methods)]

(DEFCLASS Inverter2
(MetaClass Template partOf (S BitAmplifier)
(Supers Inverter)
(Cl assVari ables)
(InstanceVariables

(input (5 Inverterl)
doc (* Input connected to first inverter)))

(Methods)]

Figure 9. Composite object templates for a 8 1 tAmp] i f I e r. When instances are made, they
will have distinct instances of the two inverters, with their input and output interconnected.
‘[he instantiation process must be’able to reach (possibly indirectly) all of the parts starting
from the class to which the New message is sent. In this case, Inverterl and Inverter2
are both mentioned in B i tAmp 1 i f I e r. [‘he example also illustrates the vise of active values
to provide indirect variable access in LOOPS. In this example. the active value enables the
output variable of an instance of B I tAmp 11 f I e r to track the corresponding output variable
of an instance of Inverter2 in the same composite object.

8.2 Specializing Composite Objects

Because the templates are classes, all of the power of the inheritance netw’ork is automatically available
for describing and specializing composite objects. ‘[o make this convenient, one can send the message
Spec I a] i ze to any template form. For example:

(~- (S BitAmplifier) Specialize)

‘[his creates a new set of templates such that each template in the new set is a specialization of a template
in the old set. One can then selectively edit the templates describing the new composite object. In
particular. one may want to change the names of the generated classes by sending them the message
SetName. Unchanged portions of the template structvire vvill continue to inherit values from the parent
composite object. A miser can specialize a template by overriding instance variables. ‘I’m) add parameters.
one creates references to nevv templates. Conversely, one can make a parameter into a constant by
overriding an inherited variable value with a non-template in a subclass.
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Conditional and Iterative Templates

5.3 (,onditionnl and Iterative lemolates

l)ecause the templates are fixed, they are not vvirficieot mechanism for descrihinc the instantiation of
composite oh~ectshaving conditional or repetitmve parts. Consistent with our stand on control mechanisms.
we have not added conditional or iterat/ve vtiniciuraL descr~piionsto LOOPS, hut vise available lntcrlisp
control structvires in methods. For these cases. a viser defines a new metaclass for the composite object.
(Recall that metaclasses are classes whose instances are classes.) ‘[he memaclasses for templates should
he subclasses of the distinguished metaciass Temp 1 ate. ‘[he speciali7ed metaclass should have a New
method that performs the conditional and iterative steps in the instantiation. This approach works well
in conjunction with the l,00PS rnechanisrris fir specializing classes and methods. 1-or example, the
specialized New method can vise ~Super to access the standard code for the template-directed portion
of the instantiation process. figure 10 shows an example of a LOOPS template for a ring oscillator. ‘I’his
composite object is made of a loop of serially connected inverters.

(MetaRingOscillator.New
[LAMBDA (self assocList numStages) (* mjs: “11-JAN-82 19:28”)

* Procedure for creating a ring oscillator.)

(PROG (ringOscillator firstinverter lastinverter invi)
(* Create the inverter chain.)

(SETQ invi (SETQ firstlnverter (~- (S Inverter) New)))
[for i to (SUB1 numStages)

do (SETQ lastlnverter (~- (S Inverter) New))
(~- invl Connect lastlnverter)
(SETQ invllastlnverter]

(* Close the loop)
(~-lastlnverter Connect firstlnverter)

(* Make the ringOscillator object.)
(SETQ ringOscillator (~Superself New assocList))

(* * the assocList here is the pairing
of Template classes found in the
instantiation of a template so far)

(@~(ringOscillator input) firstlnverter)
(@~(ringOscillator output) lastlnverter)
(RETURN ringOscillator) ])

Figure 10. Example ot’ an iteratively specified composite object, a ring oscillator. The ring
oscillator is composed of a series of inverters serially-connected to form a loop. To specify the
iteration and interconnection of the inverters, a New method is defined for the metaclass
MetaRingflscillator. ‘T’helnterlispfunctionforthismethod(MetaRingflscillator.New)
uses 4-Supe r to perform the template-driven part of the instantiation, that F. instantiating the
ring oscillator object itself, In this case. the template-driven portion of the instantiation is trivial,
hut the example shows how it can he combined generally with the procedural description.
MetaR I ngOsc ill ato r. New uses iterative statements to make an instance of I nve rte r for
each stage of the oscillator. After connecting the components together. it returns the ring
oscillator object.
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I .oops was created to sv~pporta design environment in which there are community’ know ledge bases that
people share, and to which they can adh incremental updates. ‘[hjs section describes ovir goals for this
facility, the concepts that we have employed. and scenarios for vising knowledge bases in Loops.

We have chosen the term knowledge base nstead of data base to emphasize two things: the kind of
information being stored and constraints on the amount of information. Loops will he vised mainly for
expert system applications where relatively modest amounts of information are tised for guiding reasoning.
‘l’his intbrmation (i.e.. knovvledge) consists of inference rules and heuristics for gmnding problem solving.
‘I’his is in contrast to potentiallt’ enormous bles of facts. for example. social secvirity records for California.
Reflecting this difference of scale, we have optimized the implementation to support fast access and
updating to a smaller amount of information which is expected to fit in main memory for any one session.
For example, we maintain an index to the object information in computer memory.

9.1 Review of Knowledge Base Concepts

Knowledge Bases: Knowledge bases in LOOPS are files that are built up as a sequence of layers, where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge base (that is, all of the layers) or any subset of layers,. The second option
offers the flexibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version.
figure 11 illustrates this with an example.

Layer 1
Obji (x 4) .

Obj2 (y 5) (w 3) .

Layer 2
Obj2 (y 7) (w 2) .

Obj3 (z 6) .

Layer 3
Obji (x 8) . .

Obj4 (z 9) .

Figure 11. Knowledge bases in LOOPS are files that are built-up incrementally as a sequence of
layers. Each layer contains updated descriptions of objects. When a know’ledge base is opened,
the information in the later layers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will he used when a knowledge base is opened. In this
example, if the knowledge base is opened and only the first 2 layers are used, then Obj 1 will
have an x variable with value 4. If all three layers were connected, then the value would he
8.

Community Aiiowledge Bases: LOOPS partitions the process of vipdating a community knowledge base
into two steps. Any miser of a community knowledge base can make tentative changes to a community
knowledge base in his own (isolated) environment. ‘l’hese changes can he saved in a layer of his personal
knowledge base, and are marked as associated with the commnuniC knowledge base. In a separate step,
a data base manager can later copy such layers into a community knowledge base. ‘[his separation of
tasks is intended to encourage evperimentation with proposed changes. It separates the responsibility for
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C\[ or na poss~h~Iiviesfr~on he ~esponsih~irvv )f inFntaining cOnsistent and ~mandardiied know led~e~vses
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I iugue /dentm~rr: [he ability to determine when different lay cr5 are referring to the same entity is critical
to the ihility to ~hare data bases. l’o support this featvire We l.OOPS data base assigns unique identifiers
(based on the compviters identification numbers, the date, and an unbounded count) to objects before
they ire written tC) a knowledge base. I his facility prov ides a grounding for more sophisticated notions
of equality that might he desired in knowledge representation languages built on l,00PS.

Environments: A viser of 1 OOPS works in a personalized environment. An environment prov ides a lookvip
table that associates vinique identifiers with objects in the connected knowledge bases. In an environment.
viser indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identifier, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases.

,ltultiple .llternatives: An important rise of environments is for providing speedy access to alternative
versions (e.g.. multiple alternatives in a design). ,-\ user can have any number of environmenLs available
at the same time. Each environment is fully isolated from the others. Operations that move information
between environments are always done explicitly through knowledge bases.

9.2 Environmental Ohjects and Boot Layers

Knowledge bases, environments, and layers are represented in [.oops by special objects called environmental
objects. All knowledge base and environment operations are performed by sending messages to these
objects. Fns ironmental objects are accescible from any environment in Loops.

In this section, we will need to distinguish between environmental objects and the things that they
represent. figure 12 summarizes some of the terminology that we will use.
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i~uopSObject l)escrtpt Jon

Layer tie layer Portion ot a file ‘s hich contains
descriptions of ohject~.

KB knowledge base A file and sequence of file layers.
A knowledge is known by the name
field of its file name.

KBState State of a A seqvience of file layers. Used to
know’ledee base access a fixed explicit set of file layers

(e.g., a version of a knowledge base that
is milder than the most recent version).

Environment environment An environment associates names and
unique identifiers with objects in
working memory.

Figure 12. Summary of terminology for environmental Loops objects and the entities that they
rep resent.

Environments: An E.nvironment provides a name space in working memory. Each Environment associates
names and unique identifiers with objects. In general. Environments are designed to he independent. For
convenience. Environments are usually named.~An Environment is always associated with a padicular
knowledge base. ‘[he specifications for creating an Environment come from some knowledge base, and
changes to the Environment are stored on that knowledge base.

/.avers: A file layer is a portion of a file which contains descriptions of objects.An object description
consists of a unique identifier and an expression that can be read by Interlisp to create the Loops object. A
different unique identifier is associated with each expression. In addition, a file layer contains a mapping
from names (Interlisp atoms) to unique identifiers. A file layer is represented in Loops by a Layer object.
A Layer indicates the file on which it is written, the starting address of the file layer, and the name of
the knowledge base with which it is conceptually associated. A Layer also contains various bookkeeping
information such as the name of its creator and the date of its creation.

KBs and KBS’tates: A knowledge base is a set of file layers. Typically, most of the layers of a knowledge
base are located on a single file. A knowledge base is known by its file name. By convention, such files
have the extension “KB”. A KB is a Loops object that represents a knowledge base. A KB has a name
equal to the name field of the file name of the knowledge base that it represents. For example. the KB
with name Test would be associated with a version of the file Test .KB.

A KBState is a generalization of a KB. It refers to an explicit set of file layers. KI3s and KBStates indicate
their Layers using a list on an instance variable named contents. An element of this list must he either
a Layer or a KBState. When a KBState appears in the list, it is as if the Layers listed in the KllState’s
contents variable appeared explicitly in the list. This provides a mechanism for indirect fetching ot’layers
from other knowledge bases.

To indicate all of the layers of the most recent version ot’ a knowledge base, the contents of the KBState
can he the special value “CURRENT”. When such a KBState appears in the list, it is as if the Layers of
the most recent version of the knowledge base were inserted in the list. These [.ayers are retrieved by
retrieving the KB from the referenced knowledge base.
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f?o~iI am err: Environmental objects ire dismingui\hed fr im m)toer m)h!ects vs hen the’. are accessed md
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Environmental objects are also special in that the file layer that describes them is m specral file layer at
the end of a knowledge base called the hoot layer. In order tm) access the contents of a knowledge base.
it is necessary to read the hoot layer first because it contains the environmental objects that describe
the knowledge base. \ boot layer for a knowledge base contains a single KB describing itself, a I ayer
describing each of its file layers, and the KllStates mentioned (directly or indirectly) in the KB.

The Global ‘fame Table: I~oopskeeps environmental objects in a global name table that is accessible from
any environment. [‘his name table also includes the basic classes that are part of the I oops kernel. If
Loops is used without exercising the Environments feature, then all created objects are also placed in the
global table.

When another environment is opened, objects not in core are first looked for by LJID or name in the open
environment. If no object is found there, then the UID or name is looked up in the Global Environment.
Thus, object descriptions in a new environments override those in Global Envrionment, but old objects
which have no counterparts are still available.

9.3 Starting With No Preexisting Kno~ledgeBases

The knowledge base facility in Loops has been designed to cover a number of situations, Because of
this generality, it is not always easy for a newcomer to discover the simplest way of using the features.
‘[he following sections describe all the features of the Kno’.vledge Base system: however each feature is
introduced within a particular scenario that shows how to do some of the most common operations for
which Loops was designed.

In the first scenario, a riser wants to start from scratch using no preexisting knowledge bases. [he results
of this Loops session are saved in a personal knowledge base.

When a miser invokes Loops, the Loops name space will contain some objects from the Loops kernel.
Before creating any new objects. the riser should type an expression of the form:

(~-SKB New ‘KBName ‘environmentName newVersionFlg)

where KBName is an atom (e.g.. vise FOO to create a knowledge base named FOO. KB) and
environmentName will he the name of the Environment. ‘This will create both a new KB corresponding
to the KBName and a new Environment with the name environmentName.

[.oops checks that a knowledge base with KBNarne does not already exist. If it does exist and
newVersionFlg is NIL, Loops will report an error. It’ new VersionF!g is T. then loops will create a
new version of the file. Because of the way the file system works, the name of a KB must he all in upper
case. If the user attempts to use a KBName which contains lowercase letters. Loops will correct the name
to all upper case and print a warning message.

Warning: Objects created before creating md opening mn Ensironment are placed in the global name
table. Hence. any objects so created will he shared hs all Environments. However, Loops will not save
such objects in a knowledge base later in the session vmnless they are explicitly moved to some ens ironment.
Alternatively. such mhnjects can he saved rising the lnterlisp file package.
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l’he next step is to open the Envirminment:

(‘- SenviroarnentName Open)

l’l’iis makes the new’ Environment he the current environment. \esv objects that are created will he
associated \.vith the KB.

[Saving created an Environment. the user can then proceed to create whatever new objects he desires in
the session. ‘[o dump the ctirrent state of the environment and continue afterwards, the user can type:

(~SenvironmentName Cleanup)

This does not close any files, and leaves the environment as it was, except that all changed objects have
been dumped to the knowledge base, and then marked as unchanged. Cleanup can he done any number
of times in a session.

At the end of a session the user should do a Close:

(4- SenvirorimeritName Close)

This writes out all of the objects to a file layer. mipdates the environmental objects accordingly, and’ writes
them out to a boot layer, deletes these objects from memory, and closes all files associated with the
environement. ‘[he user can then exit from Interlisp. After a Close is done, the user must go through
the following scenario to start up again.

9.4 Continuing from a Previous Session

The case where a riser wants to create a new knowledge base is less common than the case where he
wants to modify or add objects to a knowledge base that he has previously created. In this scenario a
user wants to resume from where he was at the end of his previous session.

‘The first step is to obtain the user’s knowledge base, ahd link it to an environment. This is done by a
message to the class KB as follows:

(~‘ SKB Old ‘KBName ‘environmentbfame)

This reads the boot layer of the knowledge base named KBName and creates an Environment named
environmentName that is then connected to the KB. At this point the user must open the environment
to make the contents of the KB available in this environment:

(4- SenvironmentName Open)

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the associated
KB (named KBName). It also makes the new Environment he the current environment. Having opened
an Environment, the miser can then proceed to define whatev’er new objects lie desires in the session.
New objects that are created will he associated with the KB. When he is done, he should type as in the
previous scenario:

(~SenvironmentName Cleanup)

or
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(~Senvironrnenc~’arneClose)

Starting from a Community Knowledge Base

Users will not usually start from scratch. Rather, they will often begin by using previovislv created
community knowledge bases. ‘Ibis scenario starts with mthtaining a single commmmnity knowledge base.
‘[he riser does not own the community knowledge base, so the results of the session will have to he saved
in a personal knowledge base. [he persmmal knowledge base will contain any new’ objects that created as
well as any objects from the community knowledge base that have changed.

As in the first or second scenario, the first step is tm) create a personal knowledge base.

(4- SKB New KBName ‘environmentName aewVersionFlg)

or if the user has a personal knowledge base already, by doing a:

(4- SKB 01 d KBName ‘environmentName)

This obtains both the KB and an Environment. ‘[he next step is to add the commrinity knowledge base

to the KB as follows:
(~-SKBb[ame AddToContents ‘cornmunityKB~’Jame)

where commuhitykBName is an atom that is the name of the community knowledge base.

This step should be repeated for each knowledge base to he added tm) the KB named KJBName. The
message creates a KBState describing the “current” state of the commrinity knowledge base and adds that
KBState to the contents of the KB for the personal knowledge base. ‘The effect of this action is that
Loops will remember to associate the community knowledge base with the user’s knowledge base in the
future. (‘This step need not he repeated in any future session which uses the knowledge base KBName.)

At this point, the riser can Open the Environment as before:

(4- SenvironmentName Open)

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the KB named
KBName, ‘[he Open message also makes the Environment named environmentName he the crirrent
environment.

Since the KB associated with the environment contains a KBState fmr communityKBName, those Layers
will also be read. They are found by reading the hoot layer of the commrmnity knowledge base. ‘[he
message AddToContents on KBN’ame will work properly even after the environment is Open. in the
sense that when it is done on a KB connected to an Open environment, it causes all the layers of the
newly added KB to he read in.

All creation and modification operations will take place in this Current Environment. ‘[he viser can
create new objects and modify objects in the community knowledge base. When done, the results of the
session can he saved using Cl eanup (or Cl ose). ‘Ibis will carise two PIe layers to he written omit tm) nbc
personal knowledge base (and none to the commvmnmty knowledge base). First a file layer is written ovit
to KBName for changes made to the community knowledge base (it’ any). ‘The Layer for this Pie layer
is marked as associated with the community knovvledge base. Second, a file layer is written omrt Or the


