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nher objects that have been created. I he I er for thts ~sm~~reed~s ~ss c,ated a mb Ki3,~ame. 1- inWis,
the ens mranmnvnmal oh~cctstar the know icd~:n,tse .mre a rinven uvmt ‘mm m hom n las or.

,lefvire ‘he hoot laser s vs ritten omit. tie KB Er the personal know ledge h~senaiaeO ~k$\“mrne is undated
m contain the new lasers. It contains 5he reference to the cvnnmnmmnitv know ledee base that was created
by the AddToContents message. I’his continries to he mnverpreted as ,m retbrence to the most recent
version of the community knowledge base named communityKB3s’ame.

If Close was vised, then the files storing the knowledge bases have been closed and all objects in the
environment have been destrosed. [he ens ironrnent was mlso made not cvirrent. [his clean state is
~ecv)mmendedas a place from which the miser can then exit from Interiisp.

9.6 Freezing and ‘I’hawing References to Knowledge Bases

In the previous scenarios, the user used the most recent version of the community knowledge base.
Community knowledge bases can be changed over time by their owners (i.e., their human knowledge
base managers). Sometimes a knowledge base manager may update the community knowledge base, hut
a riser may want to continue using a fixed older version. For example, if the new’ version of a community
knowledge base contains extensive changes, the miser may w’ant to finish some project before converting
his personal knowledge bases to reflect the changes. ‘l’o do this the user mrist freeze references to the
community knowledge base. Freezing enables a user to continue to access a fixed set mf layers even
though the community knowledge base may he changed by the knovsledgeliase manager. In this scenario,
the user has a personal knowledge base whose contents inclride a named community knowledge base. She
anticipates the change to the community knowledge base before it happens and freezes reference to it.

Later, we will see how a user can return to an earlier version after a change has been made.

Freezing: The first step is to obtain access to the user’s personal knowledge base. \s in the previous

example, this is done by sending an 0 I d message to the class KB:
(4- 3KB Old ~KBName ‘environmeritName)

[his creates an Environment named environmentName with that KB as its outpritKB. [o freeze the
reference, the user needs to change the KBState in his personal KB that describes the commrinity
knowledge base. This can he done as follows:

(~$KBName FreezeKB ‘communityKBNarne)

The user can then open his Environment, do his work, and then write updates as before:

(~ SenvironmentName Open)
<make changes to objects)

(4- SenvironmentName Close)

From his point of view, the objects in the commrinity know ledge base will he static even if the knowledge
base is changed several times. \tier the miser ends this session and starts again the next day, his knovv ledge
base will continue to refer to fixed versions of the objects in the community knovvledge base, even if new
versions are added later.

T1mawing: Eventually. however, the changes (and improvements) no the commrmnity knowledee hose may
prov ide m compelling reason for the miser mm) switch to the most recent ersion. l’o do this, he shommld type
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I he viser can then open his En~mronment. do 1115 ,sm,rk mud then svrite updates as °efore.

9.7 Lsing Several Knowledge Bases in an Environment

[he partitioning of knowledge into mvminipie know ledge bases comm he a useful tool for organizing know ledge.
For example, long term storage of different versions of a design can he kept in separate knowledge bases
in Loops. (‘The different knowledge bases in these cases correspond to different environments.) It is also
convenient to partition knowledge bases to reflect the partitioning of responsibility for setting standards and
maintaining consistency. [he previous scenarios have shown the rise of separate knowledge bases to keep
(tentative, idiosy ncratic) personal knowledge separate from (open, standardized) community knowledge.
This scenario shows how a riser can access several knowledge bases through a personal knowledge base.

The first step is to open the personal knowledge base as follows:

(~3KB Old ‘KBName ‘environmentNarne)

The next step is to add all of the •other knovvledge bases that the riser vvants as follows:

(~ 3KB]Vame AddToContents ‘otherkBNamej)
(~SKBName AddToContents ‘otherKBNameg)
(~$KBName AddToContents ‘otherKBN’ameg)

[his can he repeated for each knowledge base to he added.

Each AddToContents message changes the contents variable of the knowledge base named KBName
so that it now refers indirectly to the other KBName. [hese references are preserved across sessions so
that the next time the user opens his knowledge base with an Old message, he will not need to repeat
the AddToContents messages. ‘lhese references can be removed as in the previous session.

For most applications, the order in which knowledge bases are added does not matter. However, if an
object reference is ambiguous in the sense that the object is contained in more than one of the knowledge
bases, then the last knowledge base added will dominate. After the knowledge bases have been added,
the user can optionally freeze the references tm) any of them as described earlier.

The next step is to mpen an environment:

(4- SenvironmentName Open)

.\s the user creates new’ mhjects in his environment, he coLild want them to he associated with particrular
know ledge bases that he is rising. Lsuallv. he will want them associated with his personal kflow ledge base
(named KBName in the example). and this is the defnmrult association. However, bries in a commrinity
knowledge base will often be found by a riser working on an example in m personal knowledge base.
If the riser simply changes the hugg~objects, they will continrie no he associated with the community
knowledge have when he saves vhem it the end of his sescion. However, if he creates ness objects that lie
wants associated with the communits knowledge base, he can first type:
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[lie user can then create the new objects. When he is done creating these objects, he can then switch the
association hack to his personal knowledge base by’ typing:

(~$environmentName AssocKB ‘KBNarne)

As before, the user can type

(~$environmentName Cl ose)

when he is done with the session.

Occasionally, a riser may accidentally associate some objects with the wrong knowledge base. See the next
section for a way to change the association of an object after it has been created.

If he later resumes the session, he will have access to all of the knowledge bases that he added.

9.8 Changing’the Associations of Objects

The previous scenario depends on anticipating a change in the intended association of an object before
creating it. ‘This approach rising an AssocKB message works fine if the creation of objects cah he
conveniently organized into periods such that all of the objects cOated during a period are associated
with the same knowledge base. In practice, however, a riser may forget to send the message or he may
later change his mind about the appropriate association for an object. The message for changing the
association of an object is the AssocKB message as follows:

(~-SobjectName AssocKB ‘newKBName)

9.9 Switching kmong Environments

One of the important features of Environments is that they provide a way of having independent versions
of designs. A user can have several open Environments and can switch between them bs making one of
them the “current” Environment. In this scenario, we will first consider two ways that a user can create
multiple open Environments. Then we will consider hmw to switch among them and how to copy objects
between them.

Case I. In this case, a miser is jrist starting a session. He has a personal knovs ledge base named KBNamel,
and he wants to create two knowledge bases (KBName2 and ~BName3) mm) represent two versions of a
design. ‘To do this, the riser can type:

(~3KB New ‘KBName2 ‘erivironmeritName2)
(‘reate 2nd knowledge base and I nm’lromnent.

(— 3KB New ‘KBName3 ‘environmenrEv/ame3)
Create 3rd knowledge hose aid Environment.



is itching \ niong ovi ronnicnt,s

(— SKBNarne2 Add oContents ‘KBNdrel)
Lid I B \,pr’m’I “i a’ ‘Ott itS a ad I I?.
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(~- 3enviroumentbv’ame3 Open)
Open the 3rd l”n viromnent, Jeavuik :t as r’Urretil.

Case 2. \lternamively, the riser may discvner part w’ay through a sess ~n that he wants tm branch out
with another Ens ironment. In this scenario, nile visor is working in Ens ironmenti mod decides no create a
brancti point. Before dmtng this, the miser must first Close that ens ironment:

(~3environmeutNamej Close)

[he user can then create the Environment2 and Fnvironment3 as in case 1.

Switching. In both cases, the last Environment opened will be the default current one. [he miser can
make any Environment he current by:

(~$environmentName2 MakeCurrent)

All Loops operations will then happen in this Environment. To switch to environrneniName3 use:

(4- $environmentName3 MakeCurrent)

and so on. Tm) test whether any particular environment, testedEnviroument is current, mine uses:

(~$testedEnvironment IsCurrent)

‘To switch to the GlohalEnvironment. one sends to the current environments:

(4- CurrentEnvi ronment MakeNotCurrent)

The Lisp global variable CiarrentEnvi ronment is bound to the environment which is current.

When done, the updates should he written out for all of the open Environments. ‘[‘his can he done
by sending Cleanup or Close messages to each of the environment, or can he done by sending the
corresponding message to the class Environment which will send the message on mm) each mpen environment
(kept on a list in the l.isp global variable openEnv i ronments):

(~$Environn’ient Cleanup)
(~3Environment Close)

Copying Objects between Environments. While a miser is switching between environments, he may make
discover an error in some information that is global tm) both environments. In this scenario, the miser
discovers an error in some objects from a commrinity knowledge base while he is working in For ironmenth.
He corrects the objects in Enriror~nent2,and wants to copy those correctimrns into F-,nvironment3. He
does this vising the CopyObjects message as follows:

(~$toEnvironmerit CopyObjects objectsList)

where moEnvironment is the name of the environment that the objects are ropied to. and objertsLisc is a

50
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In ova vcenar~o,the user ~vouldperhtrm :1-c ‘Eho’v me steps:

(‘- SenvironmentName2 MakeCurrent)
I/ak a En m’iroiimeu t2 s’urrP,’i!,

(‘n/am’! i/ia thia’ir.
(SETQ objectsList

[Sake a list ot’ the colLected objects.
(~$environmentName3 CopyObjects objectList)

(‘opy the object r to En vironm en0.

9.10 Saving Parts of a Session

Saving part oja session. l’o selectively update the knowledge base with some mf the changes that he made
in a session, a user can send a Cleanup message to his Environment with KBs specified. Fmr example,
to save the updates associated minly with the knowledge bases named KBNamel and KBName2, he can
send the message:

(~$environmentName Cleanup ‘(KBNamel KBlJame2))

This message writes out file layers to the user’s personal knowledge base containing die mhjects that from
the current Environment that are associated with the knowledge base KBNaniel and KBName2. ‘the riser
has mmitted the names of associated knowledge bases for which he wants to discard the changes. ‘I his
message completes by writing out the hoot layer.

[he Cleanup message without KB’s specified w’rites a layer for every associated knowledge base that has
been changed, followed by a Wri teBoot. If the user does a (~3envName Cleanup T), then all rho
changes will he written out in a single layer associated with the cminnected know ledge base.

Cancelling an entire session. The previous scenarios assumed that a user wanted mm) save the changes that
he makes in a session. Sometimes, hm)wever, a user may prefer to discard the changes that he has made
in a session. He can do this and return the env’ironment to an unopened state by typing:

(4- $environrnentName Cancel)

Cancelling this session will not go hack past the last time the user did a Cleanup. Cancel hacks
vip changes made since that time and then does what a Cl ose would do, destroying objects in the
environment. and closing files.

9.11 ~ Copying Layers from one Knowledge Base to knother

I he ability to describe layers using a KBState makes it possible for one knowledge base to indirectly
:mccess the file layers of Jnm)ther one. ‘I his mechanism works fine vvhen it is vised to extend u personal
know ledge base to incivide a community knowledge hose. It enables several visers to read a rommvinity

K
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In this scennmr~o,the visor is just starting a session and no know ledge hoses hove been opened. fhe vuser
wants no copy information from a knowledge have named iromKBN~me to u knowledge base named
toK/3N,ime. Ilie first step is mm) read the Hoot lay ers of the two knowledee bases.

(~3KB Old ‘FromKBName)
(~ 3KB Old ‘toKBName)

En this scenarim), one need not, and in fact should riot, have an envrionment open or either of the two
KBs connected to an environment. .\ll the work will go on in the Global Fn-vironemnt.

The second step is to create a description of the layers to he moved. ‘This description can be either a
Layer or a KBState. One way to create this description is to use any of the object editors available in
Loops. Another way is to send a DescribeLayers message as follows:

(~$fromKBName DescribeLayers DateOrDays associatedKB)

DateOrDays can he an Interlisp Date or an integer number of days. If it is a date. then only thmse I.ayers
created on or after the given date will be described. If it is an integer, then only l,ayers created within
that many days will he described. If it is NIL, then no date filter will be applied.

associatedKB is the name of the knowledge base with which the Layers are associated. (If NIL, then the
layers associated with any knowledge base will he described.)

For example:

(SETQ layerDescription
(~-$fromKBName DescribeLayers 14 ‘toKBNarne))

returns a KBState describing the Lay’ers created in the last fourteen day’s in the knowledge base named
fromKB[”Jame that are associated with the knowledge base named toKBName,

Given such a description, the layers can be copied by typing:

(~- $toKBNaxne Copyfi’leLayers layerDescription)

9.12 Summarizing and Combining Knowledge Bases

.Summari:zng a Knowledge Base. \s know ledge bases evolve river time, the number vf layers and amorint
of overridden information can consume a large fraction of the file space. Economy~mindedknowledge base
managers may want to create “cmmpressed” versions mE knowledge bases that have all of the information
contained in just one lay em. In this scenario, the riser starts a sessimin by typing:
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[‘Ins message causes loops to read the hoot layer of the mild knowledge base (fromKBName), create a
new knowledge hose (moKB.N’ame), create in Ens ironinent associated with the ness know ledge hose, read
in all of’ the objects in iyomKBName. wrimc them out to a single layer, and then write a hoot layer for the
new knowledge base.
Combining Knowledge Bases. ‘The Summarize message can also he used to combine several existing
knowledge bases into a single new knowledge base. In this case, the message is as follows:

(4- 3KB Summarize fromKBNames toKBName assocKBNames)

where fromKBNames is a list of the names of the knowledge bases to he summarized: toKBhJame is the
name mE the new knowledge base to be created~assocKBNames is as described above.

[his message causes Loops to read the hoot layers of the mild know ledge bases, creates a new knowledge
base (toKBName), creates an Environment associated with the new knowledge base, reads in all of the
mThjects. writes them out to a single layer, and then writes a hoot layer for the new knowledge base.

The riser can create a new knowledge base which contains all mE the objects in any open ens ironment.
‘[his may include objects from any number of KB’s.

(~environment Dump IoKB toKBName assockBNames)

will create a new KB named toKBi\Tame, and drimp from the environment all objects with associated KB
on the list assocKBNames onto toKBName (or all objects if assocKBNames = NIL).

9.13 Subdividing a Knowledge Base

Sometimes a user may want to subdivide a knowledge base so that a subset of the objects are moved away
to create a new knowledge base. In our scenario, the riser wants to move the objects from a knowledge
base in frornErivironmentName to a knowledge hase (toKBidame) included in toEnvironmentAiame, In
the first step mE this scenario the riser uses the MapObjectNames message:

(~-$environmentName MapObjectNames (FUNCTION UserEn) AssocKBs NolhIDs)

where

UserEn is a (Unction that will he applied to every object name. If N IL, then a list of object names mod
LII)s in environment is retrirned as die valrie of the messace. If it is the atom T, then minly names which
are not P IDs will he returned.

AssocKBs is arm optional argriment. If an atom, it is interpreted as the namne C the associated know ledge
base for the objects. If a list, will he inte~renedis a list of mssociated know leuce Hoses tor the object. I)’
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(~ SfromEnvironmeritL’s’ame MakeCurrent)
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(~- SfromEnvironmentA’ame MapObjectNames (FUNCTION MyFn))
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[he next step is mm) move the objects as follows:

(SETQ newObjectList
(~$toEnvironmentName MoveObjects objectList)

This causes the objects to be copied to tohnvironment and deleted from fromEnvironment (or whatever
Environment they came from). ‘The objects will continue to he associated with whatever \ssocKh they
were before. In this scenario, however, the user wishes chem be associated with the knowledge base
named toKBName.
(~- $fromEnvironmentName MakeCu rrent)

(for object in newObjectLi’st do (~- object AssocKB ‘toKBName)

[he final step is to write out the changes:

(~ SenvironmentName Cleanup)

9.14 Going Back to a Previous Boot Layer of a Knowledge Base

Since knowledge bases are represented as objects. it is possible to reconfigure their contents rising the
standard object access ftinctions. However if a l,ayer has been deleted from the contents of s KR, that
layer is no longer written Omit to the hoot layer. This can make it difficult to get hack to versions modified
in this way. [he following message makes it possible restore such knmiwledge bases by reading in old
hoot layers:

(~- 3KB ReadOldBootLayer ‘KBI”[ame numberBack)

‘[‘he valrie returned is a KB which has the name KR~ame,and thb smote corresponding to the Hoot layer
specified. b preserve a KBState which has these contents, the user can then vise:

(s” 3KBName Copy)

9.15 ~ffecting what is Saved

I’he visor may not wish an object. or some part of an object saved on a know ledge hose. In this section,
we deccribe a number of ways mf stopping infoi’matmon from being written on the knowledee base. with
ippropriate caveats hr the vise of these feammires.
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9.iS.l Temporary Objects

if the user is crer.mting, lots of objects Or nemnpor::mry use las in.mern~ediate roelv.rcns t.)f am connputaricn then
none v.0 those ohjec ~sare viseful after the. coinpvination. is done. [m. create inch oblc.cns. the rrscr ehommid
vise:

(‘- class NewTemp)

to create them instead of the usual (‘- class New) message. Objects creamed in dims’’~ay will limit he given
a L’ID. and will he not he accessible by mnapping throrigh the ens ironment. If by some chance they are
referenced from some object that is being drimped to die data base. they’ vs ill then he consorted imito
permanent objects, and dumped to that same KB.

9.15.2 Not Saving some IV values

For some instances, it is useful to store in an instance v’ariable a Lisp dataytpe (e.g. a pointer to a window.
or hash array). However, most Lisp datatypes are not stored appropriately on a KB. In general. when
read back in from a KB, svhat was formerly an instance of a datatype looks like an atom with a ftinny
printnanie. ‘The solution we have adopted is to allow the user to specify IV values or properties which
should not be dumped to a knowledge base. When read hack in. the IV valnie mr property will inherit
the default value frmm the class which can he an active value to recreate the desired Lisp object.

For example, the class SEnvi ronment uses a hash table as the value of its IV namei’ahle. The following
fragment of the definition mE Environment shows how saving the value of namelable is suppressed and
how an active value is used to recreate it.

[DEFCLASS Environment .

(InstanceVariables ,
(namelable #(NIL NewNamelable) DontSave Any)

Any instance of environment will have namelable filled in by NewNamelable the first time it is
accessed. NewNamel ab 1 e is a specialized version of F i rs t Fetch which makes the local value he a
hashArray. The property DontSave with value Any (which is inherited in every instance) specifies that
nothing about the IV namelable should he saved on a KB. Fmr finer contrml, the property Don tSave
could have been given a value which is a list of property names whose values should not he saved on
the KB. If the atom Value is inclrided in the list, then the value of the IV itself will not he saved. l’he
value Any for DontSave is interpreted as meaning no porpermy or valnie shonild he saved,

9.15.3 Ignoring changes on an IV

Whenever an object is modified during the corirse of a session, it is marked as changed so that a new
version of the object will be written omit on the KB. Snippose the visor may he vising an I V globally
knovvn object as a place to cache some information. In this case the miser does not need or even want
the known object to he marked as changed if the only change made was mm) store the cached information.
To allow this, the special active valrie fnincmion S to reUnmarked is provided which dries not mark the
object as changed when it updates its localState. For example, if $WorldView had an instance variable
1 astSel ected which was updated each mime a selecmiomi was made. then f SWorl dView looked like:
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[DEF INST WonidView .

(iastSelected #(objl NIL StoreUnmarked) ...]

changes no 1 as tSe 1 acted would he. in’nored hv the. KB system. iv is often useful no corn hi no thu
ibavvire with Don tSav e dnscv’ihed earlier so that when tue oO~ectis Jvuinped to a K lb (hec:.rvrse of s.omnc
other change) the value in this IS 5 nov saved. l’hen the act i veVa 1 ue can he inherited directL fromn
thL det mvilt alvie in the hiss P sing Don tSave c Oseif is ma sadie ont a) ~nsv 0 5
not he dvimped if a value is changed in the not mm) he saved IV.

9.15.4 Getting rid of objects explicitly

During the course of a session users may create a number of objects thee discover before the end of the
session are not needed. ‘[hey’ may also decide that some old objects are no longer needed. By vising:

(~obj Destroy)

for each such object, the user will cause any nesv objects to he forgotten (not written to the KB) and die
incore space reclaimed. For ohject,s which were in the KB previously, there vvill he stored an indication
that this object has been deleted, so that later reading ol” this KB will not contain the object.

9.16 Examining Environmental Objects

Sending the message MapObjectNames mm) an open environment allow’s mine access to the nvmrnes and
[LIDs of objects in that environment. From the names and LIDs one can then access the objects
themselves using GetObjectRec. One can determine the names amid LiDs of objects in a l,aver hy
sending that layer the message MapObjectNames. The form is:

(f” $Layerl MapObjectNames rnapFn noUlDs)

which applies mapFu to each name (and to each LID nmnless noUTDs=T). If mapFn=NIL then this
simply returns a list of the names (and UIDs). However, unless the laser has been read in to an
ens’ironment, one cannot get the object associated with that name (U ED) on that layer.

PretiyPrm’nting a KB.’ A special pretty printing function is available for KB’s, KBStames, and I ,ayers which
tell ahorit its history and contents. If one does:

(~- 3KB Old KBName)

withorit necessarily opening an environment. then one can send:

(4- SKBName PP)

tm) see what is in the KR and its containing lovers.

(‘hair~edj&L’Bs: Imi a particular environment, mine can change objects which originate on any nvmmber of
comnmvinimy and personal knowledge hnmses. l’o find minim the names of any’ K I3s that h:ive modified entities
associated with them, one send to that environnient, scm’ E 1:

cii
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KBState

lVs:

name 11% of KBScateJ
Name of file associated with this KBStace. NIL as value here overrides xtive value
in named object

[IV of KBScatej
Either CURRENT, meaning the current state of the KB with name or a list of layers
and KBStates specifying layerset)

Methods:

(4- self AddEntit’ies entitytist) [Method of KBStateJ
Add all items on contents and self to envityList. Called by thnctions which write
out the boot layer to make sure that all layers are idded to the list of items to be
dumped.

(i- self AddToContents newAddition) [Method of KliScatej
Adds a new item to contents of KB,

(i- self Connect nazneTable) [Method of KllScatej
Read in object file indices from all possibly implicit, layers in order. rhese are
being opened for input only.

(i- self Currentstate) [Method of KBStatej
Create a KB state which reflects the current state of this KB.

(~self Describelayers dateOrDays assocKB) [Method of KBStateJ
Return a KBState whose contents are just those layers which occur after dateOrDays
and have KB assocKB. or NIL if none.

(i- self Files fileLlst) [Method of KBStateJ
fileList is a TCONC list offiles already found. Add any new ones fount Very similar
in structure to KBState.Connect.

(4. self MyKB) [Method of KBState)
Return the KB object corresponding to this KlIState.

(i- cell ReadBoot) [Method of KBStateI
Read the boot file for this KB.

(4- cell SetContents 1st) fMethodofKBState)
Make KB habe new contents. Check types of elements.



The Class KB

9.18 The Class KB

KB [ClassJ

List of Envs which have read in contents of this KB.

KBs start out with an empty List of contents.

Environment which is currently writing on this KB.

Full name of file where this KB is stored. Computed the first time
Never stored.

List of owners of this KB.

One of Disconnected, Connected, or BootNeeded.

Methods:

(4- self AddloContents newAddition) [Method of KBJ
Adds a new item to contents of KB.

(i- self ConnectForOutput nameTable) [MethodofKBl
Read in object file indices from all possibly implicit, layers in order. This is being
opened for output.

(i- self CopyfileLayer layer) [MethodofKB]
Copies the FileLayer referred to by layer onto selC and adds a new Layer describing
copied fileLayer onto contents of selt

(‘- self CopyF ii eLayers layerDescription) [Method of KBI
Copy all the layers in layerDescriptioa which should be a KBState into self.

(~selfDisconnect) [MethodofKBl
Disconnect this KB and close its file if open.

(‘- self FreezekB name) [Method of K13J
Find a KBState with %@name=name and contents=CURRENT. Replace it by a
new KBState with contents = currentState of myKB. Return new KBState or
NIL if failure.

(4- self PrintContents file) [Method ofKBJ
En to Print out a formatted description of the contents of a knowledge base.

[Vs:

connectedEnvs

contents

currentwri ter

f ii e Name

owners

status

[V of KBJ

[IV of KBJ

[V of KBJ

[IV of KBJ
it is needed.

[IV of KBI

[IV of KBJ
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(~self Wr I tefloot) [Method of KB]
Write out hoot the containing K B md all Liters and K Bhtates it contains imoticiti.
or exphcitit.

(~- self W r I teEn t I ty F ii e changedEntities namedEntities ~ssockb~me) [‘vi~thudof KB]
Writes the entities (ohjects) rmt to a layer in s given kb.

(~- self WriteFileLayer kbName nameTable) [Method of KB]
Writes the facts on the file, appending to file. Format of layer is: indexFilePosition
(up to 7 characters) - entit~Count(up to 7 characters) nameCount (up to 7 characters)
entity records - indexRecords (LID followed bt file position.) - nameRecords (name

followed by LID) - initialFilePosition.

9.19 ihe (‘lass Fn%ironrnent

Envi ronment [Class]

EVs:

status [IV of Environment]
One of r~JotOpenor Open. Open when indexes of KBs have been read in, NotOpen
after ClearObjectMemory.

nameTabi e [Lv of Environment]
nameTable for looking up LIDs and names.

outputKB [IV of Environment]
KB to which changes will be filed, and which specifies contents.

assocKB [IV or Ens ironment]
Name of the KB associated with new objects created.

‘vlethods:

(~ self AssocKB akb) [Method of Environment]
Make akh he the assocKB of this KB.

(~- self Cancel) [Method of Environment]
Erase an environment without cleaning tip so that environment is empty. as if it were
not open. hut it is still connected to the same KB. Make it not current.

(~ self ChangedKBs) [‘vl~thodof Environment]
Finds the names of ill K Bs that have tnt modified entities issociated with them.

ri
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self Cl eanup iCBNames noBoottaverKig) ])vl ~thtd of Environment]
Write FueL avers for K B~named in KB.\’sjrnes. If KB2Carnes= N IL then write a
layer for each changed KB. if KBiv’arnes = T then .vnte one laser for all changes. If
KBiVames is a sinele atom, then the tipdate is vs titters for that ~tn:ie .~ocKB.Finish
bt writing new boot later for outputKB unless noBootLayerfLg rs f.

(4_ self ClearObjectMemory) [Method of Environment]
Write out boot laser if needed and clear name Fable.

(~- self Close assocKBs) . [Method of Environment]
Cleanup an environment so that all files are closed, and environment is empty. as if
it were just created.

(*~self ConnectOutput KB) [Method of Environment]
Make KB be the file onto which changes in this Environment will be written.

(~- self CopyObjects objList) [Method of Environment]
Copies objects on objList using the object structure of the object in Environment
self with same LID, if found.

(~- self DumpToKB kbName assocKBNarnes) [Method of Environment]

(~- self Files fileLst) [Method of Environment]
Get a list of all files associated with this environment. Argument to KBState . F ii es
is a TCONC list.

(~- self IsCurrent) [Method of Environment]
Test if current.

(~- self MakeCurrent)’ [Method of Environment]
Set values of CurrentNameTable and CurrentEnvironment from self and
make Defaul tKBName be my assocKB.

(~- self MakeNotCu r rent bitchlfNotCurrerit) [Method of Environment]
Makes no Environment Current if this is current, elses causes Error if not Current
and bitchlfNotCurrerit = 1.

(*- self MapObjectNames rnapFn assocKBs noUtDs) [Method of Environment]
APPLY rnapFn to the name of each object stored in the environment. If assocKBs
given, select only those which are in the list. If noUlDs=T then apply only to
names which are not LIDs. If mapF’n NIL then just list all names and LIDs: if
mapPn = I then just the names.

(~- self MarkDeleted objToBeDeleted) [Method of Environment]
Mark object as deleted in KB when new layer is written out. Done by smashing
locaiRecord field of entity. but NOT storedln field. See SelectChangedEntity.

(~- self Open) [Method of Environment]
Read in the index of ali the layers referred to by contents of outputKB.

(~- self WriteBoot) [Method of Environment]
Make outputKB write it’s hoot file.
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0 20

Layer

Lv

\le’.a U .‘n ~

[CLsv]

[Lv f l ase~]
Name of the file where I’ iLl aver S Utind. Compttte it on firsti-etch from the
khName h~searching directory path. Don’t save full name on file.

[IV of Laser]
Name of’ kb where this layer was stored e.g. BRIDGE.

[I\ of Layer]
Index on file where Fuel ayer is found.

[IV of Layer]
Name of KB with which this I aver is issociated conceptuall~.

AddEntities entityList)
\dd self to entity list for dumping on hoot later.

Connect nameTable)
Open layer file and read in index.

Files filehsc)

Add my file to list if it is not already there.

MapObjectNames mapFn coUlDs)
Apply inapPri to ohjectnames in layer. or make a list of them if

9.21 The (‘lass KBMeta

KBMeta [Class]

Methods:

(~- self New kn.N’ame envName newVersionFlg) [Method of KiOvieta]
Create a new Knowledgehase file, and an environment if’khName is given, and make
environment current.

(~self Old kbName envNarne) [Method of KB’vleta]
Get KB for this khName. (Causes hoot layer to he read unless K B is already in
the global table.) If env,\’ame is given, creates an Environment of th it name and
connects the environment to the KB.

0 1

file

k b N ame

position

as socKB

Methods:

(i” self

(~- self

(~self

(~- self

[Method of Layer]’

[Method of I at er]

[Method of I aver]

[Method of Later]
mapFn = NIL.
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[Method of KBMetaJ

lacorporite tl~ )hJcctS of fromKBName with assocKB in assockBNames (or ill if
assockBNames.: NIL) into new KB toKBName. IfnamedObjecr,sOnly T. then only
:opies oser til ‘hoce .~ntiuesreferred to Ii) a name r In t named object direct]) or
indirecti). I his ttter ~ nure pros ides r mechanism 1hr garbage collection.

9.22 The Class En~ironmentMeta

Envi ronmentMeta [Classi
Methods:

(i- self Cleanup) [Method of EnvironmentMetal
Write updates for all open ens ironments.

(i- self Close leaveKBattachedFlg) [Method of 1 nsironmentMetal
Close all the open ens ironments.

(‘- self OpenFil.es) . [Method of EnvironmentMetaj
Returns a list of the open files for all open Ens ironments.



10 INERODIflION TO RULE-ORIENTED PROGRAMMING IN LOOPS

ftc core of decision-making expertise in many kinds of problem solving can be expressed succinctly
in ~crmsof rules. The following sections describe facilities in Loops for representing rules, and for
organizing knowledge-based systems with rule-oriented programming. The Loops rule language provides
an experimental framework for developing knowledge-based systems. The rule Language and programming
environment are integrated with the object-oriented, data-oriented, and procedure-oriented parts of Loops.

Rules in Loops are organized into production systems (called RuleSets) with specified control structures
for selecting and executing the rples. The work space for RuleSets is an arbitrary Loops object.

Decision knowledge can be Factored from control knowledge to enhance the perspicuity of rules. The rule
language separates decision knowledge from meta-knowledge such as control information, rule descriptions,
debugging instructions, and audit trail descriptions. An audit trail records inferential support in terms of
the rules and data that were used. Such trails are important for knowledge-based systems that must be
able to account for their results. They are also essential for guiding belief revision in programs that need
to reason with incomplete information.

10.1 Introduction

Production rules have been used in expert systerns to r presentdecision-making knowledge for many
kinds of problem-solving. Such rules (also called (tZzhen rules) speci& actions to be taken when certain
conditions are satisfied. Several rule languages (e.g.. OPS5 [ForgySIJ, ROSIE [Fain8lJ, AGE [Aiello8lJ)
have been developed in the past few years and used for building expert systems. The following sections
describe the concepts and Facilities for rule-oriented programming in Loops.

Loops has the following major ftatures for rule-oriented programming:

(1) Rules in Loops are organized into ordered sets of rules (called RuleSets) with specified control
structures for selecting and executing the rules. Like subroutines, RuleSets are building blocks for
organizing programs hierarchically.

(2) The work space for rules in Loops is an arbitrary Loops object The names ofthe instance variables
provide a name space for variables in the rules.

(3) Rule-oriented programming is integrated with object-oriented, data-oriented, and procedure-
oriented programming in Loops.

(4) RuleSets can be invoked in several ways: In the object-oriented paradigm, they can be invoked as
methods by sending messages to objects. In the data-oriented paradigm. they can be invoked as
a side-effect of fetching or storing data in active values. They can also be invoked directly from
LISP programs. This integration makes it convenient to use the other paradigms to organize the
interactions between RuleSets.

(5) RuleSets can also be invoked from rules either as predicates on the LHS of rules, or as actions on
the RHS of rules. This provides a way for RuleSets to control the execution of other RuleSets.
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~) I)ecision know ledge can he separated from control know ledge to enhance the perspicurt~of rules.
I he rule language separates decision knowledge from meta-knowledge such as control inrbrmation,
rule descriptions, debugging instructions, and Audit trail descriptions.

IS) ftc insocation or RuleScts can also be organized in terms of tasks, that can he executed, suspended.
and restarted. Idsing task primitises it is consenient to specif~man~sarieties of agenda-based
control mechanisms.

(9) ftc rule language provides a concise syntax for the most common operations.

(LO) l’here is a fast and efficient compiler for translating RuleSets into lnterlisp functions.

(11) 1 oops provides facilities for debugging rule-oriented programs.

(12) [‘he rule language is being extended to support concurrent processing.

The following sections are organized as follows: ‘l’his section outlines the basic concepts of rule-oriented
programming in I oops. It contains mans examples that illustrate techniques of rule-oriented programming.
[‘he next section describes the rule syntax. ftc next section discusses the facilities for creating. editing,
and debugging RuleSets in Loops.

10.2 Basic Concepts

Rules express the conditional execution of actions. They are important in programming because they can
capture the core of decision-making for many kinds of problem-solving. Rule-oriented programming in
Loops is intended for applications to expert and knowledge-based systems.

ftc following sections outline some of the main concepts of rule-oriented programming. Loops prosides
a special language for rules because of their central role, and because special facilities can he Associated
with rules that are impractical for procedural programming languages. For example. Loops can sase
specialized audit trails of rule execution. Audit trails are important in knowledge systems that need to
explain their conclusions in terms of the knowledge used in solving a problem. [‘his capahilit~is essential
in the deselopment of large knowledge-intensise s~stcrns.where a long and sustained eftort is required to
create and validate knowledge bases. Audit trails are also important for programs that do non-monotonic
reasoning. Such programs must work with incomplete information, and must he able to res ise their
conclusions in response to new information.
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10.3 Organizing a Rule-Oriented Program

In any.programming paradigm, it is important to have an organizational scheme for composing large
systems from smaller ones. Stated differently, it is important to have a method for partitioning large
programs into nearly-independent and manageably-sized pieces. In the procedure-oriented paradigm.
programs are decomposed into procedures. In the object-oriented paradigm, programs are decomposed
into objects. In the rule-oriented paradigm. programs are decomposed into RuleSets A Loops program
that uses more than one programming paradigm is factored across several of these dimensions.

RuleSet Name: CheckWashingMachine;
WorkSpace Class: WashingMachlne:
Control Structure: whilel
While Condition: ruleApplied;

(S What a consumer should do when a washing machine fails.)

IF .Operatlonal THEN (STOP T ‘Success ‘Working):

IF load>1.O THEN .ReduceLoad;

IF —pluggedlnTo THEN .Plugln;

C1} IF pluggedlnTo:voltageO THEN breaker.Reset;

(1) IF pluggedlnTo:voltage<11O THEN $PGE.Call:

{1} THEN dealer.RequestServlce;

(1} THEN manufacturer.Complain:

(1} THEN $ConsumerBoard.Complain;

(1) THEN (STOP T ‘Failed ‘Unfixable);

Figure 13. RuleSet ofconsumer instructions for testing a washing machine. The work space for
the RuleSet is a Loops object of the class WashlngMachine. The control structure Whilel
loops through the rules trying an escalating sequence of actions, starting again at the beginning
if some rule is applied. Some rules, called one-shot rules, are executed at most once. These
rules are indicated by the preceding one in braces.

There are three approaches to organizing the invocation of RuleSets in Loops:

Procedure-oriented Approach. This approach is analogous to the use of subroutines in procedure-oriented
programming. Programs are decomposed into RuleSets that call each other and return values when they
are finished. SubRuleSeis can be invoked from multiple places. They are used to simplify the expression
in rules of complex predicates. generators. and actions.
Object-oriented Approach. In this approach. RuleSets are installed as methods for objects. They are
invoked as methods when messages are sent to the objects. The method RuLeSets are viewed analogously
to other procedures that implement object message protocols. The value computed by the RuLeSet is
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rhese ipproaches for organizing RuleSets can be combined to control the intenctions between boaies of
decision-making knowledge expressed in rules.

10.4 Control Structures for Selecting Rules

RuleSets in Loops consist of an ordered list of rules and a control structure. rogether with the contents
of the rules and the data, a RuleSet control structure determines which rules are executed. Execution
is determined by the contents of rules in that the conditions of a rule must be satisfied for it to be
executed. Execution is also controlled by data in that different values in the data allow different rules to
be satisfied. Criteria for iteration and rule selection are specified by a RuleSet control structure. There
are two primitive control structures for RuleSets in Loops which operate as follows:

Do 1 [RuleSet Control Structure)
The first rule in the RuleSet whose conditions are satisfied is executed. The ‘value of
the RuleSet is the value of the rule. If no rule is executed, the RuleSet returns NIL.

The Do 1 control structure is useful for specifying a set of mutually exclusive actions,
since at most one rule in the RuleSet will be executed for a given invocation. When
a RuleSet contains rules for specific and general situations, the specific rules should
be placed before the general rules.

DoA1 1 [RuleSet Control Structure)
Starting at the beginning ofthe RuleSet, every rule is executed whose conditions are
satisfied. The value of the RuleSet is the value of the last rule executed. If no rule
is executed, the RuleSet returns NIL.

The DoA1 1 control structure is useful when a variable number of additibe actions are
to be carried out. depending on which conditions are satisfied. In a single in’vocation
of the RuleSet. all of the applicable rules are invoked.

figure 14 illustrates the use of a Dot control structure to specify three mutually exclusive actions.

RuleSet Name: SimulateWashingMachine:
WorkSpace Class: WashingMachlne:
Control Structure: Dot

(S Rules for controlling the wash cycle of a washing machine.)

IF controlSetting=’RegularFabric
THEN .Fill .Wash .Pause .SpinAndDrain

.SprayAndRinse .SpinAndDrain

.Fill .DeepRinse .Pause .DampDry:

c’6
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IF contro1Setting~ PerrnanentPress
THEN .Fill .Wash .Pause .SpinAndPartialDrain

Eu lCold .SpinAndPartialDrain
FiliCold ,Pause ,SpunAndDrain

.FillCold .DeepRinse .Pause .DarnpDry;

IF controlSetting= Del icateFabric
THEN ,Fill .Soakl .Agitate .Soak4 Agitate

Soaki .SpinAndDrain .SprayAndRinse
.SpinAndDrain Fill .DeepRinse .Pause .DarnpDry;

Figure 14. Rules to simulate the control of the wash cycle of a washing machine, [hese rules
illustrate the use of the Do 1 control structure to select one of three mutually exclusive actions.
These rules were abstracted from [Maytag~tor the ~Laytag A5 10 washing machine.

There are two control structures in Loops that specify iteration in the execution of a RuleSet. These
control structures use an explicit while-condition associated with the RuleSet. They are direct extensions
of the two primitive control structures above.

Wh ii e 1 [RuleSet Control Structurej
This is a cyclic version of Dol. If the while-condition is satistied, the l5rst rule
is executed whose conditions are satisfied. This is repeated as long as the while
condition is satisfied or until a Stop statement or transfer call is executed (see page
93). The value of the RuleSet is the value of the last rule that was executed, or NIL
if no rule was executed:

Wh ii eAl 1 [RuleSet Control Structurej
This is a cyclic version of D0A1 1. If the while-condition is satisfied, every rule
is executed whose conditions are satisfied. This is repeated as long as the while
condition is satisfied or until a Stop statement is executed. The value of the RuleSet
is the value of the last rule that was executed, or N I L if no rule was executed.

The “while-condition” is specified in terms of the variables and constants accessible from the RuleSet.
The constant T can he used to specify a RuleSet that iterates forever (or until a Stop statement or transfer
is executed). The special variable ruleAppi ied is used to specify a RuleSet that continues as long as
some rule was executed in the last iteration. tigure 15 illustrates a simple use of the Wh i 1 eAl 1 control
structure to specify a sensing/acting feedback loop for controlling the filling of a washing machine tub
with water.

RuleSet Name: FillTub;
WorkSpace Class: WashingMachine;
Control Structure: WhileAll
Temp Vars: waterLimit:
While Cond: T;

(* Rules for controlling the filling of a washing machine
tub with water.

(1!} IF loadSetting=Small THEN waterLimit~-1U;
(1!} IF loadSetting~’Medium [HEN waterLimit~-13,5:
(1!} IF loadSetting=’Large THEN waterLimut~-17;
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(I!) IF ioadSetting=’ExtraLarge THEN waterLimit~2O;

(~ Respond to a change of temperature setting at any time.)

IF temperatureSetting=’Hot
THEN HotWaterValve.Open ColdWaterValve.Close:

IF temperatureSett i ng= ‘Warm
THEN HotWaterValve.Open ColdWaterValve.Open:

IF temperatureSetting=’Cold
THEN ColdWaterValve.Open HotWaterValve.Close:

(* Stop when the water reaches its limit.)

IF waterLevelSensor.Test >= waterLimit
THEN HotWaterValve.Close ColdWaterValve.Close

(StopT ‘Done ‘Filled);

Figure 15. Rules to simulate filling the tub in a washing machine with water. These rules
illustrate the use of the Wh i 1 eA 11 control structure to specify an infinite sense-act loop that
is terminated by a Stop statement. These rules were abstracted from [MayTag1.

10.5 One-Shot Rules

One of the design objectives of Loops is to clarify the rules by factoring out control information whenever
possible. This objective is met in part by the declaration of a control structure thr RuleSets.

Another important case arises in cyclic control structures which some of the rules should he executed only
once. This was illustrated in the WashingMachine example in figure 13 where we wanted co prevent the
RuleSet from going into an infinite loop ~ofresetting the breaker, when there was a short circuit in the
Washing Machine. Such rules are also Lisetl.il for initializing data for RuleSets as in the example in figure
15.

In the absence of special syntax, it would be possible to encode the information thdt a rule is to he
executed only once as follows:

Control Structure: Whilel
Temporary Vars: triedRule3:

IF ~-triedRule3condition1 condition2 THEN triedRule3~-Taction1

In this example. the variable tn edRul e3 is used to control the rule so that it will he executed at most
once in an invocation of a RuleSet. However, the prolific use of rules with such control clauses in large
systems has led to the common complaint that control clauses in rule languages defeat the expressiveness
and conciseness of the rules. For the case aho~e.I oops provides a shorthand notation as fbllows:

~I} IF condition1 condition9 THEN action1:

The brace notation means exactiv the same thing in the example above. but it more concisely and clearly

68



I’HL I COPS \1 \\[

~ndicatc~tnat Ce 1iae executes onL once. I he~e rc~n’e caflcd ne ~hot’ r ~cxccutc-nncc‘ r iles,

I a ~or~ecives, it iv desii’cd not end thet rule he ~xecL1teda movt )nce, hut Cat it he tevted it most
once. Ibis corresponds to the tdllow mc:

Control Structure: Whilel
Temporary Vans: tniedRule3:

IF -.tniedRule3 tniedRule3~-T condition1 condition9 THEN action1

[n rhis case, the rule will not he tried more than once e~enif some of the conditions Idil the first time

that it is tested. ftc I oops shorthand for these rules (pronounced “one shot hang”) is
(1 !} IF condition1 condition2 THEN actioni:

These rules are called “try-once’ rules.

ftc two kinds of one-shot rules are our first examples of the use of meta-descriptions preceding the rule
body in braces. See page 80 for information on using meta-descriptions for describing the creation of
audit trails.

10.6 Task-Based Control for RuleSets

~ * Tasks are Not Fully Implemented Yet * ~

Flexible control of reasoning is generally recognized as critical to the success of recent problem-solving
programs. Fxamples of flexible control are:

(1) In planning and design tasks, it is important to generate multiple alternatives. Ehese alternatives
may he carried to different degrees of completion, depending on success, resource limitations,
and inthrmation gained during a problem-solving process. En some cases, an alternative may he
temporarily set aside, only to he revived later in light of new information.

(2) In analysis tasks, it is important to pursue multiple hypotheses in parallel. As evidence and
conclusions accumulate, some hypotheses may he abandoned hut revived later.

(3) Search and discovery tasks can be organizcd as opportunistic best-first searches. At each step only
the most promising avenues are purstied. \s some avenues fail to work out and new intbrmation
accumulates, the other avenues can he re-evaluated and sometimes raised in priorit~.

these examples require the ability (1) to suspend parts of a computation with the possibility of restarting
them later. and (2) to reason about the control of computational resources.

1 oops provides a set of language features to support these capabilities, based on the representation of the
execution or a RuleSet as a Task. \ Cask is i Loops object ~ith mtich the same structure as an item in
an agenda (see figure 16). It represents the ITuleSet being invoked, the data on s~hich it is operating, and
the status of its execution.
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RepairTask5:

ruleNumber: NIL doc ( Number of the next rule to be executed.
Used for doNext and cycleNext.)

rs: #SRepa I rwash i ngMach i ne
doc (S RuleSet that was invoked.)

self: #&(FixitJob “uidl”)
doc (S work space given to the RuleSet.)

value: #&(MotorBrushes “uid2”)
doc (S value returned by the RuleSet)

status: Suspended
doc (5 Execution status. Examples: Started.

Done, Aborted, Suspended.)
reason: TooExpens ive

doc (5 Reason for the status. Examples: Success,
NoSpace, Blocked)

caller: fl(RuleSet “uid3”)
doc (5 Caller of the RuleSet.)

priority: 300

Figure 16. An example of a Task object. This Task could have been created for an invocation
of the RuleSet in figure..17. TheTask records the RuleSet. its data. and its execution status. The
instance variable ruleNumber is used only for the control structures DoNext and CycleNext
as described in the next section. The instance variable priority was created in response to the
Task Vats declaration in the RuleSet.

figure 17 illustrates a RuleSet for a cask that can be suspended. This RuleSet represents part of the
behavior of a washing machine repair man. The repair cask may be suspended after it has started on a
particular Fix i tJob object if the failure is not diagnosed or is coo expensive.

RuleSet Name: RepairwashingMachine;
WorkSpace Class: FlxitJob;
Compiler Options: S ; (5 5 for Task Stepping.)
Control Structure: doAll
Task Vars: priority;

(5 Rules for washing machine repair.)

(1} priority’-300;

(1} IF —(replacementPartMnotor.FindBrokenPart)

THEN (STOP T ‘Suspended ‘Nooiagnosis);

IF replacementPart.Availability=’NotlnTruck h&rsLimit < I

THEN (STOP badPart ‘Suspended ‘UnavailablePart);

IF replacementPart:cost > dollarLimit

THEN (STOP badPart ‘Suspended ‘TooExpensive);

S —
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rigure ft illustrates a RuleSet tbr controbina nispendahie tasks. [his RuleSet represents part or the
behaxior ot the owner of a washing machine repair business, [his RuleSet may restart mv suspended
task by the repairman RuleSet after gettine more in tormati n about the customer.

RuleSet Name: RePlanRepairWork;
WorkSpace Class: JobSchedule;
Control Structure: cycleAll
RuleVars: currentTask customer substitutePart;

(* Sample Rules -— part of the behavior of a manager of a
Washing Machine repair business.)

IF currentlask:status=Success
THEN (STOP T Done Success);

IF currentTask:reason=~UnavailablePart
substitutePart~-expert.AskForSubstitutePart

THEN currentlask: self: repi acementPart~-substi tutePart
(Start currentlask);

IF customer:category= VIP
currentTask:reason=’TooExpensive

THEN currentTask:sel f:dollarLimit ~ VIP:dol larLimit
currentTask:priority ~- 100
(Start currentfask);

Figure ft. Control of [asks. [his RuleSet characterizes part of the beha~iorof the manager or
a washing machine repair business, When a repair task fails, the manager RuleSet may change
some resource limits and start the repair task going again (e.g., if the customer is a VIP).

I oops has facilities for creating [ask objects. starting and waiting for tasks, stepping and suspending
‘l’asks. [ask ~ariables are used for saving state information. Distinct [asks can refer to distinct invocations
of the same kuleSet in different states of execution. [he language features supporting [asks are described
later.

10.7 (‘ontro~Structures for Generators

Since [asks represent suspended processes with local state, it is natural to use them for describing
generators. For the concise specification of generators, two additional control structures have been
pros ided in I oops. [o use these control structures, a [isk is first created that issociates a RuleSet and a
work space. lhe [ask is then incoked repeatedk. \t each ins ocation at most one rule is ictisated and
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rotisfied, [he value of the Ruie~etis the v dtie of the evecuted rule, ro N IL if no
rule vs as exec’ itch. \her the i~trule of the RuleSet has been tried, the Task a ill
always return NIL.

Ibis control structure is convenient tor sped rug a generator or a limited number
of items. \t each invocation, the remaining rules ire tried until the aest tern is
generated, I he cencrator returns N IL aher ill of the rules have been tr~cd.

Wh 1 eNext [RuleSet Control Structure]
At each invocation of the Task. the generator first checks whether the while condition
of the RuleSet is satisfied. If yes, then the next rule is executed ahose conditions
are satisfied, Ihe rules can he visualized as forming a circle, so that after the last
rule of the RuleSet has been tried, the generator goes back to the beginning. During
a single invocation, no rule is tried more than once and the while-condition is tested
only once at the beginning of the Step. The value of the RuleSet is the value of the
last rule executed or N IL if no rule was executed.

T’his control structure is cons enient for specifying a generator that repeats itself
periodically, and which has an extra condition that is factored from all of the rules.

If a RuleSet with one of these control structures is invoked directly (instead of through a Cask), its
behavior is equivalent to that of a Do I control structure. -

The variable ru 1 eApp 1 led, which can he used in the while-condition of Wh lie 1 and Wh ii eAl 1 control
structures. is not meaningful with the Wh ii eF’lext control structure since it most one rule is applied in
a given invocation.

10.8 Saving an ~udit Trail of Rule Invocation

A basic property of knowledge-based s~sternsis that thrn use knowledge to infer new facts from older
ones. (Here we use the word “facts” as a neutral term, meaning any information derived or given, that is
used by a reasoning system.) Over the past few years, it has become evident that reasoning systems need
to keep track not only of their conclusions, hut also of their reasoning steps. Consequently, the design
of such systems has become an active research area in \I. The atidit trail facilities of Loops stipport
experimentation with systems that can not only use rules to make inferences, hut also keep records of the
inferential process itself.

10.8.1 ~1otivations and \pplications

De/rogg/ng. In roost expert system~. knowledge bases are developed over time and are the major
investment. [his places a premium on the use of tools and methods for identifying md correctine hugs
in knowledge bases. Fly connecting a system’s conclusions with the knowledge that it uses to derive them,
audit trails can provide a substantial debugging aid. .\udit trails provide a focused means of identify ing
potentially errorful knowledge in a problem solving context.



I 1FF I OOPS \1 Cht ~l.

/ ~ mm ~ nv”: f.t v. Hxnert - ~tLrns oe ~ften ‘Il~LnGek ‘~ruse hr people other th~intheir creatota. or
en ‘in of people ‘oto me heir know ‘edge. \u ~moor’tnt a’ nsider vtion in ~Iid~~tingexpert imsems

‘a .t LusoniflO snouT ~e ramp tr od that is, that i a stem shouT he TIe ‘a atv e in iceotint of its
‘C .i ~n’ra m ross. a’ .ch~ ihr dci .m I as ire ~o~nmimesro’led ‘vp~’an,af100 vvyien’y and she vreation

pv vverful explanaLion s:~stemsis an ictive research area in .\ I and cognitive science. i’he audit trail
~oechanhrn provides an essential computational prereouisite for building such systems.

/le!/~f’Rm’iszon ,\nother active research area is the development of systems that can “change their minds”.
I his characteristic is critical for systems that must reason trom incomplete or errorfuil information. Such
~stems get leverage from their ahilifr to make vssLimptions. md then to recover from had assumptions
‘i’~ cthc~entlr reorganlzing their beliefs as new nforrnation is obtained. Research in this area ranges
tram work on non-rn000tonic iogics. to a variety of approaches to belief revision. [he fbcilides in the
rule language make it convenient to use a user-defined calculus of belief revision, at whatever level of
abstraction is appropriate for an application.

10.8.2 Overview of Audit Trail Implementation

When audit mode is specified for a RuleSet. the compilation of assignment statements on the right-hand
sides of rules is altered so that audit records are created as a side-effect of the assignment of values to
instance variables. \udit records are Loops objects. whose class is specified in RuleSet declarations. I’he
audit records are connected with associated instance variables through the value of the reason properties
of the variables.

Audit descriptions can be associated with a RuleSet as a whole. or with specific rules. Rule-specific
audit information is specified in a property-list format in the meta-description associated with a rule. For
example, this can include certainty ITzctor information, categories of inference, or categories of support.
Rule-specific information overrides RuleSet information.

During rule execution in audit mode, the audit information is evaluated after the rule’s I.HS has been
satisfied and before the rule’s RI-IS is applied. For each rule applied, a single audit record is created
and then the audit information from the property list in the rule’s meta-description is put into the
corresponding instance variables of the audit record. I’he audit record is then linked to each of the
instance variables that have been set on the RI-IS of the rule by way of the reason properfr of the
instance variable.

\dditional computations can be triggered by associating active values with either the audit record class
or with the instance variables. For example. active values can be specified in the audit record classes in
order to define a uniform set of side-effects for rules of the same category. In the following example.
such an active value is used to carry out a “certainty factor” calculation.

10.8.3 ~n Example of Lsing kudit i’rails

The following example illustrates one war to use the audit trail facilitier. figure IT illustrates a RuleSet
a hich is intended to capture the decisions bar cv aluating the potential purchase of a washing machine. As
‘vith my purchasing situation, this one includes the difficulR of incomplete information about the product.
Che meta-descriptions for the rules categorize them in terms of the basis of he!/eJ’(fact or estimate) and a
L’rIallitm Jactor that is supposed to measure the “implication power” of the rule, (Realistic belief rev i5iOfl

systems ire usually more sophisticated than this example.)



An Example or Using Audit Trails

RuleSet Name: EvaluateWashingMachine;
Workspace Class: EvaluationReport;
Control Structure: doAll
Audit Class: CfAuditRecord
Compiler Options: A:

(S Rules for evaluatinó a potential washing machine for a purchase.)

((basis4-’Fact cf’-l)}
IF buyer:familySize>2 machine:capacity<20
THEN suitability’-’Poor;

((basisi-’Fact cf4-.8)} . —
reliabil1ty~-(’-SConsumerReports GetFacts machine);

C(basis~’Estlmatecf4-.4)}
IF —reliability THEN reliability..5;

Figure 19. RuleSet for evaluating a washing machine tbr purchase. Like many kinds of
problems. a purchase problem requires making decisions in the absence ofcomplete information.
For example. in this RuleSet the reliability of the washing machine is estimated to be .5 in
the absence of specific intbrmation from Consume rReports. The meta-description in braces
in front of each nile characterizes the rule in terms of a cf (certainty Ihctor) and a basis
(basis of belief). Within the braces. the variable on the left of the assignment statement is
always interpreted asmeaning a variable in the audit record, and the variabLes on the right are
always interpreted as variables accessible within the RuleSet. This makes it straightforward to
experiment with user-defined audit trails and experimental methods of beliefrevision.

The result of running the RuleSet is an evaluation report for each candidate machine. Since the RuleSet
was run in audit mode, each entry in the evaluation report is tagged with a reason that points to an audit
record. figure 20 illustrates the evaluation report for one machine and one of its audit records.

EvaluationReport “uidl”
expense: 510
suitability: Poor cc 1 reason
reliability: .5 cc .6 reason “uid2”

AuditRec “uid2”
rule: “uid3”
basis: Estimate;
ct: #(.4 NIL PutCumulativeCertainty)

Figure 20. Example of an audit trail. The object for the expense report was prepared by the
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[he result of running the RuleSet is in evaluation report for each candidate machine. [he meta-
descriptions for bas I s and c f are saved directly in the audit record. I he ver!alnfm ‘dczor calculation in
this combines information from the mudit description with other information already associated with the
object. [o do this. the cf description triggers an active value inherited by the audit record from its class.
[his active value computes a cumulative certainty in the evaluation report. (Other variations on this idea
would include certainty information descriptive of the premises of the rule.)

10.9 Comparison with other Rule languages

This section considers the rationale behind the design of the l.oops rule language, focusing on wars that
it diverges from other rule languages. In general, this divergence was driven by the following observation:

[Vhen a rule is heavy with control intbrmation, // obscures the domain knowledge that time rule is ~ntendeJ
to con vev.

Rules are harder to create, understand, and modify when they contain too much control information.
This observation led us to find ways to factor control information out of the rules.

10.9.1 The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the loops rule Iangtiage is the factored syntax for
meta-descriptions, which provides information about the rules themselves. Fraditional rule languages only
factor rules into conditions on the left hand side ([I-IS) and actions on the right hand side (RI—IS), without
general provisions for meta-descriptions.

Decision knowledge expressed in rules is most perspicuous when it is not mixed with other kinds
knowledge. such as control knowledge. For example, the following rule:

IF —triedRule4 pluggedlnlo: vol tage=O
THEN triedRu1e4~-T breaker.Reset:

is more ohscure than the corresponding one-shot nile from figure 13’

~1} IF pluggedlnTo:voltage=O THEN breaker.Reset;

which factors the control information (that the rule is to he applied at most once) from the domain
knowledge (about voltages and breakers). In the I oops rule language, a meta-description (Mi)) is
specified in braces in front of the l.HS of a rule. For another example. the following rule from figure [9:

f(hasis~’ Fact cf~.8)}

C
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tF buyer:familySize>2 ~nachii-ie:capacitye2O
fHEN suitabi1ity~’Poor:

uses an \l.[) to indicate that the rule h.as a parucuIar cf I “ee.rtaintv factor’’i and b as I s cate’eor for
belief support. The MD in [1515 example factars the deSL ~ptior~of the inference cateeoro of the rule trom
the action know-ledge in the rule.

In a large knowledge-based s stem, a substantial amount of control information must be specmhed in order
to precltide combinatorial explosions. Since earlier rule languages fail to provide a means for factoring
meta-information, they must either mix it with the domain knowledge or express it outside the rule
language. In the first option, perspecuity is degraded. In the second option. the transparency of the
system is degraded hecause the knowledge is bidden.

10.9.2 The Rationale for RuleSet Flierarchv

Some advocates of production systems have praised the flatness of traditional production systems, and
have resisted the imposition of any organization to the rules. ‘[he Hat organization is sometimes touted as
making it easy to add rules. The argument is that other organizations diminish the power of pattern-directed
invocation and make it more complicated to add a n.ile.

In designing Loops. we have tended to discount these arguments. We observe that there is no inherent
property of pro~Iuctionsystems that can make rules additive, Rather. add/tim/it’ is a consequence 01 the
independence of particular sets of rules. Such independence is seldom achieved in large sets of rules.
When rules are dependent. rule invocation needs to he carefully ordered.

:\dvocates of a fiat organization tend to organize large programs as a single very large production system.
In practice. most builders of production systems have found it essential to create groups of rules,

Grouping of rules in flat systems can he achieved in part by using context clauses in the rules. Context
clauses are clauses inserted into the rules which are used to alter the flow of control hr naming the context
explicitly. Rules in the same context all contain an extra clause in their conditions that compares the
context of the rules with a current context. Other rules redirect control by switching the ctirrent context.
Unfortunately, this approach does not conveniently lend itself to the reuse of groups of rules by’ different
parts of a program Although context clauses admit the creation of “subroutine contexts”, they require
a user to explicitly program a stack of return locations in cases where contexts are invoked from more
than one place. The decision to rise an implicit calling-stack for RuleSet invocation in Loops is another
example of the our desire to simplify the rules by factoring out control information.

10.9.3 The Rationale for RuleSet Contro’ Structures

Production languages are sometimes described as having a recogni:e-act cv’cle. which specifies how rules
are selected for execution. .-\n important part of this cycle is the conflict resolution strategy, which specifies
how’ to choose a production rule when several rules have conditions that are satisfied. For example. the
OP S5 production language [Forgy8 11 has a conflict resolution strategy (ME A) which prevents rules from
being invoked more than once. prioritizes rtiles according to the recence of a change to the data. and
gives preference to production rules with the most specific conditions.

In designing the rule language for loops, we have favored the use of a small number of specialiied
control structtires to the rise of a single complex conflict resolution strategx. In so doing. ‘.rc have dravvn
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[he speciahied control structrires ire ~ntendeu tar c ~nciseI~representing pr coors .v itO Ji~ldreut cm~nvr I
relationships among rise rules. For example, the Dod 1 1 control structure is useful for rules a hose hects
are intended to he tdditiv e and the Do I control ~tr icrure 5 approprmare tar specirr inc mutuailr exciusi’~e
actions. Without some kind of iterative control ~rructrire that allows rules to he executed more than once,
it would he impossible to write a simulation program such ~sthe washing machine smmuiation in herire
13.

We have resisted a reductionist argument for having only one control structure fur all programming. For
example. it could he argued that the control structtire Do 1 is nut strictly necessary because my RuieSet
that rises Dol could he rewritten using DoA1 1. I-or example, the rules

Control Structure: Dol;

IF a1 b1 c1 THEN d1 ej;
IF ag b2 c2 THEN d2 e2
IF ag b3 c3 THEN d3 eg;

could he written alternatively as

Control Structure: D0A11;

Task Vars: firedSomeRule;
IF a1 b1 c1 THEN firedSomeRule~-T d1 e7IF .—firedSomeRule a2 b2 C9 THEN firedSomeRule~-T dg eg;
IF —firedSomeRule ag b3 c3 THEN firedSomeRu1e4-T d3 e3

However, the Do I control structure admits a much more concise expression of mutually exclusive actions.
In the example above, the Do 1 control structure makes it possible to abbreviate the rule conditions to
reflect the assumption that earlier rules in the RuleSet were not satisfied.

For some particular sets of rules the conditions are nattmrallv mutually exclusive. Even for these rules
Do 1 can yield additional conciseness. For example, the rules:

Control Structure: Dol;

IF a1 b1 c1 THEN d1 e1IF ~—a1 b1 c1 THEN d2 e2
IF —a1 --b1 ~ THEN d3 e3

can he written as

Control Structure: Dol;

IF a1 b1 c1 THEN d1 e1IF b1 c~THEN d9 e9;
IF ~ THEN d3 e3

Similarly it could he argued that the Do I and Dod 11 control structures are not strictly necessary hecarise
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RrileSets in I,oops are integrated with procedrire-oriented, abject-oriented. a id data-i rienred procr~unmIng
paradigms. In contrast to singlc-paradiem rule sy stems, this integration has tyro maior acne/its, It
thcilitates the consmructmon of programs which don’t entirely fit the rule-onenred paradigm. Rule-oriented
erogramming can he rised selectively for representine dust the ippropriate ‘decision-making know Iedce in
a large program. Inregr muon also makes it convenient to use the i ‘riser pro mdigms ~o help oreaniie the
interactions between RuleSets.

Using the object-oriented paradigm, krileSets can he invoked as methods for Loops objects. figure 21
illustrates the installation of the RuleSet Si mu] ateWas h I ngMach I neRul os tr) carry omit the S imu 1 ate
method for instances of the class Wash I ngMach (no. l’he use of ohject’oriented paradigm is facilitated
by special RuleSet syntax for sending messages to objects. and for manipulating the data in Loops objects.
In addition, RuleSets. work spaces. and tasks are implemented as I oops objects.

[DEFCL.ASS WashingMachine
(MetaClass Class Edited (~‘ ‘mjs: 25—Nov--82 16:42”)

doc (* Home appliance for washing clothes.))
(Supers ElectricalDev ice PlumbedDevice CleaningDovice)
(ClassVariables)
(InstanceVariables

(controlSetting Medium
doe (* One of Small, Medium, Large, ExtraLarge)) .

(Methods
(Fill Wash I ngMach Inc. Fill dec (* Fill the tub with water.))
(Wash WashingMachine.Wash doc (* Perform the wash cycle.))
(Simulate UseRuleSet RuleSet SimulateWashingMachineRules)

Figure 21. Fxample of rising a RuleSet as a method for object-oriented invocation. l’his
definition of the class Wash I ngMach inc specifies that l.isp functions are to he invoked for
Fill and Wash messages. For example. the Lisp function WashingMachine.Fill is to
he applied when a Fill message is received. When a S imu 1 ate message is received, the
RrileSet SimulateWashingMachineRules is to he invokedvrith the washing machine as its
work space. Simulate messages to invoke the RrileSet ma~he sent h~an~Loops program.
including other RrileSets.

L’sing the data-oriented paradigm, RuleSets can he installed in active valries ro that they roe triggered ~y

side-effect when I oops programs get or prim data in objects. For example:

(DEFINST WashingMachine (StefiksMaytagwasher “uid2”)
(controlSetting Regul arFabric)
(loadSetting #(Medium NIL RSPut) RSPutFn CheckOverLoadRules)
(waterkevelSensor “uid3”)

11
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ILl Rule Forms

A rule in Loops describes actions to be taken when specified conditions are satisfied. :~rule has three
major parts called the left hand side (LHS) for describing the conditions, the right hand side (RHS) for
describing the actions, and the sneta-description (MD) for describing the. rule itselt’ In the simplest case
without a meta-desèription. there are two equivalent syntactic forms:

LHS -2 RHS;

IF LHS THEN RHS;

The If and Then tokens are recognized in several combinations of upper and lower case letters. The
syntax for LHSs and RHSs is given below. En addition, a rule can have no conditions (meaning always
pertbrm the actions) as follows:

-> RHS;

if T then RHS:

Rules can be preceded by a meta-dèscription in braces as in:

CMD} LHS -> RHS;

{MD} If LEES Then Rh’S;

(MD} Rh’S;

Examples of mew-information include rule-specific control information, rule descriptions, audit instruc-
tions. and debugging instructions. For example. the syntax for one-shot rules shown on page 68:

(1} IF condition1 condition2 THEN action1
is an example of a meta-description. Another example is the use of meta-assignment statements tbr
describing audit trails and rules. These statements are discussed on page 89.

LEES Syntax: The clauses on the LHS of a rule are evaluated in order from left to right to determine
whether the LEtS is satisfied. If they are all satisfied, then the rule is satisfied. For example:

A B C+0 (Prime 0) -> Rh’S;

In this rule, there are four clauses on the LEtS. If the values of some of the clauses are NIL during
evaluation, the remaining clauses are not evaluated. For example. if A is non-NIL but B is NIL, then the
LEtS is not satisfied and C+0 will not be evaluated.

Rh’S Syntax: The RHS of a rule consists of actions to he performed if the LEtS of the rule is satisfied.
These actions are evaluated in order from left to right Actions can be the invocation of RuleSets. the
sending of Loops messages. lnterlisp function calls, variables, or special termination actions.

RuleSets always return a value. The value returned by a RuleSet is the value of the last rule that was

SO
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(~This is a comment)

II 2 Kinds of Variables

Loops distinguishes the thilowing kinds of variables:

RuleSet arguments: All RuleSets have the variable self as their workspace. References to self can
often be elided in the RuleSet s~ntax. For example. the expression se 1 f . Pr i n t means to send a Pr I n t
message to self. This expression can he shortened to . Print . Other arguments can he defined for
RuleSets. These are declared in an Args: declaration.

Instance variables: All RuleSets tise a Loops object for their workSpace. In the LI-IS and RI-IS of a
rule, the first interpretation tried for an undeclared literal is vs an instance variable in the work space.
Instance variables can be indicated unambiguously oy preceding them with a colon, (e.5., : variVame or
obj: varNarne).

Class variables: Literals can he used to refer to class variables of Loops objects. [hese variables must he
preceded by a double colon in the rule language, (e.g., class VarName or obj: class VarName).

Temporwy variables: Literals can also be used to refer to temporary variables allocated for a specific
invocation of a RuleSet. fhese variables are initialized to NIL when a RuleSet is invoked. Femporary
variables are declared in the Temporary Vars declaration in a RuleSet.

Task variables: [not implemented yet.~ [ask variables are used for saving information state information
related to particular invocations of RuleSets. Unlike temporary variables which are reset to N IL at the
beginning of RuleSet execution, Task variables are associated with Task objects and keep their values
indefinitely. Task variables are used to hold information about a computational process, such as indices
for generator fasks. Task variables are declared indirectly — they are the instance variables of the class
declared as the Task Class of the RuleSet.

Audit record variables: Literals can also he used to refer to instance variables of audit records created by
rules. These literals are used only in inc la-assignment statements in the MD part of a rule. 1hey are used
to describe the information saved in audit records, which can be created as a side-effect of rule execution.
fhese variables are ignored if a RuleSet is not compiled in audit mode. Undeclared variables appearing
on the left side of assignment statements in the ‘Al) part of s rule are treated as audit record variables
by default. [hese variables are declared indirectly -~they are the instance variables of the class declared
as the Audit Class of the RuleSet.

Rule variables: [Not implemented yet.) Literals can also he used to hold descriptions of the rules themselves.
These variables ire used only in mela-assignmenl statements in the MD part of v rule. [hex’ describe
information to he saved in the rule objects. which are created as a side-effect of RuleSet compilation.
Rule variables are declared indirectly they are the instance variables in the Rule Class declaration.

/nterlisp ;ariables: I :terals can also he used to refer to Enterlisp variables dtiring the invocation of
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self IViriablel
l’he current work space.

rs [Siriable)
ftc curn.nt RuleSet.

task [Variable)
the fask representing ~hecurrent irnocation of this RuleSet.

caller [Variablel
the RuleSet that insoked the current RuleSet, or NIL if invoked otherwise.

ruleAppl led [Variable)
Set to T if some rule was applied in this cycle. (Fer use only in while-conditions).

the following resened words ire intended mainly for use in creating tudit trails:

ruleObject [Sariable)
Variable bound to the object representing the rule itself:

ruleNumber - [Variable)
Variable hound to the sequence number of the rule in a RulcSet.

ruleLabel [Variable)
Variable hound to the label of a rule or NIL.

reasons [Variable)
S ariable bound a list of audit records supporting the instance bariables mentioned
on the LEtS of the rule. (Computed at run time.)

auditObject [Variable)
Variable bound to the object to which the reason record will be attached. (Computed
at run time.)

audI tVarName [Variable)
Variable bound to the name of the variable on which the reason will be attached as
a property.

Other 1.iteralr As described later. literals can also refer to lnterlisp functions, I oops objects. and message
‘,electors. l’hey can also be used in strings and quoted constants.

ftc detennination of the meaning of a literal is done at compile time using the declarations and syntax
of RuleSets. l’he characters used in literals are limited to alphabetic characters and numbers. l’he first
chancter of s literal must be alphabetic.

the syntax of literals also includes a compact notation fur sending unary messages md for accessing
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~aoteJ I ~nsia~av:I’ve quote si~n s used ~ ~aflstant iterals:

a b=3 c=open d=f e=’(This is a quoted expression) —>

In this example. the I KS is ~ausfed if a is un d it nO ive alue uf h is 3,. md the value vf c s exactly
the itom open, the value of d is the same us the mine at f mud [he value of e is the list ( Th I s i s a
quoted expression).

.Mrings: ftc double quote sign is used to indicate string constants:

IF a b=3 c=’open d=f e~”This is a string’
THEN (WRITE ‘Begin configuration task’)

In this example, the LI-IS is satisfied if a is non-NIL, and the value of b is 3, and the value of c is
exactly the atom open. the value of d is the same as the value of f, and the value of e equal to the
string ‘This is a string.

Inierlisp Constants: The literals T and N I L are interpreted as the lnteriisp constants of the same name.

a (Foo x NIL b) ~> x~T . . .

In this example, the function Foo is called with the arguments x, N IL. and b. [hen the variable x is set

to T.

11.4 Infix Operators and Brackets

I-n enhance the readability of rules, a few infix operators are proxided. [he following arc infix binary
operators in the rule syntax:

+ [Rule Enfix Operator]
Addition.

++ [Rule Infix Operator]

Addition modulo 4,

-. [Rule Enfix Operator]
Subtraction.

-. [Rule Infix Operator]
Subtraction modulo 4.

* [Rule Infix Operator]
Multiplication.
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/ [Rule Infix Operator)
l)ivision.

[Rule Infix Operator)
Greater than.

[Rule Infix Operator)
Less than.

= [Rule Infix Operator).
Greater than or equal.

[Rule Infix Operator)
Less than or equal

[Rule Infix Operator)
EQ — simple form ofequals. Works for atoms, objects. and small integers.

[Rule Infix Operator)

NEQ. (Not EQ.)
== [Rule Infix Operator)

EQUAL — long form of equals.
[Rule Infix Operator)

Membeçofa List. (FMEMS)

In addition, the rule syntax provides two unary operators as follows:
- [Rule Unary Operator)

Minus.
- [Rule Unary Operator)

Not.
The precedence of operators in rule syntax follows the usual convention of programming languages. For
example

1+53 = 16
and

[3 < 2 + 4) = T

Brackets can be used to control the order of evaluation:
[j+5]*3 = 18
Ambiguity ofthe minus sign: Whenever there is an ambiguity about the interpretation of a minus sign as
a unary or binary operator, the rule syntax interprets it as a binary minus. For example

a-b c d -e [-f] (g -h) (‘- $Foo Move -j) ->

En this example. the first and second minus signs are both treated as binary subtraction statements. That
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~t three C mv.~es ire Ii) a—h. (3; c mud 0; d—e. hecatise the rule sv nt ix aliovvs arhitars spacing
s mhals mud here ‘s no s~max LO separate clauses on the I KS or a nile. the nterpretation of

~ ,~ arele CIdL~C( ha the ~uhtrict:~’n) ‘n~tead0’ eva cid~ues l ‘hrce the intemmretation
m~ns ~er~mvr, one must :se ~r~c~ets is illustr ited n ‘he next c;ause. n Os clause, the

‘i~ m~ sign n rhe chose [— F 3 is treated is a Lmnary minus hecause of the brackets. [he minus sign in
he ‘C nction call (g — h 15 treateu is unart Ocause ‘here is no precedmne areument. S imilarlv, the —3

va ness~meexpression is treated as unarv because there is no preceding argument.

11.5 Enterlisp Functions and Message Sending

Calls to Interiisp Functions are parenthesized with the function name as the first literal after the left
parenthesis. Each expression after the function name is treated as an argument to the function. For
example:

a (Prime b) [a —b] -0 c (Display b c+4 (Cursor x y) 2)

In this example. Pr ime, D I s p 1 ay, and Cursor are interpreted as the names of Interlisp functions. Since
the expression [a —b] is surrounded by brackets instead of parentheses, it is recognized as meaning a
minus b as opposed to a call to the function a with the argument minus b. In the example above, the call
to the Interlisp function Display has four arguments: b, c+4. the value of the function call (Cursor
x y), and 2.
[he use of Interlisp functions is usually outside the spirit of the rule language. However, it enables the

misc of Boolean expressions on the I KS he~ondsimple conjunctions. For example:

a (OR (NOT b) x y) z ->

/ oops Objects and 1[essage Sending: Loops classes and other named objects can he referenced by using

the dollar notation. [he sending of Loops messages is indicated by tising a left arrow. For example:

IF cell~-(~-~LowCell Occupied? Heavy)

THEN (~- cell Move 3 ‘North);

En the LHS, an Occupied? message is sent to the object named LowCell. In the message expression
on the RHS. there is no dollar sign preceding cell. Hence, the message is sent to the object that is the
value of the variable cell.

For unary messages (i.e., messages with only the selector specified and the implicit argtiment self), a
more compact notation is available as described selow.

(nary l[essage Sending: When a period is used as the separator in a compound literal, it indicates that a
onary message is to he sent to an object. (We will altemnatixely refer to a period as a dot.) For example:

tile.Type=’BlueGreenCross command.Type=’Slide4 ->

In this example, the object to receive the unary message Type is referenced indirectly through the t I 1 e
instance variable in the work space. l’he left literal is the variable t ii e and its salue must he a I naps
object at execution time. I’he right literal must he a method selector for that object.

I he dot notation can he combined with the dollar notation to send unary messages to named I naps
objects. Far example.
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LTih.Type=’BlueGreenCross
~ nampie a unars lype m’ssae s ~crt C) 112 loops ‘nect ~ ose nam~’is Tile.

Ehe uot notation :an lisa Di. z~.eda senc i .re’~sa-.2to thc *or¼sp ice f he RSSvt, that is se 1 r.
1-c r example. the ruLe
IF scale>7 THEN .DisplayLarge;

would cause a DisplayLarge message to be salt to self. Ibis san ihhreviation for

IF scale>7 THEN self.DisplayLarge;

11.6 Variables and Properties

When a single colon is used in a literal, it indicates access to an instance variable of an object. For
example:

tile:type=’BlueGreenCross command:type=Sllde4 ->

In this example, access to the l.oops object is indirect in that it is referenced through an instance ‘ actable
of the work space. The left literal is the variable t i 1 e. and its value must be a Loops object when
the rule js executed. the right literal type must be the name of an instance variable of that object.
The compound literal tile: type refers to the value of the type instance ‘eariable of the object in the
instancevariable t ii e.
The colon notation can be combined with the dollar notation to access a variable in a named Loops
object. For example,
STopTile:type=BlueGreenCross

refers to the type variable of the object whose Loops name is TopT ii e.
tdouble colon notation is provided for accessing class variables. For example
truck::MaxGas<45 ::ValueAdded>600 ->

In this example, MaxGas is a class variable of the object bound to truck. ValueAdded is a class
variable of self.
A colon-comma notation is provided for accessing propert) values of class and instance variables. For
example

wire:,capacitance>5 wire:voltage:,support=’simulation —>

In the first clause, wire is an instance variable of the work space and capacitance is a property of
that variable, the interpretation of the second clause is left to right as usual: (I) the object that is the
value of the variable wire is retrieved. and(2) the support property of the voltage variable of that
object is retrieved. For properties of class variables

::Wire:,capacitance>5 node::Voltage:,support=’simulation ->
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In ~he aNt clause, ~i i re a ci iss ~ananie ‘f tee ‘york space md cap ac i tan cc a 1 prooer~OE that
amble. In [he second clause, node is an instance ariable hound to some ohect. Vo 1 t age is i class
crumble or that ohject. ~nd Support is a pi pert’ f hat class mumble.

he property notation is~heed tor nue\ irs and ikpVar~dccc ‘hose iriables cannot have properties.

11,7 Perspectives

~ Not implemented yet in [he mie language *

In many cases it is usetul to organize information in terms of multiple points or view. for example.
information ahout a man might he organized in terms of his role as a ti;ther. as in eiriplovee. and as
a traveler. Each point of view, called a perspective, contains information for a different purpose. [he
perspectives are related to each other in the sense that they collectively provide information about the
same object. As described in the Loops manual, Loops supports this organizational metaphor by providing
special mixin classes called perspectives and nodes.

Loops perspectives can be accessed in the rule language by using a comma notation. In the following
rule, the variable washingMachine is hound to an object with three perspectives: commodity.
el oct r i cal, and cl e an i ng. The rule accesses the vol t age variable of the object that is the
electrical perspective.

IF washingMachine,electrical:voltage<100 THEN

En this syntax, the term before the comma names a variable, and the term after the comma is the name

of the perspective.

11.8 Computing Selectors and Variable Names

The short notations for instance variables, properties, perspectives, and Linary messages all show the
selector, variable, and perspective names as they actually appear in the object.

object. selector
object: iyj\Tame
object: :cvName
object: varname: ,propName
object, perspN’ame

(~- object selector arg1 arg2)

For example,

apple: flavor

refers to the f 1 av o r instance variable of the object hound to the variable app 1 e, In Enterlisp terminoloe~
this implies implicit quoting of the name of the instance variable (f 1 avor).

In some aophi ations it is desired to he ible to compute the names, For this, the loops rule lancuace
provides analogous notations vOth an added exclamation sign. \fter the exclamation sign, the interpretation
of the amiable being evaluated starts over again. For example
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app 1 e: ,

“elhrs ‘a ~me~cne ~h1ngas app 1 e : 11 avo r it’ rhe l~itehFo . imahie x a hound to f I avo r. ftc ~hctthat
x m I isp iriahie is indicated b; he ~ ckSl .sh. If z in :nmance arianle )r s e I f or a rampom on
‘.cml hhe, a uld ase he notatn:

apple: lx

If x is a class variable of se 1 f. vve could use the notation:

apple: : :x

\hl combinations are possible. including:

object, !selector
object. I \selector
object. I: :selector
object: !ivi\[ame
object: : I cvName
object: !varname: ,propName
object, I perspNarne

(4’-! object selector arg1 argg)

11.9 Recursive Compound Literals

Multiple colons or periods can be used in a literal. For example:

a:b:c

means to (I) get the object that is the value of a. (2) get the object that is the value of the b instance

variable of a, and finally (3) get the value of the c instance variable of that object.
Similarly the notation

a,b:c

means to get the c variable of the object metumned after sending a b message to the object that is the
value of the variable a. Again, the operations are carried out left to right: (1) the object that is the value
of the variable a is retrieved, (2) it is sent a b message which must return an object. and then (3) the
value of the c variable of that object is metrieved.

Compound literal notation can he nested arbitrarils deeply.

11.10 kssignrnent Statements

\n assignment statement using a left arrow can be used for setting all kinds of variables. For example.

x—a;



tilE LOOPS MtS1 tL

sets tic. due or the anable x to the v due ‘;f a. Ihe same notation i~orksif x is ~task variable,
rule variable, clasi ianable. temporary ‘triable. 1W .~it snac~v triable. I he right side ~I in issignment
~1t~m~n~cap ‘~ w ~rcpr~ssionas n:

v-ab + 17(LOG d);

I he assignment statement can .ilso he used with the colon notation to set values of instance variables of
objects. For example:
y:b’-O

In this example, first the object that is the value of yis computed, then the value of its instance variable
b is set toO.

Properties andperspecziver Assignment statements can also be used to set property values as in:

box:x:,orlgin’-47 fact: ,reason’-currentSupport;

or variables of perspectives as in:.

washingMachine,electrlcal:voltage*-11O;

£Wstrng. Assignment statements can be nested as in

This statement sets the values of a. b, and the d instance variable of c to 3.- the value of an assignment
statement itself is the new assigned value.

11.11 Meta- S.ssignment Statements

Meta-assignment statements are assignment statements used for specifying rule descriptions and audit
trails. These statements appear in the MD part of rules.

.ludi: Trailr The default interpretation of meta-assignment statements for undeclared variables is as audit
trail specifications. Each meta-assignment statement specifies information to be saved in audit records
when a rule is applied. In the tbllowing example from figure 19. the audit record must have variables
named basis and cf:

{(basis’-’Fact cf’-l)}
IF buyer:familySize>2 machine:capacity<20
THEN suitabilitys.’Poor;

In this example. the R.HS of the rule assigns the value of the work space instance variable suitability
to ‘Poor if the conditions of the rule are satisfied. In addition, if the RuleSet was compiled in zudi:
mode, then during RuleSet execution an audit record is created as a side-effect of the assignment. ftc
audit record is attached to the reason property of the suitability vaijable. It has instance variables
basis and cf.

In general an audit description consists of a sequence of meta-ascignment statements. I he assignment
variable on the left must be an instance variable .)f the wdit record. l’he class of the audit record is
declared in the •ludi: (lass declaration of the RuleSet. I he expression on the nght is in terms of the

‘(9
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~ ~L ~ihiL b~the dui~et. I~he C(lflditI( lh )[ rute iie uitished, an iudit ~ec rd 15 instantiated.
[hen the meta- issignment ~tatements are e~at uated ii the execution context ot the RuieSet and their
JIL~es irc out :nto [he audit recorta \ seCarate uidit record ~screated hr ~ach It the ~hject iriahies

re set hs the ruie.

Rule /)escrrpt?ous: Meta-assignment statements can also he used to set sariables in the objects that represent
indisidual rules. this interpretation of meta-assignment statemenL is indicated when ~e issienment
‘~ariahleof the meta-assignment statement has been declared to he a rule sariahie. For example, if
the sariable cf in the previous example was declared to he a rule ~ariahle, then the meta-assignment
statement would set the cf instance ~ariahle 01 the rule object to . 5 it compilation time, instead of
sasing a c f in every audit record for esery rule application at execution time. Ihe alue on the ri~ht
hand side of the meta-assignment statement for a rule sariable must be known at compile time.

11.12 Push and Pop Statements

A compact notation is provided for pushing and popping values from lists. ft push a new value onto a
list, the notation ~+ is used:

rnyLi st~-+newItem:

focus:goa1s~-±newGoal:

ft pop an item from a list, the ~-— notation is used:

item~--myList:

nextGoal ~--focus: goals:

As with the assignment operator. the push and pop notation works for all kinds of ariables and properties.

They can be used in conjunction with infix operator << for membership testing.

11.13 Invoking RuleSets

One of the ways to cause RuleSets to be executed is to in’ioke them from rules. This is used on the LHS
of rules to express predicates in terms of RuleSets, and on the RE-IS of rules to express actions in terms
of RuleSets. A short double-dot syntax for this is provided that invokes a RuleSet on a work space:

Rsl. .wsl

In this example. the RuleSet hound to the variable Rs 1 is invoked with the value of the ‘~ariahle ws 1
as its work space. [he value of the invocation expression is the \alue returned by the RtileSet. The
double-dot syntax can he combined with the dollar notation to invoke a RuleSet hs its I oops name. as
in

SMyRules. .wsl

which in~okesthe RuleSet object that has the I oops name MyRu 1 es.

I his tbrm of RuleSet invocation is like subroutine calling, in that it creates an implicit stack of areuments
and return addresses. [his feature can he used is a mechanism for ioe!a-coIliroi of Rulehets is in:
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IF breaker:status= ~Open
THEN source~SOverLoadRu1es . . wash i nqMach I ne;

IF source=~NotFound
THEN SShortC I rcui tRul es. .wash I ngMach ne:

In this example. two ~meta-mles’ are used to control the invocation ot specialized RuleSets for diagnosing
overloads or short circuits.

11.14 Transfer Calls

An important optimization in many recursive programs is the elimination of tail recursion. For example.
suppose that the RuleSet A calls B, B calls C. and C calls A recursively. if the hrst invocation of A must
do some more work after returning from B. then it is useful to save the intermediate states of each of the
procedures in frames on the calling stack. For such programs, the space allocation for the stack must he
enough to accommodate the maximum depth of the calls.

There is a common and special case, however, in which it is unnecessary to save more than one frame
on the stack. in this case each RuleSet has no more work to do after invoking the other RuleSets, and
the value of each RuleSet is the value returned by the RuleSet that it invokes. RuleSet invocation in
this case amounts to the evaluation of arguments followed by a direct transfer of control. We call such
invocations transfer calls.

The Loops nile lang~uageextends the syntax for RuleSet invocation and message sending to provide this
as follows:

RS. .*ws

The RuleSet RS is invoked on the work space ws. With transfer calls. RuleSet invocations can be

arbitrarily deep without using proportional stack space.

11.15 Task Operations

Tasks in the Loops rule language represent the invocation of RuleSets. They provide a mechanism for
specifying and controlling processes in terms of tasks that can he created, started, suspended, and restarted.
They also provide a handle for specifyfog concurrent processing.

A Task records the work space of a RuleSet (ws), the value returned (val ue), and two special variables
called the status and reason. A Task can also have RuleSet-specific instance variables called task
variables for saving process information.

(real/ng Tasks: A Task is represented as a Loops obiect and can he created and associated with a work
space as follows:

Task6~-(~$Task New RuleSet workSpace)

[he workSpace argument is optional. Specialized versions of Task will eventually he available, such as
Remo teT ask, Information about a Task is stored in its nstance variables, md can he accessed like other
Loops ~ariahles:

~ I
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Task6 : status
Task6: reason
Task6 : ws
Task6 : value

dtarting Tasks: The primary operations on [asks are starting them and wading fbi them to hnish execution.
These operations have been designed to work when Loops is extended for concurrent processine. [he
operations for starting tasks are as follows:

(Start 1 taskList) [Function]
(StartAl 1 taskList) [Function]
StartAl 1 taskList) [Function]

Each of the start operations takes an argument taskList which is either a Task object,
or a list of Task objects. A l’ask cannot be started if it is already running, as
indicated by its status variable. Startl iterates through its taskList and starts
the first Task that is not already running. The value of Starti is the Task that
was started. StartAl 1 starts all of the tasks, and does not return control until
all of the tasks have been started. Startfogether is like StartAl 1 except
that none of the tasks are started until all of them are ready. The synchronization
aspect of StartTogether is important for avoiding Task deadlock situations in
programs that share Tasks as resources. (It avoids the difficulties associated with
partial allocation of Tasks when a complete set of Tasks is needed.)

lVaiuingthr Tasks: The following operations are provided for waiting for Tasks:

(Waitl taskList) [Function]
(Wa i tAll taskList) [Function]

Wa I t 1 iterates through its taskList and returns as its value the first Task that is net
running. WaitAll returns when all of its Tasks have hnished running The value
returned by the RuleSet that ran in a Task can be obtained from the Task object. as
in:

task6 value,

Running Tasks: In many cases, the specification of Task control can he simplified by using a run operation
that combines the start and wait operations. The run operations are as follows:
(Run 1 taskList) [Function]
(RunAl 1 tasktist) ‘ [Function]
(RunTogether taskList) [Function]

Run 1 goes through its arguments left to right and selects the first Task that is not
running. It starts that Task and then waits for it to complete. The value of Run 1
is the Task that was executed. RunAl 1 starts all of the Tasks running and then
waits for them all to complete. Runlogether waits for all of the Tasks to become
available. runs them all, and then ~aits for them all to complete.

il.l6 Stop Statements

.-\t invocation, the sta tus in the [ask is set to Run n I ng. If’ a RuleSet ends normally, the status in
Lhc I ask is ~ct to Done and the reason sa\ed in toe RulLStLp is Success Other tvnnin Itlons ~ in he
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specified in a Stop statement as follows:
(Stop value status reason) [RuleSet Statementj

value is the value to be returned by the RuleSet. status characterizes the termination
of the Task, and reason is a symbolic reason for the status. Typical examples of the
use of Stop are;

(Stop value ‘Aborted reason)
(Stop value ‘Suspended reason)

where Aborted means that the RuleSet has fhiled. and Suspended means that the
RuleSet has stopped but may be re-invoked. Particular applications will probably
develop standardized notations for status and reason. Values for these can be lnterlisp
atoms or Loops objects. The arguments status and reason are optional in a Stop
statement.
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[he I ~oopsrules language is supported b~an inteerated proeramming environment for creatloc, edl[lns,
cornpiiino, and dehug.ging RuleSets, This section describes how to use [hat en.v~ironment.

12.1 Creating RuleSets

RuleSets are named Loops objects and are created hv sending the class RuleSet a New messace as
follows:

(~- $RuleSet New)

After entering this form, the user will be prompted for a LoopS name as

RuleSet name: RuleSetName

Afterwards, the RuleSet can be referenced using Loops dollar sign notation as usual. It is also possible
to include the RuieSet name in the New message as follows:

(~- SRuleSet New NIL RuleSetName)

12.2 Editing RuleSets

A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. [he editor
can he invoked with an EditRules message (or ER shorthand message) as follows:

(4- RuleSet EditRules)
(4~ RuleSet ER)

If a RuleSet is installed as a method of a class, it can he edited conveniently by selecting the EM option
from a browser containing the class. Alternatively, the EM ftinction or Ed I tMet hod message can he
used:

(~‘ ClassName Ed i tMethod selector) [Message]

EM ClassName selector) [Function]

Both approaches to editing retrieve the source of the RuleSet and put the user into the U[YIN editor,
treating the rule source as text.

Initially, the source is a template for RuleSets as follows:

RuleSet Name: RuleSetName:
WorkSpace Class: ClassName
Control Structure: doAll;
While Condition:
Audit Class: StandardAuditRecord;
Rule Class: Rule;
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Task Class:
Meta Assignments:
Temporary Vars:
Lisp Vars:
Debug Vars:
Compiler Options:

(* Rules for whatever. Comment goes here.)

Figure 22. Initial template for a RuleSet. l’he rules are entered after the comment at che
bottom. The declarations at the beginning are filled in as needed and superfluous declarations
can he discarded.

The user can then edit this template to enter rules and set the declarations at the beginning. In the current
version of the rule editor, most of these declarations are left out. If the user chooses the Ed I tAl 1 Dec 1 s
option in the RuleSet editor menu, the declarations and default values will he printed in full.

The template is only a guide. Declarations that are not needed can he deleted. For example, if there
are no temporary variables for this RuleSet. the Temporary Vars declaration can he deleted. If the
control structure is not one of the while control’ structures, then the Wh 11 e Cond I t ion declaration can
he deleted. If the compiler option A is not chosen, then the Audit Class declaration can he deleted.

When the user leaves the editor, the RuleSet is compiled automatically into a LISP function.

If a syntax error is deteCted during compilation. an error message is printed and the user is given another

opportunity to edit the RuleSet.

12.3 Copying RuieSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this

purpose. the method CopyRules is provided as follows:

(4_ oldRuleSet CopyRules riewRuleSetName) [Message]

This creates a new RuleSet by some of the information from the pespectives of the old RuleSet, It also

updates the source text of the new RuleSet to contain the new name.

12.4 Saving RuleSets on LISP Files

RuleSets can he saved on LiSP files just like other Loops objects. In addition, it is usually useful to save
the LISP functions that result from RuleSet compilation. In the current implementation. these functions
have the same names as the RuleSets themselses. [o save RuleSets on a file, it is necessary to add two
statements to the file commands for the file as follows:

(ENS ~‘ MyRuleSetNames)
(INSTANCES * MyRuleSetNames)

where MyRul eSetNames is a LISP variable whose value is a list of the names of the RuleSets to he
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sa~ed.

12.5 Printing Rulehets

To print a RuleSet without editing it. one can send a PP Ru 1 e s or PP R message j5 chilows:

(~- RuleSet PPRu1 es ) [Message]
(~- RuleSet PPR) [Message]

A convenient way to make hardcopy listings of RuleSets is co use the function L 1 s t Ru 1 eSe t s. The
files will be printed on the DEFAULTPRINTINGHOST as is standard in Interlisp-I). ListRul eSets can
he given three kinds of arguments as follows:

(ListRuleSets RuleSetName)
(ListRuleSets ListOIRuleSetNames)
(ListRuleSets ClassName)
(ListRuleSets ~i1eName)

in the ClassName ease, all of the RuleSets that have been installed as methods of the class will he printed.
In the last case, all of the RuleSets stored in the file will he printed.

12.6 Running RuleSets from Loops

RuieSets can be invoked from Loops using any of the usual protocols.

Procedure-oriented Protocol: The way to invoke a RuleSet from Loops is to use the RunRS ftinction:

(RunRS RuleSet workSpace argg arg~) [Function]
workSpace is the Loops object to he used as the work space. This is “procedural” in
the sense that the RuleSet is invoked by its name. RuleSet can be either a kuleSet
object or its name.

Object-oriented Protocol.’ When kuleSets are installed as methods in Loops classes, they can he invoked
in the usual way by sending a message to an instance of the class. For example. ifWashingMachine is
a class with a RuleSet installed for its S imul ate method, the RuleSet is invoked as follows:

(~- washingMachinelnstance Simulate)

t)uia-orienied Protocol,’ When RuleSets are installed in active values, they are invoked by side-effect as a

result of accessing the variable on which they are installed.

12.7 installing RuleSets as Methods

kuleSets can also he used as methods for classes. 1 his is done b installing automatically-generated
invocation functions that invoke the kuleSets. For example:

[DEFCLASS WashingMachine
(MetaClass Class doc (* comment) . .


