THE LOOPS MANUAL

The Layer for this is marked as associated with KBName. Finally

other objects that have been created. L
knowledge base are writien out 1o a hoot laver.

the environmental objects for the

Before the boot laver is written out. the KB for the personal knowledge base named KBName is updated
ro contain the new [ayers. [t contains the reference to the comimunity knowledge base that was created
by the AddToContents message. This continues to be interpreted as a reference o the most recent
version of the community knowledge base named community K BName.

[f Close was used. then the files storing the knowledge bases have been closed and all objects in the
environment have been destroved. The environment was also made not current. This clean swte is
recommended as a place from which the user can then exit from Interlisp.

9.6 Freezing and Thawing References to Knowledge Bases

In the previous scenarios, the user used the most recent version of the community knowledge base.
Community knowledge bases can be changed over tme by their owners (i.e., their human knowledge
base managers). Sometimes a knowledge base manager may update the community knowledge base, but
a user may want to continue using a fixed older version. For example, if the new version of a community
knowledge base contains extensive changes, the user may want to ﬁmsh some project before converting
his personal knowledge bases to reflect the changes. To do this the user must freeze references o the
community knowledge base. Freezing enables a user to continue to access a fixed set of layers even
though the community knowledge base may be changed by the knowledge Hase manager. {n this scenario,
the user has a personal knowledge base whose contents include a named community knowledge base. She
anticipates the change to the community knowledge base before it happens and freezes reference o it

[ater, we will see how a user can return to an earlier version after a change has been made.

Freezing: The first step is to obtain access to the user's personal knowledge base. As in the previous
example, this 1s done by sending an 01d message to the class KB:

(¢« $KB 01d 'KBName 'environmentName)

This creates an Environment named environmentName with that KB as its outputKB. To freeze the
reference, the user needs to change the KBState in his personal KB that describes the community
knowledge base. This can be done as follows:

(¢ $KBName FreezeKB 'communityKBName)
The user can then open his Environment, do his work, and then write updates as before:

(¢ S$environmentName Open)
{make changes (o objects> ..
(¢ S$environmentName Close)

From his point of view, the objects in the community knowledge hase will be static even if the knowled
base is changed several times. After the user ends this session and starts again the next day, his knowle i
base will continue to refer to fixed versions of the objects in the community knowledge base. even if n
versions are added later.

o
£2¢
age
S

Thawing: Eventually. however, the changes (and improvements) to the community knowledge base may
provide a compelling reason for the user to switch to the most recent version. To do this, he should tvpe

Using Several hnowledge Bases in an Knvironment

the following messages at the bezinning of 4 session:
(« SKB 01d '"KBName 'environmentName)
(¢« $KBName ThawKB 'communityKBName)

The user can then open his Environment, do his work, and then write updates as before.

$.7 Using Several Knowledge Buses in an Environment

For example, long term storage of different versions of a design can be kept in scparate knowledge bases
in Loops. (The different knowledge bases in these cases correspond to different environments.) [t is also
convenient to partition knowledge bases to reflect the partitioning of responsibility for setting standards and
maintaining consistency. The previous scenarios have shown the use of separate knowledge bases t keep
{tentative, idiosyncratic) personal knowledge separate from (open, standardized) community knowledge.
This scenario shows how a user can access several knowledge bases through a personal knowledge base.

The first step is to open the personal knowledge base as follows:
(« $KB 01d 'KBName 'environmentName)

The next step is to add all of the other knowledge bases that the user wants as follows:

(¢ $SKBName AddToContents 'otherKBNamey)
(¢ $KBName AddToContents 'otherKBNamej)
(¢ SKBName AddToContents 'otherKBNamegy)

This can be repeated for each knowledge base to be added.

Each AddToContents message changes the contents variable of the knowledge base named KBName
so that it now refers indirectly to the other KBName. These references are preserved across sessions so
that the next time the user opens his knowledge base with an 01d message, he will not need to repeat
the AddToContents messages. These references can be removed as in the previous session.

For most applications, the order in which knowledge bases are added does not matter. However. if an
object reference is ambiguous in the sense that the object is contained in more than one of the knowledge
bases, then the last knowledge base added will dominate. After the knowledge bases have been added,
the user can optionally freeze the references to any of them as described carlier.

The next step is to open an environment:

(« SenvironmentName Open)

As the user creates new objects in his environment, he could want them to be associated with particular
knowledge bases that he is using. Usually, he will want them associated with his personal kiowledge base
(named KBName in the example). and this is the default association. However, bugs in a community
knowledge base will often be found by a user working on an cxample in a personal knowledge base.
If the user simply changes the buggy objects, they will continue o be associated with the community
knowledge base when he saves them at the end of his session. However. if he creates new objects that he
wants associated with the community knowledge base. he can first type:

48

THE LOOPS ManUAL

(= SenvironmemName AssocKB ‘otherKBNamey)

Fhis message first checks that there s a knowledge base named otherKBName; in the environment. [t
does not cause the changes (0 be written o the other knowledge bases. Rather. it causes a spectally
marked layer 10 be created in the user’s personal knowledge base which can be accessed later by the
community knowledge base manager.

The user can then create the new objects. When he is done creating these objects, he can then swiich the
association back to his personal knowledge base by tvping:

(« SenvironmentName AssocKB 'KBName)
As before, the user can type

(« S$environmentName Close)

when he is done with the session.

Occasionally, a user may accidentally associate some objects with the wrong knowledge base. See the next
section for a way to change the association of an object after it has been created.

[f he later resumes the session, he will have access to all of the knowledge bases that he added.
9.8 Changing the Associations of Objects

The previous scenario depends on anticipating a change in the intended association of an object before
creating it. This approach using an AssocKB message works fine if the creation of objects can be
conveniently organized into periods such that all of the objects créated during a period are associated
with the same knowledge base. [n practice, however, a user may forget 10 send the message or he may
later change his mind about the appropriate association for an object. The message for changing the
association of an object is the AssocKB message as follows:

(« SobjectName AssocKB 'newKBName)
99 Switching Among Environments

One of the important features of Environments is that they provide a way of having independent versions
of designs. A user can have several open Environments and can switch between them by making one of
them the “current” Environment. In this scenario, we will first consider two ways that a user can create
multiple open Environments. Then we will consider how to switch among them and how to copy objects
between them.

Case /. In this case. a user 1s just starting a session. He has a personal knowledge base named KBNamel,
and he wants to create two knowledge bases (KBName?2 and EBName3) 1o represent two versions of a
design. To do this. the user can type:

(« SKB New 'KBName2 'environmentName2)

Create 2nd knowledge base and Fnvironment.
(<« $KB New 'KBName3 'environmentName3)

Create 3rd knowledge base and Fnvironment.

® 49

Switching Among Favironments

-4

{~ SKBName2 AddTolontents 'KBNamel)
. Add KBNwwel o the contents of 2nd K13,
(« $KBName3 AddToContents 'KBNamel)
tdd KBNamel o the contents of Srd KB
(+ SenvironmentName2 Open)
Open the Ind Environment.
(+ SenvironmentName3 Open)
Open the 3rd Environment, leaving it as current.

Case 2. Alternatively, the user may discover part way through a session that he wants © branch out
with another Environment. In this scenario. the user 15 working in Environmentl and decides to create a
branch point. Before doing this, the user must Arst Close that environment:

(< SenvironmentNamel Close)

The user can then create the Environment2 and Environment3 as in case 1.

Switching. In both cases, the last Environment opened will be the default current one. The user can
make any Environment be current by:

(« SenvironmentName2 MakeCurrent)

All Loops operations will then happen in this Environment. To switch to environmentName3 use:
(« SenvironmentName3 MakeCurrent)

and so on. To test whether any particular environment, testedEnvironment 1S current, one uses:
(« StestedEnvironment IsCurrent) '

To switch to the GlobalEnvironment, one sends to the current environments:

(¢« CurrentEnvironment MakeNotCurrent)

The Lisp global variable CurrentEnvironment is bound to the environment which is current.

When done, the updates should be written out for all of the open Environments. This can be done
by sending Cleanup or Close messages 0 each of the environment, or can be done by sending the
corresponding message to the class Environment which will send the message on o each open environment
(kept on a list in the Lisp global variable openEnvironments):

(< $Environment Cleanup)
(¢ S$Environment Close)

Copying Objects between Fnvironments. While a user is switching between cnvironments, he mayv make
discover an error in some information that is global to both environments. In this scenario, the user
discovers an error in some objects from a community knowledge base while he is working in Environment2.
He corrects the objects in Envirorgnent2, and wants to copy those corrections into Environment3. He
does this using the CopyObjects message as follows:

(< S$toEnvironment CopyObjects objectsList)

where toEnvironment 1S the name of the environment that the objects are copied to. and objectsList 1S a

s 50

THE LOOPS MiaNUAL

st of objects w be copied.

R L Cvrn e Y et Wlviaere o lra s N - . i
Ihis message causes the objects o be copied. If the ohjects already exist in the toEnvironment. then the

copies overwrile the previous objects.
In our scenario. the user would perform the rollowing steps:

(« SenvironmentName2 MakeCurrent)
Make Environment?2 current.

Coilect the objects.
(SETQ objectsbist ...)
Viake a list of the collected objects.
(¢ SenvironmentName3 CopyObjects objectlist)
Copy the objects 10 Environment3s.

9.10 Saving Parts of a Session

Saving part of a session. To selectively update the knowledge base with some of the changes that he made
in a session. a user can send a Cleanup message to his Environment with KBs specified. For example,
to save the updates associated only with the knowledge bases named KBNamel and KBName?2, he can
send the message:

(¢ S$environmentName Cleanup '(KBNamel KBName2))

This message writes out file layers to the user’s personal knowledge base containing the objects that from
the current Environment that are associated with the knowledge base KBNamel and KBName2. The user
has omitted the names of associated knowledge bases for which he wants to discard the changes. This
message completes by writing out the boot layer.

The Cleanup message without KB's specified writes a layer for every associated knowledge base that has
- been changed, followed by a WriteBoot. If the user does a (« SenvName Cleanup T), then all the
changes will be written out in a single layer associated with the connected knowledge base.

Cancelling an entire session. The previous scenarios assumed that a user wanted to save the changes that
he makes 1n a session. Sometimes, however, a user may prefer to discard the changes that he has made
in a session. He can do this and return the environment to an unopened state by typing:

(« SenvironmentName Cancel)

Cancelling this session will not go back past the last time the user did a Cleanup. Cancel backs
up changes made since that time and then does what a Close would do, destroying objects in the
environment, and closing files.

9.11 ® Copying Layers from one Knowledge Base to Another

The ability to describe lavers using a KBState makes it possible for one knowledge base t indirectly
access the file layers of another one. This mechanism works fine when it is used tw extend a personal
knowledge base to include a community knowledge base. [t enables several users to read a community

A
et

Summarizing and Combining knowledge Bases

“nowledge base at the same ume and tw write their updates o their personal knowledge hases. . However

the indirection mechanism breaks down if some users want o read a knowledze base while another user is

writing to it For exampie, such o conthice could arise 1f 2 community knowledge base used the indirection

mechanism o aceess & fle laver in some personal knowledge hase. Whenever the owner of the personal

knowledge hase was updating i users of the community knowledge base would be blocked by the file

svstem. To avold such stituations, 10 s necessary Lo creale community knowledge bases that physically
r

contain all of the fle lavers that thev reference.

[n this scenaro, the user is just starting a session and no knowledge bases have been opened. The user
wants 0 copy information from a knowledge bhase named fromKBName (0 a knowledge base named
toKBName. he frst step is to read the boot lavers of the two knowledge bases.

(¢« 3KB 01d 'fromKBName)
(¢ 3KB 01d 'toKBName)

[n this scenario, one need not, and in fact should not. have an envrionment open or either of the two
K Bs connected to an environment. All the work will go on in the Global Environemnt.

The second step is to create a description of the layers to be moved. This description can be either a
Layer or a KBState. One way 1o create this description is to use any of the object editors available in
Loops. Another way is to send a Describelayers message as follows:

(¢« SifromKBName Describelayers DateOrDays associatedKB)

DateOrDays can be an Interlisp Date or an integer number of days. If it is a date. then only those [avers
created on or after the given date will be described. [f it is an integer. then only Lavers created within
that many days will be described. If it is NIL, then no date filter will be applied.

associatedKB is the name of the knowledge base with which the Lavers are associated. (If NIL. then the
lavers associated with any knowledge base will be described.)

For example:

(SETQ layerDescription
(¢ $fromKBName Describelayers 14 'toKBName))

returns a KBState describing the Layers created in the last fourteen dayvs in the knowledge base named
fromKBName that are associated with the knowledge base named toKBName.

Given such a description, the layers can be copied by typing:

(¢ 3toKBName CopyFiletayers layerDescription)
9.12 Summarizing and Combining Knowledge Bases

Summarizing a Knowledge Base. As knowledge bases evolve over time, the number of layers and amount
of overridden information can consume a large fraction of the file space. Fconomy-minded knowledge base
managers may want to create “compressed” versions of knowledge bases that have all of the information
contained in just one layer. [n this scenario, the user starts a session by typing:

L
[

THE LOOPS MANUAL

{« 3KB Summarize fromKBName toKBName assocKBNames)

where fromKBName 5 the knowledge base o he summanized: toKBName 15 the knowledge base w he
ated. It must be a different name than fromK BName: assocKBNames must be a list of KBNames or

Cre:

NIL. [fic s list then alll and only those objects with associated KB's on the list will be dumped w0 the
file. One must include fromKBName on assocKBNames if changes and objects associated with it are o
be dumped to the file. [f assocKBNames = NIL. all objects on the file will be dumped on a single laver
If toKBName.

This message causes Loops to read the boot laver of the old knowledge bhase (fromKBName), create a
new knowledge base (toKBName). create an Environment assoclated with the new knowledge base. read
in all of the objects in fromKBName. write them out [o a single layer, and then write a boot laver for the
new knowledge base.

Combining Knowledge Bases. The Summarize message can also be used to combine several existing
knowledge bases into a single new knowledge base. In this case, the message is as follows:

(¢« 3KB Summarize fromKBNames toKBName assocKBNames)

where fromKBNames is a list of the names of the knowledge bases t0 be summarized: toKBName is the
name of the new knowledge base to be created; assocKBNames is as described above.

This message causes Loops to read the boot layers of the old knowledge bases, creates a new knowledge
hase {toKBName), creates an Environment associated with the new knowledge base. rcads in all of the
objects, writes them out to a single layer, and then writes a boot layer for the new knowledge base.

The user can create a new knowledge base which contains all of the objects in any vpen environment
This may include objects from any number of KB's.

(« environment DumpToKB toKBName assocKBNames)

will create a new KB named toKBName, and dump from the environment all objects with associated KB
on the list assocKBNames onto toKBName {or all objects if assocKBNames = NIL).

9.13 Subdividing a Knowledge Base

Sometimes a user may want to subdivide a knowledge base so that a subset of the objects are moved away
to create a new knowledge base. In our scenario, the user wants to move the objects from a knowledge
base in fromEnvironmentName [0 a knowledge base (toKBName) included in toEnvironmentName. In
the first step of this scenario the user uses the MapGCbjectNames message:

(« SenvironmentName MapObjectNames (FUNCTION UserFn) AssocKBs NoUIDs)
where

UserFn is a function that will be applied to everv object name. If NIL. then a list of object names and
U1TDs in environment is returned as the value of the message. [f it i1s the atom T, then only names which
are not UIDs will be returned.

AssocKBs is an opuonal argument. [f an atom, it is interpreted as the name of the associated knowledge
base for the objects. [f a list, will be interpreted as a hist of associated knowledge bases for the object. [f

N
o

Going Back to a Previous Boot Laver of 4 knowledee Buse

NIL. only objects associated with the current AssocK B of the Environment will be used.
It NoUIDs 15 T, then UserFn will only he applicd w0 real names. and nor UDs.

In our scenario. we will assume that My Fn will create a list of the objects (objecthist) that the user
wants (o move. The user switches to the source environment. finds the objects and moves them:

(¢ SfromEnvironmentName MakeCurrent)
Switch to fromEnvrionment.
(¢ SfromEnvironmentName MapObjectNames (FUNCTION MyFn))
Make list of objects.

The next step is o move the objects as follows:

(SETQ newObjectlist
(< 3toEnvironmentName MoveObjects objectlist)

This causes the objects to be copied to toEnvironment and deleted from fromEnvironment (or whatever
Environment they came from). The objects will continue to be associated with whatever AssocKB they
were before. In this scenario, however, the user wishes them be associated with the knowledge base
named oK BName.

(¢« SfromEnvironmentName MakeCurrent)
(for object in newObjectlist do (+« object AssocKB 'toKBName)

The final step is to write out the changes:

(« SenvironmentName Cleanup)
9.14 Going Back to a Previous Boot Layer of a1 Knowledge Base

Since knowledge bases are represented as objects. it 1s possible to reconfigure their contents using the
standard object access functions. However if a Layer has been deleted from the contents of a KB, that
layer is no longer written out to the boot layer. This can make it difficult to get back to versions modified
in this way. The following message makes 1t possible restore such knowledge bases by reading in old
boot layers:

(¢ $KB ReadOldBootlLayer 'KBName numberBack)

The value returned is a KB which has the name KBName, and the state corresponding to the boot laver
specified. To preserve a KBState which has these contents. the user can then use:

(¢« $KBName Copy)
9.15 Affecting what is Saved

T'he user mav not wish an object, or some part of an object saved on a knowledge hase. [n this section.
we describe a number of ways of stopping informaton from being written on the knowledge base. with
appropriate cavears for the use of these reatures.

THE LOOPS MANUAL

$.15.1 Temporary Objects

[f the user is creating lo of ob
none of those objects are usefu
use:

ects for tempaorary use (as intermediate products of & computation) then
a

1
i
[after the computation s done. o create such objects. the user should

{« class NewTemp)

to create them instead of the usual (< class New) message. Objects created in this way will not be given
a UlD. and will be not be accessible by mapping through the environment. If by some chance they are
referenced from some object that 1s being dumped to the data base, they will then be converted intw
permanent objects, and dumped to that same KB.

9.15.2 Not Saving some [V values

For some instances, it is useful to store in an instance variable a Lisp datayipe (e.g. a pointer to a window,
or hash array). However, most [Lisp datatypes are not stored appropriately on a KB. In general, when
read back in from a KB, what was formerly an instance of a datatype looks like an atom with a funny
printname. The solution we have adopted is to allow the user to specify [V values or properties which
should not be dumped to a knowledge base. When read back in. the [V value or property will inherit
the default value from the class which can be an active value to recreate the desired Lisp object

For example, the class SEnvironment uses a hash table as the value of its [V nameTable. The following
fragment of the definition of Environment shows how saving the value of nameTab1le is suppressed and
how an active value is used (o recreate it.

[DEFCLASS Environment
(InstanceVariables
(nameTable #({NIL NewNameTable) DontSave Any)

-]

Anv instance of environment will have nameTable filled in by NewNameTable the first time it is
accessed. NewNameTable is a specialized version of FirstFetch which makes the local value he a
hashArray. The property DontSave with value Any (which is inherited in every instance) specifies that
nothing about the [V nameTable should be saved on a KB. For finer control, the property DontSave
could have been given a value which is a list of property names whose values should not be saved on
the KB, If the atom Value is included in the list. then the value of the IV iwelf will not be saved. The
value Any for DontSave is interpreted as meaning no porperty or value should be saved.

9.15.3 Ignoring changes on an [V

Whenever an object is modified during the course of a session, it is marked-as changed so that a new
version of the object will be written out on the KB. Suppose the user may be using an IV globally
known object as a place to cache some information. In this case the user does not need or even want
the known object to be marked as changed it the only change made was to store the cached information.
To allow this. the special active value function StoreUnmarked is provided which does not mark the
object as changed when it updates its localState. For example, if $WorldView had an instance variable
lastSelected which was updated each time a selection was made. then if SWorldView locked like:

A
LA

Getting rid of ohjects explicitly

FINST WorldView
(tastSelected #{obj! NIL StoreUnmarked) ...]

he 1gnored by the KB svstem. o often userul o ¢

changes lastSelected would

momne WS
reature with DontSave described earlier so that when the object s dumped w0 4 KB (becuuse of some
other change) the value in this TV is not saved. Then the activeValue can he inherited directly from
the default value in the class. Lsing DontSave by iself s not sufficient to ensure that the ohject will
not be dumped if a value 1s changed in the not w he saved 1V,

9.154 Getting rid of objects explicitly

During the course of a session users may create a number of objects thev discover before the end of the
session are not needed. Thev may also decide that some old objects are no longer needed. By using:

(¢« obj Destray)

for each such object. the user will cause any new objects to be forgotten {not written to the KB) and the
incore space reclaimed. For objects which were in the KB previously, there will be stored an indication
that this object has been deleted, so that later reading of this KB will not contain the object.

9.16 Examining Environmental Objects

Sending the message MapObjectNames to an open environment allows one access to the names and
UIDs of objects in that enviroenment. From the names and UlDs one can then access the objects
themselves using GetObjectRec. One can determine the names and UlDs of objects in a Laver by
sending that layer the message MapOb jectNames. The form is:

(« $Layerl MapObjectNames mapFa noUlDs)

which applies mapFn to each name (and to each UID unless noUIDs=T). If mapFn=NIL then this
simply returns a list of the names {and UlDs). However, unless the layer has been read in w an
environment, one cannot get the object associated with that name (UID) on that laver.

PrettyPrinting a KB: A special pretty printing function is available for KB's. KBStates, and Layers which
tell about its history and contents. [f one does:

{« $KB 01d 'KBName)

without necessarily opening an environment. then one can send:

(¢« $KBName PP)

1o see what is in the KB and its containing Iaycrs.»

ChangedK Bs: In a particular environment, one can change objects which originate on any number of

community and personal knowledge bases. To find out the names of anv KBs that have modified entities
assoclated with them, one send to that environment, say E1:

(;«'—

SEL Changed&Bs)

1

feis this list which 15 used by Cleanup tw deermine the <2t of fuvers that will be dumped at cleanup

ume.

9.17

The Class kBState

KBState _ [Class]

[Vs:

name | [V of KBState]

Name of file associated with this KBState. NIL as value here overrides active value
in named object.

contents [IV of KBState]

Either CURRENT, meaning the current state of the KB with name or a list of layers
and KBStates specifying layerset)

Methods:

(« self AddEntities entityList) [Method of KBState]
Add all items on contents and self 1o entityList. Called by functions which write
out the boot layer to make sure that all layers are added to the list of items w be
dumped.

(« self AddToContents newAddition) [Method of KBState]
Adds a new item to contents of KB.

(« self Connect nameTable) [Method of KBState]
Read in object file indices from all. possibly implicit, layers in order. These are
being opened for input only.

(¢ self CurrentState) [Method of KBState]
Create a KB state which reflects the current state of this KB.

(« seif Describelayers dateOrDays assocKB) Method of KBState]
Return a KBState whose contents are just those lavers which occur after dateOrDays
and have KB assocKB. or NIL if none.

(« self Files fileList) [Method of KBState}
fileL.ist 1s a TCONC list of files already found. Add anvy new ones found. Very similar
in structure to KBState.Connect.

(< self MyKB) . [Method of KBState]
Return the KB object corresponding to this KBState.

(« self ReadBoot) [Method of KBStare]
Read the boot file tor this KB.

(« self SetContents Ist) [Method of KBSure]

Make KB have new contents. Check types of clements.

A

The £ oew W17
e Llass A

9.18 The Class b B

X8 [CTass]

[Vs:

connectedEnvs [V or KB
[List of Envs which have read in contents of this KB.

contents IV of KB
K Bs start out with an empty list of contents.

currentWriter [IV of KBJ
Environment which is currently wriung on this KB.

fileName [IV of KB]
Full name of file where this KB is stwored. Computed the first time it is needed.
Never stored.

owners [TV of KB]
List of owners of this KB.

status [TV of KBJ
One of Disconnected, Connected. or BootNeeded.

Methods:

(« self AddToContents newAddition) [Method of KB
Adds a new item to contents of KB.

(« self ConnectForQutput nameTable) [Method of KB
Read in object file indices from all. possibly implicit. lavers in order. This is being
opened for output.

(« self CopyFilelLayer layer) [Method of KB]
Copies the Filel.ayer referred to by layer onto self, and adds a new [ayer describing
copied filelayer onto contents of self.

(« self CopyFilelayers layerDescription) [Method of KB
Copy all the layers in layerDescription which should be a KBState into self.

(¢« self Disconnect) [Method of KB]
[isconnect this KB and close its file if open.

(¢ self FreezeKB name) [Method of KB]
Find a KBState with %@name =name and contents=CURRENT. Replace it by a
new KBState with contents = currentState of myKB. Return new KBState or
NIL if failure.

(« self PrintContents file) {ethod of KB

v
Fn to Print out a formatted description of the contents of a knowledge base.

(D)
[e's}

FHE LOOPS dMaNbAd

tents st) PAVICInod of &3

{« seif ThawkB name) of
i KBState with {Ge name)) =name and contants
al CURRENT. Rep with contents = CURRENT.
new K BState or NIL if failure.
(« self WriteBoot) [Method of KB]

Write out boot file containing KB and all layers and KBStates it contains implicitly
or explicitly.

(« self WritebEntityFile changedEntities namedEntities assockbName) [Method of KB
Writes the entities (objects) out to a layer in a given kb.

(« self WriteFilelLayer kbName nameTable) [Method of KBJ
Writes the facts on the file. appending to file. Format of laver is: - indexFilePosition
{up to 7 characters) - entityCount (up to 7 characters) - nameCount (up to 7 characters)
- entity records - indexRecords (UID followed by file position.) - nameRecords (name
followed by UID) - intualFilePosition.

9.19 The Class Environment

Environment [Class]
[Vs: .
status [IV of Environment]

Onec of NotOpen or Open. Open when indexes of KBs have been read in, NotQOpen
atter ClearObjectMemory.

nameTable [IV of Environment]
name [able for looking up UlDs and names.

outputKkB [1V of Environment]
KB to which changes will be filed, and which specifies contents.

assockB [V of Environment]
Name of the KB associated with new objects created.

Methods:

(+ self AssocKB akb) [Method of Environment]
Make akb be the assocKB of this KB.

(« self Cancel) [Method of Environment]
FErase an environment without cleaning up so that environment i empty, as if it were
not open, but it is stull connected o the same KB. Make 1t not current.

(= seif ChangedKBs) [Method of Environment]

Finds the names of all KBs that have any modified enutics associated with them.

(S
N

(4—

((—-

(<—-

(4—

((—-

((—-

((—

((-—

((—-

self

self

self

self

self

self

self

self

self

self

self

self

self

self

tThe Class Fnvironment

Cleanup KBNames noBootLayerflig) [Merhod ot Envirenment]
Write FileLavers for KBs named in KBNames. [t KBNames=NIL then write a
layer for cach changed KB. I[f KBNames=T then write vne laver tor all changes. If
KBNames is a single atom. then the update is written tor that single assocKB. Finish
by writing new boot laver for outputkKB unless noBootLayerfig is T,

ClearObjectMemory) [Method ot Environment]
Write out boot laver if needed and clear nameTable.

Close assocKBs) - [Method of Environment]
Cleanup an environment so that all files are closed. and environment is empty, as if
It were just created.

ConnectOutput KB) [Method of Environment]
Make KB be the file onto which changes in this Environment will be written.

CopyObjects objList) [Method of Environment]
Copies objects on objList using the object structure of the object in Environment
self with same UID, if found.

DumpToKB kbName assocKBNames) [Method of Environment]
299

Files fleLst) [Method of Environment]
Get a list of all files associated with this environment. Argument to KBState . Files
is a TCONC list. \

IsCurrent) ' © [Method of Environment]
Test if current.

MakeCurrent)y [Method of Environment]
Set values of CurrentNameTable and CurrentEnvironment from self and
make DefaultKBName be my assocKB.

MakeNotCurrent bitchIfNotCurrent) [Method of Environment]
Makes no Environment Current if this is current, elses causes Error if not Current
and bitchIfNotCurrent=T.

MapObjectNames mapFn assocKBs noUIDs) [Method of Environment]
APPLY mapFn to the name of each object stored in the environment. If assocKBs
given, select only those which are in the list. [f noUIDs=T then apply only to
names which are not UIDs. [f mapFn=NIL then just list all names and UlDs: if
mapFn=T then just the names.

MarkDeleted objToBeDeleted) [Method of Environment]
Mark object as deleted in KB when new layer is written out. Done by smashing
localRecord field of entity. but NOT storedIn field. See SelectChangedEntity.

Open) [Method of Environment]
Read in the index of ali the layers referred to by contents of outputKB.

WriteBoot) [Method of Environment|

Make outputKB write it’s boot file.

60

(= self WritelUpaats kb pvicthod of Environment
VWorte Lo “ihName or il chuneos o kbName =T,

9.0 The Class Laver

Layer [Class]

[Vs:

file - {1V oof Laver]
Name of the file where Filelaver is found. Compute it on firstFewch from the
kbName by searching directory path. Don't save full name on file.

kbName [TV of Layer]
Name of kb where this laver was stored e.g. BRIDGE.

position [IV of Layer]
Index on file where Filel.aver is found.

assockB [TV of Layer]
Name of KB with which this Layer is associated conceptually.

Methods:

(« self AddEntities entityList) o [Method of Layer]
Add seif to entitv list for dumping on boot laver.

(« self Connect nameTable) [Method of Laver}]
Open laver file and read in index.

(« self Files fileLst) [Method of Laver]
Add my file to list if it is not alreadyv there.

(« self MapObjectNames mapFn noUIDs) [Method of Laver]

Apply mapFn to objectnames in layer, or make a list of them if mapFn=NIL.

921 The Class KBMeta

KBMeta [Class]
Methods:
(« self New kbName envName newVersionFlg) [Method of KBMeta]

Create a new KnowledgeBase file. and an environment if kbName is given, and make
environment current.

(« self 01d kbName envName) [Method of KBMeta]
GCet KB tor this kbName. (Causes boot laver to be read unless KB is already in
the global wble) [f envName is given, creates an Environment of that name and
connects the environment to the KB.

51

hed
I~
(S

EFnvironmentMeta

The Cliass Favironmentdveta

v

[vethod of KBMer]

[Method of KBMetal

ead inoin O nrdady SxXisung

Summarize fromiB3Name toNBName assocKBNames namedObjectsOnly)
[Method of KBMera]
[ncorporate all objects of fromKBName with assocKB in assocKBNames (or all if
assocKBNames=NIL}int new KB toKBName. [f namedObjectsOnly = T. then only
copies over all those entities referred to by a name or by a named object directly or
indirectly. This latter feature provides @ mechanism for garbage collection.

The Class Environmentiieta

[Class]

Methods:

(« self Cleanup)

(= self Close leaveKBattachedFlg)

{« self OpenFiles)

[Method of EnvironmentMeta]
Write updates for all open environments.

[Method of EnvironmentMeta]
Close all the open environments.

[Method of EnvironmentMeta]
Returns a list of the open files tor all open Environments.

i INTRODUCTION TO RULE-ORIENTED PROGRAMMING IN LOOPS

Cdecision-making expertise in many kinds of problem solving can be cxpressed succinctly
soof rules. The following sections describe facilities in mom for representing rules. and for

Jing kmw‘z g,g -based systems with rule-ortented programming. The Loops rule language provides

an cxperimental framework for developing knowledge-based systems. Ihy rule language and programming
environment are integrated with the object-oriented. data-oriented, and procedure-oriented parts of Loops.

ules in Toops are organized into producton systems {called RuleSetsy with SDCLlﬁLd control structures
or selecting and executing the rules. The work space for RuleSets is an arbitrary Loops object.

Decision knowledge can be mmored from control knowledge to enhance the perspicuity of rules. The rule
language separates decision knowledge from meta-knowledge such as control information, rule dcscnpuons.
debugging instructions. and audit trail descriptions. An audit trail records inferential support in terms of
the rules and data that were used. Such trails are important for knowledge-based systems that must be
able to account for their results. They are also essential for guiding belief revision in programs that need
to reason with incomplete information.

10.1 Introduction

Production rules have been used in expert systems (o represent decision-making knowledge for many
kinds of problem-solving. Such rules (also called if*rhen rules) specify actions to be taken when certain
conditions are satisfied. Several rule languages fe.g.. OPS5 [Forgy81], ROSIE [Fain81], AGE [Aiello&l])

have been developed in the past few years and used for building expert systems. The following sections
describe the concepts and facilities for rule-oriented programming in Loops.

Loops has the following major features for rule-oriented programming:

(D Rules in Loops are organized into ordered sets of rules (called RuleSets) with specified control
structures for selecting and executing the rules. Like subroutines, RuleSets are building blocks for
organizing programs hierarchically.

{(2) The work space for rules in Loops is an arbitrary Loops object. The names of the instance variables
provide a name space for variables in the rules.

(3} Rule-oriented programming is integrated with object-oriented, data-oriented. and procedure-
oriented programming in Loops.

(4) RuleSets can be invoked in several ways: [n the object-oriented paradigm, they can be invoked as
methods by sending messages to objects. In the data-oriented paradigm. thev can be mmvoked as
a side-effect of fetching or storing data in active values. They can also be invoked directly from
[LISP programs. This integration makes it convenient to use the other paradigms to organize the
interactions between RuleSets.

RuleSets can also be invoked from rules either as predicates on the LHS of rules. or as actions on
the RHS of rules. This provides a way for RuleSets o control the execution of other RuleSets.

.
(g
S

Basic Concepts

{6 Rules cun automaucally leave an ;mciit tratl. An audit rail 1S a record of inferential support in
terms of rules and data that were used. Such trails are important for programs that must be able

Lo ac i

count for thelr resuls. I:;cw can also be used o guide belief revision in programs that must
reason with incomplerte information.

{7 Decision knowlcdg can be separated from control knowledge to enhance the perspicuity of rules.
['he rule language separates decision knowledge from meta-knowledge such as control inrormation.
rule descriptions. debugging instructions, and audit trail descriptions.

{8y - The invocation of RuleScts can also be organized in terms of tasks, that can be executed. suspended,
and restarted. Using task primitives it is convenient to specify many varieties of agenda-based
control mechanisms.

(9) The rule language provides a concise svntax for the most common operations.
(10) There is a fast and efficient compiler for translating RuleSets into Interlisp functions.
(11) Loops provides facilities for debugging rule-oriented programs.

(12) The rule language is being extended to support concurrent processing.

The following sections are organized as follows: This section outlines the basic concepts of rule-oriented
programming in Loops. It contains many examples that illustrate techniques of rule-oriented programming.
The next section describes the rule syntax. The next section discusses the facilities for creating, editing,
and debugging RuleSets in Loops.

10.2 Basic Concepts

Rules express the conditional execution of actions. They are important in programming because they can
capture the core of decision-making for many kinds of problem-solving. Rule-oriented programming in
l.oops is intended for applications to expert and knowledge-based systems.

The following sections outline some of the main concepts of rule-oriented programming. Loops provides
a special language for rules because of their central role, and because special facilitics can be associated
with rules that are impractical for procedural programming languages. For example. Loops can save
specialized audit trails of rule execution. Audit trails are important in knowledge systems that need 0
explain their conclusions in terms of the knowledge used in solving a problemt. This capability is essential
in the development of large knowledge-intensive systems. where a long and sustained effort is required to
create and validate knowledge bases. Audit trails are also important for programs that do non-monotonic
reasoning. Such programs must work with incomplete information, and must be able to revise their
conclusions in response 1o new information.

H

THE LOOPS MANUAL

10.3 Organizing a Rule-Oriented Program

In anv.programming paradigm, it 1S important W have an organizational scheme for composing larze
systems from smaller ones. Stated differently, it is important t have a method for partitioning large
programs into nearly-independent and manageably-sized pieces. In the procedure-oriented paradigm.
programs are decomposed into procedures. [n the object-oriented paradigm, programs are decomposed
into objects. In the rule-oriented paradigm. programs are decomposed into RuleSers. A L.oops program
that uses more than one programming paradigm is factored across several of these dimensions.

RuleSet Name: CheckWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: whilel ;

While Condition: ruleApplied;

(* What a consumer should do when a washing machine fails.)
IF .Operational THEN (STOP T 'Success 'Working):
IF Toad>1.0 THEN .Reduceload;
IF ~pluggedInTo THEN .Plugln;

{1} IF pluggedInTo:voitage=0 THEN breaker.Reset;

{1} IF pluggedInTo:voltage<110 THEN JPGE.Call;

{1} THEN dealer.RequestService;

{1} THEN manufacturer. Complain;

{1} THEN $ConsumerBoard.Complain;

{1} THEN (STOP T 'Failed 'Unfixable);

Figure 13. RuleSet of consumer instructions for testing a washing machine. The work space for
the RuleSet is a Loops object of the class WashingMachine. The control structure Whilel
loops through the rules wrying an escalating sequence of actions, starting again at the beginning
if some rule is applied. Some rules, called one-shot rules. are executed at most once. These
rules are indicated by the preceding one in braces.

There are three approaches to organizing the invocation of RuleSets in Loops:

Procedure-oriented Approach. This approach is analogous to the use of subroutnes in procedure-oriented
programming. Programs are decomposed into RuleSets that call each other and return values when they
are finished. SubRuleSers can be invoked from multiple places. They are used to simplify the expression
in rules of complex predicates, generators, and actions.

Object-oriented Approach. In this approach. RuleSets are installed as methods for objects. They are
invoked as methods when messages are sent to the objects. The method RuleSets are viewed analogously
t other procedures that implement object message protocols. The value computed by the RuleSet is

65

Control Structures for Selecting Rules

returned as the value of the message sending operation.

Dataoriented Approach. In this approach. RuleSers are installed as access functons in active values. A
RuleSer in an active value 15 invoked when a program gets or puts a value in the Loops object. As with
active values with Lisp funcuons tor the gerfn or puefn these RuleSet active values can be triggered by

any Loops program, whether rule-oriented or not

These approaches for organizing RuleSets can be combined to control the interactons between bodies of
decision-making knowledge expressed in rules.

10.4 Control Structures for Selecting Rules

RuleSets in Loops consist of an ordered list of rules and a conwol structure. Together with the contents
of the rules and the data, a RuleSet control structure determines which rules are executed. Execution
is determined by the contents of rules in that the conditions of a rule must be satsfied for it o be
executed. Execution is also controlled by data in that different values in the data allow different rules to
be satisfied. Criteria for iteration and rule selection are specified by a RuleSet control structure. There
are two primitive control structures for RuleSets in Loops which operate as follows:

Dol [RuleSet Control Structure]
The first rule in the RuleSet whose conditions are satisfied is executed. The value of
the RuleSet is the value of the rule. [f no rule is executed, the RuleSet returns NI L.

The Do1 control structure is useful for specifying a set of muctually exclusive actions,
since at most one rule in the RuleSet will be executed for a given invocation. When
a RuleSet contains rules for specific and general situations, the specific rules should
be placed before the general rules.

DoAT1 [RuleSet Control Structure]
Starting at the beginning of the RuleSet, every rule is executed whose conditions are
satisfied. The value of the RuleSet is the value of the last rule executed. If no rule
is executed. the RuleSet returns NIL.

The DoAT11 control structure is useful when a variable number of additive actions are
to be carried out, depending on which conditions are satisfied. In a single invocation
of the RuleSet, all of the applicable rules are invoked.

figure 14 illustrates the use of a Do 1 control structure 1o specify three mutually exclusive actions.
RuleSet Name: SimulateWashingMachine;

WorkSpace Class: WashingMachine;
Control Structure: Dol ;

{(* Rules for controlling the wash cycle of a washing machine.)
IF controlSetting="Regularfabric
THEN .Fi11 .Wash .Pause .SpinAndDrain

.SprayAndRinse .SpinAndDrain
.Fi11 .DeepRinse .Pause .DampDry;

66

THE LOOPS MANUAL

IF controlSetting='PermanentPress

THEN .Fil11 .Wash .Pause .SpinAndPartiallrain
.Fil11Cold .SpinAndPartialDrain
Fi11Cold .Pause .SpinAndDrain
.Fi1iCold .DeepRinse .Pauss .DampDry;

IF controlSetting="Delicatefabric

THEN .Fi11 .Soakl .Agitate .Soak4 .Agitate
.Soakl .SpinAndDrain .SprayAndRinse
.SpinAndDrain .Fil1l .DeepRinse .Pause .DampDry;

Figure 14, Rules to simulate the control ot the wash cycle of a washing machine. These rules
illustrate the use of the Do 1 control structure to select one of three mutually exclusive actons
These rules were abstracted from [Maytag] for the Maytag A510 washing machine.

There are two control structures in Loops that specify iteraton in the execution of a RuleSet. These
control structures use an explicit while-condition associated with the RuleSet. They are direct extensions
of the two primidve control structures above.

Whilel [RuleSet Control Structure]
This is a cyclic version of Dol. [f the while-conditon is satisfied, the first rule
is executed whose conditions are sartisfied. This is repeated as long as the while
condition is satisfied or until a Stop statement or transfer call is executed (see page
93). The value of the RuleSet is the value of the last rule that was executed, or NIL
if no rule was executed.

WhileAll [RuleSet Control Structure]
This is a cyclic version of DoA11. If the while-condition is satisfied, every rule
is executed whose conditions are satisfied. This is repeated as long as the while
condition is satisfied or until a Stop statement is executed. The value of the RuleSet
is the value of the last rule that was executed, or NIL if no rule was executed.

The “while-condition™ is specified in terms of the variables and constants accessible from the RuleSet.
The constant T can be used to specify a RuleSet that iterates forever {(or untl a Stop statement or transfer
is executed). The special variable ruleApplied is used to specify a RuleSet that continues as long as
some rule was executed in the last tteration. figure 15 illustrates a simple use of the WhiteAl1 control
structure to specify a sensing/acting feedback loop for controlling the filling of a washing machine tub
with water.

RuleSet Name: Fill1Tub;

WorkSpace Class: WashingMachine;
Control Structure: WhileAll

Temp Vars: waterbLimit;

While Cond: T;

(* Rules for controlling the filling of a washing machine
tub with water.)

{11} IF loadSetting='Small THEN waterLimite«l10;

{11} IF loadSetting='Medium THEN waterlLimit«<13.5;
{11} IF loadSetting='lLarge THEN waterlimite«l1l7;

67

One-Shot Rules

{11}y IF loadSetting='Extralarge THEN waterLimit«20;

A\

(* Respond to a change of temperature setting at any time.)

IF temperatureSetting= Hot
THEN HotWaterValve.Open ColdWaterValve.Close:

[F temperatureSetting="'Warm
THEN HotWaterValve.Open ColdWaterValve.Open;

IF temperatureSetting='Cold
THEN ColdWaterValve.Open HotWaterValve.Close:

(* Stop when the water reaches its 1imit.)

IF watertLevelSensor.Test >= waterlLimit
THEN HotWaterValve.Close ColdWaterValve.Close
(Stop T 'Done 'Filled):

Figure 15. Rules to simulate filling the tub in a washing machine with water. These rules
illustrate the use of the WhileA11 control structure to specify an infinite sense-act loop that
is terminated by a Stop statement. These rules were abstracted from [MayTag].

16.5 One-Shot Rules
One of the design objectives of Loops is to clarify the rules by factoring out control information whenever

possible. This objective is met in part by the declaration of a control structure for RuleSets.

Another Important case arises in cyclic control structures which some of the rules should be executed only
once. This was illustrated in the WashingMachine example in figure 13 where we wanted to prevent the
RuleSet from going into an infinite loop -of resetting the breaker, when there was a short circuit in the
Washing Machine. Such rules are also useful for initalizing data for RuleSets as in the example in figure

15.

[n the absence of special syntax, it would be possible to encode the information that a rule is to be
executed only once as follows:

Control Structure: Whilel
Temporary Vars: triedRuled;

IF ~triedRulel condition; conditiony THEN triedRulel3«T actiony;

In this example. the variable triedRule3 is used to control the rule so that it will be executed at most
once in an invocation of a RuleSet. However, the prolific use of rules with such control clauses in large
systems has led to the common complaint that control clauses in rule languages defeat the expressiveness
and conciseness of the rules. For the case above. Loops provides a shorthand notation as follows:

{1} IF condition; conditiong THEN actiony;

The brace notation means exactly the same thing in the example above, but it more concisely and clearly

68

THE LOOPS MANUAL

indicates that the rule executes only once. These rules are called “one shot” or “execute-once’” rules.

be executed al most once. but that it be tested at most

In some cases, it is desired not vnly that a rule
once. his corresponds to the following:

Control Structure: Whilel
Temporary Vars: triedRuled;

IF ~triedRuleld triedRuleld«T condition; conditiony THEN action;;

[n this case. the rule will not be tried more than once even if some of the conditions fail the first time
that it is tested. The Loops shorthand for these rules (pronounced “one shot bang™) 1

{11} IF condition; conditiony THEN actionj;
These rules are called “try-once™ rules.

The two kinds of one-shot rules are our first examples of the use of meta-descriptions preceding the rule
body in braces. See page 80 for information on using meta-descriptions tor describing the creation of
audit trails. :

10.6 Task-Based Control for RuleSets

* * * Tasgks are Not Fully Implemented Yet * * =

Flexible control of reasoning is generally recognized as critical to the success of recent problem-solving
programs. Examples of flexible control are:

(1) In planning and design tasks, it is important to generate multiple alternatives. These alternatives
may be carried to different degrees of completion, depending on success. resource limitations,
and information gained during a problem-solving process. In some cases, an alternative may be
temporarily set aside, only to be revived later in light of new information.

(2) In analysis tasks, it is important o pursue multiple hypotheses in parallel. As evidence and
conclusions accumulate, some hypotheses may be abandoned but revived later.

(3) Search and discovery tasks can be organized as opportunistic best-first searches. At each step only
the most promising avenues are pursued. As some avenues fail to work out and new information
accumulates, the other avenues can be re-evaluated and sometimes raised in priority.

These examples require the ability (1) to suspend parts of a computation with the possibility of restarting
themn later. and (2) w0 reason about the control of computational resources.

Loops provides a set of language features to support these capabilities. based on the representation of the
execution of a RuleSer as a 7Task. A Task is a Loops object with much the same structure as an item in
an agenda {see figure 16). It represents the RuleSet being invoked. the data on which it is operating, and
the status of its execution.

H9

Task-Based Control for RuleSers

RepairTaskb:

ruteNumber: NIL doc (¥ Number of the next rule to be exacuted
Used for doNext and cycleNext.)
rs: #5RepairWashingMachine
doc (* RuleSet that was invoked.)
self: #&(Fixitdob "uidl"™)
doc (* work space given to the RuleSet.)
value: #&(MotorBrushes "uid2")
doc (* value returned by the RuleSet)
status: Suspended

doc (* Execution status. Examples: Started,
Done, Aborted, Suspended.)
reason: TooExpensive
doc (* Reason for the status. Examples: Success,
NoSpace, Blocked)
caller: #5(RuleSet "uid3")
doc (* Caller of the RuleSet.)
priority: 300

Figure 16. An example of a Task object. This Task could have been created for an invocation
of the RuleSet in figure 17. The Task records the RuleSet. its data. and its execution status. The
instance variable ruleNumber s used only for the control structures DoNext and CycleNext
as described in the next section. The instance variable priority was created in response (o the
Task Vars declaration in the RuleSet.

figure 17 illustrates a RuleSet for a task that can be suspended. This RuleSet represents part of the
behavior of a washing machine repair man. The repair task may be suspended after it has started on a
particular FixitJob object if the failure is not diagnosed or IS oo expensive.

RuleSet Name: RepairWashingMachine;

WorkSpace Class: Fixitdob;

Compiter Options: S ; (* S for Task Stepping.)
Control Structure: doAll ;

Task Vars: priority;

(* Rules for washing machine repair.)
{1} priority«300;

{1} IF ~(replacementPartemotor.FindBrokenPart)
THEN (STOP T 'Suspended 'NoDiagnosis);

IF replacementPart.Availability='NotInTruck hdursLimit < 1
THEN (STOP badPart 'Suspended 'UnavailablePart);

I[F replacementPart:cost > dollarLimit
THEN (STOP badPart 'Suspended 'TooExpensive);

[HE LOOPS MANUAL

tgure 17, A suspendable Pask. This RuleSet characterizes part of the behavior of a repair
man of washing machines. 1he Stop statements specity how the RuleSet may report failure
atter it has been started on a particular Fixitdob. [nformauon in task variables (like priority)

£ ~ 1 r

are saved in the Task record. In this example. the machine failure may not be diagnosed o

mayv be 0o cxpensive W ix.

figure 18 illustrates a RuleSet for controliing suspendable tasks. This RuleSet represents part of the
behavior of the owner of a washing machine repair business. [his RuleSet may restart anv suspended
task by the repairman RuleSet after getiing more information about the customer.

RuleSet Name: RePlanRepairWork;

WorkSpace Class: JobSchedule;

Control Structure: cycleAll ;

RuleVars: currentTask customer substitutePart;

(* Samplie Rules -- part of the behavior of a manager of a
Washing Machine repair business.)

IF currentTask:status="'Success
THEN (STOP T 'Done 'Success);

IF currentTask:reason='UnavailablePart
substituteParteexpert.AskForSubstitutePart
THEN currentTask:self:replacementPartesubstitutePart
{(Start currentTask): :

IF customer:category='VIP
currentlTask:reason='TooExpensive
THEN currentTask:self:dollarLimit « VIP:dollarLimit
currentTask:priority « 100
(Start currentTask);

Figure 18. Control of Tasks. This RuleSet characterizes part of the behavior of the manager of
a washing machine repair business. When a repair-task fails, the manager RuleSet may change
some resource limits and start the repair task going again (e.g., if the customer is a VIP).

Tasks. Task variables are used for saving state intormation. Distinct Tasks can refer (o distinct invocations
of the same RuleSet in different states of execution. The language features supporting Tasks are described
later.

[.oops has facilities for creating Task objects. starting and walting for tasks, stepping and suspending

10.7 Control Structures for Generators e

Since Tlasks represent suspended processes with local state. it is nawural © use them for describing
generators. For the concise specification of generators, two additional control structures have been
provided in Loops. To use these control structures. a Task is first created that associates a RuleSet and a
work space. The Task is then invoked repeatedly. At each invocation at most one rule is activated and

5 7

Saving an hudit Trail of Rule fovocation

the Task records which ruie was activated. o the next invocation, the search for the next rule o apply

starts with the rule tellowing the rule thut was last executed.

DoNext [
\p each nvocaton of the lask, the next rule is exect
satisfied. The value of the RuleSet 15 the value of the execun
rule was exccured. Aftter the last rule of the RuleSet has been tried. the Task will
always return NIL.

g

o
<
(o8
-
jony
¢
-
&
i
—
—
)
-

This control structure is convenient for specifying a generator of a limited number
of items. At each invocaton. the remaining rules are wied untl the next iem s
generated. The generator rewurns NIL after all of the rules have been ried.

WhileNext [RuleSet Control Structure]
At each invocation of the Task. the generator first checks whether the while condition
of the RuleSet is satisfied. [f yes, then the next rule is executed whose conditions
are satisfied. The rules can be visualized as forming a circle. so that after the last
rule of the RuleSet has been tried. the generator goes back to the beginning. During
a single invocation. no rule is tried more than once and the while-condition is tested
only once at the beginning of the Step. The value of the RuleSet is the value of the
last rule executed or NIL if no rule was executed.

This control structure is convenient for specifying a generator that repeats itself
periodically, and which has an cxtra condition that is factored from all of the rules.

If a RuleSet with one of these control structures is invoked directly (instead of through a Task), its
behavior is equivalent to that of a Dol control structure.

The variable ruleApp1ied. which can be used in the while-condition of Whilel and WhileA1T control
structures. is not meaningful with the WhileNext control structure since at most one rule is applied in
a given invocation.

10.8 Saving an Audit Trail of Rule Invocution

A basic property of knowledge-based systems is that they use knowledge to infer new facts from older
ones. (Here we use the word ““facts” as a neutral term, meaning any information derived or given, that is
used by a reasoning system.) Over the past few vears, it has become evident that reasoning systems need
to keep rrack not only of their conclusions, but also of their reasoning steps. Consequently, the design
of such systems has become an active research area in AL The audit trail facilities of Loops support
experimentation with systems that can not only use rules to make inferences. but also keep records of the
inferential process itself.

10.8.1 Motivations and Applications

S
Debugging. In most expert systems. knowledge bases are developed over time and are the major
investment. This places a premium on the use of tols and methods for identfying and correcting bugs
in knowledge bases. By connecting a system's conclusions with the knowledge that it uses to derive them.
audit trails can provide a substantial debugging aid. Audit trails provide a tocused means of identifying
potentially errorful knowledge in a problem solving context.

THE LOOPS MANUAL

[ocpianarion Facrlives, fxpert systems are often intended ror use by people other than their creators. or
be o group of people pooling their knowledge., An important consideration in validating expert svstems
15 thut f':dSUTNI‘N shouid be mzmparwz that 15, that a svstem should be able w give an account of 1S

reasuning nrocess. Facilities for doing this are someumes called explanarion systems and the creation
of powerful explanation systems $ an actve research area in Al and cognitive science. The audit trail
nechanism prowdw an essential computational prerequisite for building such systems.

Belief Revision. Another active research area is the development of systems that can “change their minds™.
This characteristic is critical for systems that must reason from incomplete or errorful information. Such
systems get leverage from their ability to make assumptions, and then to recover from bad assumptions
hy efficientdy reorganizing their beliefs as new information is obtained. Rescarch in this area ranges
from work on non-monotonic logics, 10 a variety of approaches to beliet revision. The facilities in the
rule language make it convenient to use a user-defined calculus of belief revision, at whatever level of
abstraction is appropriate for an application.

10.8.2 Overview of Audit Trail Implementation

When audit mode is specified for a RuleSet. the compilation of assignment statements on the right-hand
sides of rules is altered so that audit records are created as a side-effect of the assignment of values to
instance variables. Audit records are Loops objects, whose class is specified in RuleSet declarations. The
audit records are connected with associated instance variables through the value of the reason properties
of the variables.

Audit descriptions can be associated with a RuleSet as a whole. or with specific rules. Rule-specific
audit information is specified in a property-list format in the meta-description associated with a rule. For
example, this can include certainty factor information, categories of inference, or categories of support.
“Rule- speuﬁc information overrides RuleSet information.

During rule execution in audit mode, the audit information is evaluated after the rule’s [LHS has been
satisfied and before the rule’s RHS is applied. For each rule applied. a single audit record is created
and then the audit information from the property list in the rule’s meta-description is put into the
corresponding instance variables of the audit record. The audit record is then linked to each of the
instance variables that have been set on the RHS of the rule by way of the reason property of the
instance variable.

Additional computations can be triggered by associating active values with either the audit record class
or with the instance variables. For example, active values can be specified in the audit record classes in
order to define a uniform set of side-effects for rules of the same category. In the following example
such an active value is used to carry out a “cerinty factor” calculation.

10.8.3 An Example of Using Audit Trails

The following example illustrates one way to use the audit trail facilittes. figure 19 dlustrates a RuleSet
which is intended to capture the decisions for evaluating the potential purchase of a washing machine. As
with any purchasing situation. this one includes the difficulty of incomplete information about the product.
The meta-descriptions for the rules categorize them in terms of the basis of belief (fact or estimate) and a
certainty factor that is supposed to measure the “implication power” of the rule. (Realistic belief revision
systems are usually more sophisticated than this example.)

Wi Feample of Using udir Trails

RuleSet Name: fvaluateWashingMachine;
WorkSpace Class: EvaluationReport:
Control Structure: doAll

Audit Class: CFAuditRecord

Compiler Options: A:

(* Rules for evaluating a potential washing machine for a purchase.)

{(basis«'Fact cfel)}

IF buyer:familySize>2 machine:capacity<20

THEN suitability«'Poor;

{(basis«’'Fact cf«.8)} B
reliability«(« $ConsumerReports GetFacts machine);

{(basis«'Estimate cf«.4)}
[F ~reliability THEN reliability«.5:

tigure 19. RuleSer for evaluating a washing machine for purchase. [ike many kinds of
problems, a purchase problem requires making decisions in the absence of complete information.
For example, in this RuleSet the reliability of the washing machine is estimated to be .5 in
the absence of specific information from ConsumerReports. The meta-description in braces
in front of each rule characterizes the rule in terms of a ¢f (certainty factor) and a basis
(basis of belief). Within the braces. the variable on the left of the assignment statement is
always interpreted as meaning a variable in the audit record. and the variables on the right are
always interpreted as variables accessible within the RuleSet. This makes it straightforward to
experiment with user-defined audit trails and experimental methods of belief revision.

The result of running the RuleSet is an evaluation report for each candidate machine. Since the RuleSet

was run in audit mode. each entry in the evaluation report i$ tagged with a reason that points to an audit
record. figure 20 iltustrates the evaluation report for one machine and one of its audit records.

EvaluationReport "uidl"”

expense: 510
suitability: Poor cc 1 reason
reliability: .5 ¢c .6 reason "uid2"

AuditRec "uid2"

rule: "uid3dn
basis: Estimate;
cf: #(.4 NIL PutCumulativeCertainty)

Figure 20. Example of an audic trail. The object for the expense report was prepared by the

74

THE LOOPS MANUAL

RuleSet in figure 19. In this cxample. cach of the entries in the report has a reason and
4 cc {(for cumulative certainty) property m addition to the value. The value of (I ¢ reason
properties are audit records created as a side effect of running the RuleSet. The auditing process
records the meta-descripdon information of each rule n its audit record. This information can
he used later for generating explanations or as a basis for belief revision. The auditing process
can have side effects. For example. the acuve value in the ¢f variable of the audit record
performs a computation o maintain 2 calcutated cumulative certainty in the reliability
variable of the evaluation report.

The result of running the RuleSet is an evaluation report for each candidate machine. The meta-
descriptions for basis and ¢f are saved directly in the audit record. The cerrainty facior calculation in
this combines information from the audit description with other information already associated with the
object. To do this. the ¢f description triggers an active value inherited by the audit record from its class.
This active value computes a cumulative certainty in the evaluation report. (Other variations on this idea
would include certainty information descriptive of the premises of the rule.)

10.9 Comparison with other Rule Languages
This section considers the rationale behind the design of the Loops rule language. focusing on wavs that

it diverges from other rule languages. In general, this divergence was driven by the following observation:

When a rule is heavy with control information, it obscures the domain knowledge thar the rule is intended
1o convey.

Rules are harder to create, understand, and modify when they contain too much control information.
This observation led us to find ways to factor control information out of the rules.

10.9.1 The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the Loops rule language is the factored syntax for
meta-descriptions, which provides information about the rules themselves. Traditional rule languages only
factor rules into coaditions on the left hand side (ILHS) and actions on the right hand side (RHS), without
general provisions for meta-descriptions.

Decision knowledge expressed in rules 1S most perspicuous when 1t IS not mixed with other kinds
knowledge, such as control knowledge. For example, the following rule:

IF ~triedRuled4 pluggedInTo:volitage=0
THEN triedRuledel breaker.Reset;

is more obscure than the corresponding one-shot rule from figure 13:
{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;
which factors the control information (that the rule s w be applied at most once) from the domain
knowledge (about voltages and breakers). In the [oops rule language, a meta-description (MD)

specified in braces in front of the LHS of a rule. For another example. the following rule from figure 19:

{(basis«'Fact cf«.8)}

Phe Rationale for RuleSer Hierarchy

I[F buyer:familySize>Z machine:capacity<zd
THE 1 suitability«'Foor:

uses an MD 1o indicate that the rule has a parucular of ﬁrm nty factor’) and basis category for
helief support. The MDD in this exampie factors the deseription ot the inference category of the rule from
the acton knowledge in the rule.

fn a large knowledge-based system. a substantial amount of control information must be specified in order
to preclude combinatorial explosions. Since earlier rule languages fail to provide a means for mcwrmg
meta-information. they must either mix 1t with the domain knowledge or express it outside the rule
language. In the first opton, perspecuity 18 degraded. [n the second vption. the wransparency of the
svstem 1S degraded because the knowledge ts hidden.

10.9.2 The Rationale for RuleSet Hierarchy

Some- advocates of production systems have praised the Hatness of traditonal production systems, and
have resisted the imposition of any organization to the rules. The flat organization is sometimes touted as
making it easy (o add rules. The argument is that other organizations diminish the power of pattern-directed
invocation and make it more complicated to add a rule.

In designing [oops. we have tended to discount these arguments. We observe that there is no inherent
property of production systems that can make rules additive. Rather. addirivity s a consequence of the
independence of particular sets of rules. Such independence is seldom achieved in large sers of rules.
When rules are dependent. rule invocation needs to be caretully ordered.

Advocates of a flat organization tend to organize large programs as a single very large production system.
In practice, most builders of production systems have tound it essential to create groups of rules.

Grouping of rules in flat systems can be achieved in part by using context clauses in the rules. Context
clauses are clauses inserted inte the rules which are used to alter the How of control by naming the context
explicitly. Rules in the same “context” all contain an extra clause in their conditions that compares the
context of the rules with a current context. Other rules redirect control by switching the current context.
Unfortunately, this approach does not conveniently lend itself to the reuse of groups of rules by different
parts of a program. Although context clauses admit the creation of “subroutine contexts”, they require
a user to explicitly program a stack of return locations in cases where contexrs are invoked from more
than one place. The decision o use an implicit calling-stack for RuleSet invocation in Loops is another
example of the our desire to simplify the rules by factoring out control information.

10.9.3 The Rationale for RuleSet Control Structures

Production languages are sometumes described as having a recognize-act cyele, which specifies how rul
are selected for execution. An important part of this cycle 1s the conflict resolution strategy, which specifies
how to choose a production rule when several rules Ha\e conditions that are satisfied. For example, he
0PS5 production language [Forgy81] has a conflict resolution strategy (MEA) which prevents rules from
heing invoked more than once. prioritizes rules according to the recency of a change (o the data, and
gives preference to production rules with the most specific conditions.

In designing the rule language for [oops, we have favored the use of a small number of specialized
control structures to the use of a single complex conflict resolution strategy. [n so doing, we have drawn

THE LOOPS MANUAL

on some control stru Czu es in common use m familiar programmin ces. For example. Dol s like
lisp’s COND. DoATT s like Lisps PROG. WhileAl T Issimilar to WHILE staements in many programming

languages.

Uu
o
=)

s
-
-

s
I
v

!

The specialized control structures are ntended for concisely representing programs with dirferent control
relationships among the rules. For example. the DoA 11 control structure 1s usctul for rules whose etfects
are intended 1o he additive and the Do 1 control sgucture s appropriale for spectfving mum;uly exclustve
actions. Without some kind of iterative control structure that allows rules o be executed more than once,
it would be impossible to write a simulation program such as the washing machine simulation in figure
15.

We have resisted a reductionist argument for having only one control structure for all programming. For
example. it could be argued that the control structure Dol is not stricdy necessary because any RuleSet
that uses Do 1 could be rewritten using DoAT11. For example, the rules

Control Structure: Dol:

IF 3.1 bl Cl THEN dl ez:
IF an b2 9 THEN d2 82;
IF a3 b3 c3 THEN dg es;

could be written alternatively as

Control Structure: DoAll;
Task Vars: firedSomeRule;

IF a; by ¢; THEN TiredSomeRule«T d; ey;
IF ~firedSomeRule apy by cog THEN firedSomeRule«T dy eg;
IF ~firedSomeRule ag by c3 THEN firedSomeRule«T dj3 ej3;

However. the Do 1 control structure admits a much more concise expression of mutually exclusive actions.
In the example above, the Dol control structure makes it possible to abbreviate the rule conditions
reflect the assumption that earlier rules in the RuleSet were not satisfied.

For some particular sets of rules the conditions are naturally mutually exclusive. Even for these rules
Do1 can yield additional conciseness. For example, the rules:

Control Structure: Doi;

IF al bl Cl THEN dz el;
IF ~ajy by ¢y THEN dg eg;
IF ~a1 ~b1 Cl THEN d3 63;

can be written as

Control Structure: Dotl;

IF aj bl 1 THEN dz ez;
IF bl Cl THEN d_? 62;
IF Cl THEN d3 83;

Similarly it could be argued that the Dol and DoA1 1 control structures are not strictly necessary because

i

The Rationale for an Integrated Programming Fnsironment

such RuleSets can always be writien v terms of Whitel and Whileail. Following this reductiionism
W is end, we can observe that everv RuleSet could be re-writien in werms of WhileAll

10.9.4 The Rationale for an Integrated Programming Eavironment

paradigms. In contrast to single-paradigm rule systems, this integrativn has two major benefits, |
factlitates the construction of programs which don't qurclf fit the rule-oriented paradigm. Rule-oriented
programming can be used selectively for represening just the appropriate decision-making xnowledge i
a large program. Integration also makes it)L\Cnlhﬂt 1o use the other paradigms w help organize the
interactions between RuleSets.

RuleSets in Loops are integrated with procedure-oriented. object-oriented. and duta-oriented pr OETamming

:}

Using the object-oriented paradigm, RuleSets can be invoked as methods for Loops objects. figure 21
illustrates the installation of the RuleSet SimulateWashingMachineRules to carrv out the Simulate
method for instances of the class WashingMachine. The use of object-oriented paradigm is facilitated
by special RuleSet syntax for sending messages to objects, and for manipulating the data in Loops objects.
In addition, RuleSets, work spaces, and tasks are implemented as L_oops objects.

[DEFCLASS WashingMachine
(MetaClass Class Edited (* "mjs: 25-Nov-82 16:42")
doc (* Home appliance for washing clothes.))
{Supers ElectricalDevice PlumbedDevice CleaningDevice)
(ClassVariables)
(InstanceVariables
(controlSetting Medium
doc (* One of Small, Medium, Large, Extralarge)) ...)
(Methods
(Fi11 WashingMachine.Fi11 doc (* Fill the tub with water.))
(Wash WashingMachine.Wash doc (* Perform the wash cycle.))
(Simulate UseRuleSet RuleSet SimulateWashingMachineRules)

-]

Figure 21. Example of using a RuleSet as a method for object-oriented invocation. This
definition of the class WashingMachine specifies that Lisp functions are to be invoked for
Fi11 and Wash messages. For example. the Lisp function WashingMachine . Fil1l is to
be applied when a Fi11 message is received. When a Simulate message is received. the
RuleSet SimulateWashingMachineRules is to be invoked with the washing machine as its
work space. Simulate messages o invoke the RuleSet may be sent by any Loops program,
including other RuleSets.

Using the data-oriented paradigm, RuleSets can be installed in actuive values so that they are triggered hy
side-effect when Loops programs get or put data in objects. For example:

(DEFINST WashingMachine (StefiksMaytagWasher "uid2")
(controiSetting Regularfabric)
(loadSetting #(Medium NIL RSPut) RSPutfn CheckOverlLoadRules)

(waterLevelSensor "uid3")

i
i

JOPS MIAND A

i
4

£

=

3

th

{

YrOEram

.
data-orl
not

79

11 PHE RULE TANGUAGE

11 Rule Forms

A rule o Loops describes actions w be waken when specified conditions are sausfied. A rule has three
major parts called the left Aand side 1 HS) for describing the conditions, the richr hand side (RHS) for
describing the actions. and the mera-descriprion (M1} tor describing the rule iself. In the simplest case
without a meta-description. there are two equivalent syntactic rorms:

a0

LHS -> RHS:

IF LHS THEN RHS;
The If and Then tokens are recognized in several combinations of upper and lower case letters. The
syntax for LHSs and RHSs is given below. [n addition, a rule can have no conditions (meaning always
perform the actions) as follows:

-> RHS;

if T then RHS:

Rules can be preceded by a meta-description in braces as in:
{MD} LHS -> RHS;

{MD} If LHS Then RHS;

{MD} RHS;

Examples of meta-information include rule-specific control information. rule descriptions, audit instruc-
tons. and debugging instructions. For example, the syntax for one-shot rules shown on page 68:

{1} IF condition; conditiony THEN actiony;

is an example of a meta-description. Another example s the use of meta-assignment statements for
describing audit trails and rules. These statements are discussed on page 89.

[LHS Syntax: The clauses on the LHS of a rule are evaluated in order from left to right to determine
whether the [LHS is satisfied. If they are all sausfied. then the rule is satisfied. For example:

A B C+D (Prime D) -> RHS;

In this rule. there are four clauses on the LHS. If the values of some of the clauses are NIL during
evaluation, the remaining clauses are not evaluated. For example. if A 1s non-NIL but B is NIL. then the
[LHS is not satsfied and C+D will not he evaluated.

RHS Synrax: The RHS of a rule consists of actions to be performed if the LHS of the rule is satisfied.
These actions are evaluated in order from left to right. Acuons can be the invocation of RuleSets, the

sending of Loops messages. Interlisp function calls. variables. or special termination actions.

RuleSets alwavs return a value. The value returned hy a RuleSet is the value of the last rule that was

PO i [D I BN
CECCULSO. Ui

transfer call a8 ¢

actons on s !

Comments: Comments can be inserted berween rules in the Ruleber They are enclosed in narentheses
i ;

with an asterisk for the first character as follows:

(* This is a comment)

11.2 Kinds of Variables

Loops distinguishes the following kinds of variables:

RuleSer arguments: All RuleSets have the varable sel1f as their workspace. References to self can
often be elided in the RuleSet syntax. For example, the expression sel1f.Print meansto send a Print
message o self. This expression can be shortened to .Print . Other arguments can be defined for
RuleSets. These are declared in an Args: declaration.

[nstance variables: All RuleSets use a Loops object for their workSpace. I[n the LHS and RHS of a
rule, the first interpretation tried for an undeclared literal is as an instance variable in the work space.
Instance variables can be indicated unambiguously by preceding them with a colon. {c.g.. :varName or
obj: varName).

Class variables: Literals can be used to refer to class variables of Loops objects. These variables must be
preceded by a double colon in the rule language, (e.g., : :classVarName 0r obj: : classVarName).

Temporary variables: [iterals can also be used to refer to temporary variables allocated for a specific
invocation of a RuleSet. These variables are initialized to NIL when a RuleSet is invoked. Temporary
variables are declared in the Temporary Vars declaration in a RuleSet.

Task variables: [not implemented yet.| Task variables are used for saving information state information
related to particular invocations of RuleSets. Unlike temporary variables which are reset to NIL at the
beginning of RuleSet execution, Task variables are associated with Task objects and keep their values
indefinitely. Task variables are used to hold information about a computational process, such as indices
for generator Tasks. Task variables are declared indirectly - they are the instance variables of the class
declared as the Task Class of the RuleSet.

Audit record variables: Literals can also be used to refer to instance variables of audit records created by
rules. These literals are used only in meta-assignment statements in the MD part of a rule. They are used
to describe the information saved in audit records, which can be created as a side-effect of rule execution.
These variables are ignored if a RuleSet is not compiled in audir mode. Undeclared variables appearing
on the left side of assignment statements in the MD part of a rule are treated as audit record variables
by default. These variables are declared indirectly - they are the instance variables of the class declared
as the Audit Class of the RuleSet.

Rule variables: [Not implemented yet.] Literals can also be used to hold descriptions of the rules themselves.
These variables are used only in meta-assignment statements in the MD part of a rule. They describe
information to be saved in the rule objects. which are created as a side-etfect of RuleSet compilation.
Rule variables are declared indirectly —~ they are the instance variables in the Rule Class declaration.

[nterlisp variables: Iiterals can also be used (o refer to Interlisp variables during the invocation of a

31

[DR S S N
Kinds of Yariables

DOLUG T s0IMe Cadling

5]
oY

Tienicd programs are

| ,
ANEUAES (¢.g

Nisp VarNamel.

Reserved Words: The tollowing literals are treated as rewdonly vanables with special mmerpretations:

self [Variable]
The current work space.

rs ' [Variable]

task [Variable]
The Task representing the current invocation of this RuleSet.

caller [Variable]
The RuleSet that invoked the current RuleSet, or NIL if invoked otherwise.

ruleApplied [Variable]
Set to T if some rule was applied in this cycle. (For use only in while-conditions).

The following reserved words are intended mainly for use in creating audit trails:

ruleObject [Variable]

Variable hound to the object representing the rule itself.

ruleNumber . - [Variable]
Variable hound to the sequence number of the rule in a RuleSert.

rulelabel [Variable]
' Variable bound to the label of a rule or NTL.

reasons Variable]
Variable bound a list of audit records supporting the instance variables mentioned
on the [LHS of the rule. (Computed at run time.)

auditObject [Variable]
Variable bound to the object to which the reason record will be attached. (Computed

at run ume.)

auditVarName [Variable]
Variable bound to the name of the variable on which the reason will be attached as

a property.

Other Literais: As described later. literals can also refer to Interlisp functions. [.oops objects. and message
selectors. They can also be used in strings and quoted constanis.

The determination of the meaning of a literal is done at compile time using the declarations and syntax
of RuleSets. The characters used in literals are limited to alphabetic characters and numbers. The first
character of a literal must be alphabetic.

The syntax of literals also includes a compact notation for sending unary messages and for accessing

[ee]
[

s compoind erals. A compound hiteral is a literal

seos colens, and commas.,

QOuoted Constants: The quote sign is used tw indicate constant literals:
a b=3 c='open d=f e='"(This is a quoted expression) ->

n this example. the LHS is satistied if a is non-NIL. and the value of b is 3.and the value of ¢ is exactly
the atom open, the value ot d is the same as the value of £ and the valuc of e is the list {(This is a

quoted expression).
Strings: The double guote sign is used to indicate string constants:

IF a b=3 c='open d=f e=="This is a string”
THEN (WRITE "Begin configuration task") ... :

In this example, the LHS is satisfied if a is non-NIL, and the value of b is 3, and the value of ¢ is
exactly the atom open, the value of d is the same as the value of f. and the value of e equal to the
string "This is a string”.

Interlisp Constants: The literals T and NIL are interpreted as the [nterlisp constants of the same name.
a (Foo x NIL b) -> x«T ..., o

In this example, the function Foo is called with the arguments x, NIL, and b. Then the variable x is set
w T. ’

11.4 Infix Operators and Brackets
To enhance the readability of rules, a few infix operators are provided. The following are infix binary

operators in the rule syntax:

+ [Rule Infix Operator]
Addition.

et ’ [Rule Infix Operator]
Addition modulo 4.

- [Rule [nfix Operator]
Subtraction.

- [Rule Infix Operator]
Subtraction modulo 4.

[Rule [nfix Operator]
Multiplication.

[ole)
()

fnfiv Operators and Brackets

[Rule Infix Operator]

fhvision.

Ru

¢ Infix Operator]

¢ [Rule [nfix Operator|
[Less than.

>= [Rule [nfix Operator] -
Greater than or cqual,

<= [Rule Infix Operator]
[.ess than or equal.

= [Rule Infix Operator]
EQ — simple form of equals. Works for atoms, objects. and small integers.

= [Rule {nﬁk Operator]
MEQ. (Not £EQ.)

[Rule Infix Operator]

EQUAL - long form of equals.

<« ' [Rule I[nfix Operator]
Member, of a list. (FMEMB)

In addition. the rule syntax provides two unary operators as follows:

- {Rule Unary Operator]
Minus.

~ [Rule Unary Operator]
Not.

The precedence of operators in rule syntax follows the usual convention of programming languages. For
example

1+5*%3 = 16

and

[3<¢2+4] =T

Brackets can be used to control the order of evaluation:
[1+5]*3 = 18

Ambigwity of the minus sign: Whenever there S an ambiguity about the interpretation of a minus sign as
a unary or binarv operator, the rule svntax interprets it as a hinary minus. For example

a-b ¢ d -e [-f] (g -h) (< SFoo Move -j) ->

In this example. the first and second minus signs are both treated as binary subtracuon statements. [hat

THE LOOPS MaNUSAL

s the st three clauses are (1) a-b. (2) ¢ and (3) d-e. Because the rule syntax allows arbitary spacing

there 15 no syntax to separate clauses on the LHS of a rule. the interpretation of
T4 -eis as a single clause (with the subtraction) mstead of two clauses. To force the interpretation
5 URETY MInus onerator, one must use hrackets as ilustrated in the nexr clause. in this clause. the
minus sign i the clause [-f] is treated as a unary minus because of the brackets. The minus sign in
the funcuon call {g -h) 18 treated as unary because there is no preceding argument. Similarly, the -

in the message expression 1S treated as unary because there s no preceding argument.

I3 Interlisp Functions und Message Sending

Calls to Interfisp funcuons are parenthesized with the function name as the first literal after the left
narenthesis. Fach expression after the function name is treated as an argument to the function. For
example:

a (Prime b) [a -b] -> ¢ (Display b c+4 (Cursor x y) 2) ;

In this example, Prime, Display. and Cursor are interpreted as the names of Interlisp functions. Since
the expression [a -b] is surrounded by brackets instead of parentheses. it is recognized as meaning a
minus b as opposed to a call to the functuon a with the argument minus b. In the example above, the call
to the Interlisp function Display has four arguments: b, c+4. the value of the function call {Cursor
x y).and 2.

The use of Interlisp functions is usually outside the spirit of the rule language. However, it enables the
use of Boolean expressions on the [LHS beyond simple conjunctons. For example:

a {OR (NOT b) x. y) z => ... ;

Loops Objects and Message Sending: Loops classes and other named objects can be referenced by using
the dollar notation. The sending of Loops messages is indicated by using a left arrow. For example:

IF celle(« SLowCell Occupied? 'Heavy)
THEN (< cell Move 3 'North});

In the LHS, an Occupied? message is sent to the object named LowCe171. In the message expression
on the RHS. there is no dollar sign preceding ce11. Hence, the message is sent to the object that is the
value of the variable ce11.

For unary messages (i.e., messages with only the selector specified and the implicit argument sel1f), a
more compact notation is available as described selow.

Unary Message Sending: When a period is used as the separator in a compound literal, it indicates that a
unary message is to be sent to an object. {We will alternatively refer to a period as a dot.) For example:

tile.Type="'BlueGreenCross command.Type="'Slided -> ...
In this example. the object to receive the unary message Type is referenced indirectly through the tile
instance variable in the work space. The left literal is the variable tile and its value must be a Loops

object at execution time. The right literal must be a method selector for that object.

The dot notation can be combined with the dollar notatton to send unary messages to named [.oops
objects. For example,

Variables and Properties

$Tile.Type="8lueGreenCross
In this example. a unary Type message 18 sent o the Loops vhiect whose name is Tile.

I'he dot notation can also be used to send 4 mossage o the work space of the RuleSet, that . self.
For example. the rule

I[F scale>7 THEN .Displaylarge;

would cause a Displaylarge message 10 be sent o self. This 1s an abbreviation for

IF scale>7 THEN self.Displaylarge;

11.6 Variables and Properties

When a single colon is used in a literal, it indicates access to an instance variable of an object. For
example: :

tile:type="BlueGreenCross command:type=Slided -> ... ;

In this example, access to the Loops object is indirect in that it is referenced through an instance variable
of the work space. The left literal is the variable tile, and its value must be a Loops object when
the rule is executed. The right literal type must be the name of an instance variable of that object.
The compound literal £ile: type refers to the value of the type instance variable of the object in the
instance'variable tile.

The colon notation can be combined with the dollar notation to access a variable in a named Loops
object. For example,

$TopTile:type="BlueGreenCross

refers to the type variable of the object whose Loops name is TopTile.

A double colon notation is provided for accessing class variables. For example
truck::MaxGas<45 ::ValueAdded>600 -> ... ;

In this example, MaxGas is a class variable of the object bound to truck. ValueAdded is a class
variable of sel1f.

A colon-comma notation is provided for accessing property values of class and instance variables. For
example

wire:,capacitance>5 wire:voltage:,support='simulation ->

[n the first clause, wire is an instance variable of the work space and capacitance is a property of
that variable. The interpretation of the second clause is left to right as usual: (1) the object that is the
value of the variable wire is retrieved. and (2) the support property of the voltage variable of that
object is retrieved. For properties of class variables

::Wire:,capacitance>5 node::Voltage:,support='simulation ->

LOOPS VIANUAL

In the frst clause, wire 15 a class variable of the work space and capacitance is a property of that
variable. [n the second clause. node is an instance variable bound to some object. Voltage is a class
variable of that object. and Support s a property of that class vanable. '

4

[he property notation is illegal for ruleVars and lispVars since those variables cannot have properties.

11.7 Perspectives

* * * Not implementéd vet in the rule language ™ * *

[n many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a futher, as an emplovee. and as
a traveler. Each point of view, called a perspective, contains information for a different purpose. The
perspectives are related to each other in the sense that they collectively provide information about the
same object. As described in the Loops manual, Loops supports this organizational metaphor by prowdmc
special mixin classes called perspectives and nodes.

Loops perspectives can be accessed in the rule language by using a comma notation. [n the following
rule, the variable washingMachine s bound to an object with three perspectives: commodity.
electrical, and cleaning. The rule accesses the voltage variable of the object that is the
gelectrical perspective.

IF washingMachine,electrical:voltage<100 THEN

[n this syntax, the term before the comma names a variable, and the term after the comma is the name
of the perspective.

118 Computing Selectors and Variable Names

The short notations for instance variables., properties. perspectives, and unary messages all show the
selector, variable, and perspective names as they actually appear in the object.

object. selector
object:ivName

object: :cviName

object: varname: , propName
object, perspName

(« object selector arg; argy)
For example,
apple:flavor

refers to the fTavor instance variable of the object bound o the varable apple. In Interlisp terminology,
this implies implicit quoting of the name of the instance variable (flavor).

In some applications it 1s desired to he able to compute the names. For this, the Loops rule language

provides analogous notations with an added exclamation sign. After the exclamation sign, the interpretation
of the variable being evaluated starts over again. For example

37

Recursive Compound Literals

apple:!\x

refers w the same thing as apple: flavor if the Interlisp variable x s bound w flavor. The fact that

x is a Lisp varable 18 indicated by the backSlash. If x is an instance variable of self or a temporary
vartable, we could use the notation:

apple:!x

[f x is a class variable of se1f. we could use the notation:

apple:l::x

All combinations are possible. including:

object. !selector

object . ! \selector

object. ! : :selector

object: livName

object: : ! cvName

object: !varname: , propName
object, ! perspName

(«! object selector arg; args)

119 Recursive Compound Literals

Multiple colons or periods can be used in a literal. For example:
a:b:c

means to (1) get the object that is the value of a. (2) get the object that is the value of the b instance
variable of a. and finally (3) get the value of the ¢ instance variable of that object.

Similarly, the notation
a.b:c

means to get the ¢ variable of the object returned after sending a b message to the object that is the
value of the variable a. Again, the operations are carried out left to right: (1) the object that is the value

“

of the variable a is retrieved, (2) it is sent a b message which must return an object. and then (3) the
value of the ¢ variable of that object is retrieved.

Compound literal notation can be nested arbitrarily deeply.

11.16 Assignment Statements

An assignment statement using a left arrow can be used for setting all kinds of variables. For example.

xea:

-

FHE LOOPS MANUAL

o

sers the value of the vanable x 1o the value of a. The same notation works if x is a task variable,
rule variable, class varable. temporary vartable. or wark space variable. The right side of an assignment
staternent can be an expression as in:

xea*h + 17*(L0G d);

The assignment statement can also be used with the colon notation t set values of instance variables of
objects. For example:

y:be0 ;

[n this example, first the object that is the value of yis computed. then the value of s Instance variable
b issetw 0.

Properties and perspectives: Assignment stalements can also be used to set property values as in:
box:x:,origin«47 fact:,reasonecurrentSupport;

or variables of perspectives as in:.

washingMachine,electricat:voltage«110;

Nesting: Assignment statements can be nested as in

achec:d«3;

This statement sets the values of a. b, and the d instance variable of ¢ to 3.-The value of an assignment
staterment itself is the new assigned value.

11.11 Meta- Assignment Statements

Meta-assignment statements are assignment statements used for specifying rule descriptions and audit
trails. These statements appear in the MD part ot rules.

Audir Trails: The default interpretation of meta-assignment statements for undeclared variables is as audit
trail specifications. Fach meta-assignment statement specifies information to be saved in audit records
when a rule is applied. [n the following example from figure 19. the audit record must have variables
named basis and c¢f:

e

{(basis«'Fact cf«1)}
IF buyer:familySize>2 machine:capacity<2g0
THEN suitabilitye«'Poor;

In this example, the RHS of the rule assigns the value of the work space instance variable suitability
o 'Poor if the conditions of the rule are satisfied. [n addition, if the RuleSet was compiled in audis
mode. then during RuleSet execution an audit record is created as a side-effect of the assignment. The
audit record is attached to the reason property of the suitability variable. [t has instance variables
basis and cf.

In general, an audit description consists of a sequence of meta-assignment statements. The assignment
variable on the left must be an instance variable of the audit record. The class of the audit record is

declared in the Awdir Class declaration of the RuleSet. The expression on the right is in terms of the

39

Push and Pop Statements

variables accessible by the RuleSet If the conditions of a rule are satsfied, an audit record I$ instantat *d
Then the meta-assignment statements are evaluated in the execution context of ¢ I uleSet and their
values are put into the audit record. .\ separate audit record s created ror each or he object variables

that are set by the rule.

Rule Descriptions: Meta-assignment statements can also be used to set variables in the objects that represent
individual rules. This interpretation of meta-assignment statements s indicated when the assignment
variable of the meta-assignment statement has been declared to be a rule variable. For example, if
the variable ¢f in the previous example was declared to be a rule variable, then the meta-assignment
statement would set the ¢f instance variable of the rule object to .5 at compilation time. instead of
saving a ¢f in every audit record for every rule application at execution time. lhe value on the right
hand side of the meta-assignment statement for a rule variable must be known at compile time.

1112 Push and Pop Statements

A compact notation is provided for pushing and popping values from | To push a new value onto a
list, the notation <+ is used:

mylListe+newltem;

focus:goals«+newGoal;

To pop an item from a list, the «- notaton is used:

iteme-myList;
nextGoale«-focus:goals;
As with the assignment operator, the push and pop notation works for all kinds of variables and properties.
They can be used in conjunction with infix operator << for membership testing.

11.13 Invoking RuleSets

One of the ways to cause RuleSets to be executed is 1o invoke them from rules. This is used on the [LHS
of rules to express predicates in terms of RuleSets, and on the RHS of rules to express actions in terms
of RuleSets. A short double-dot syntax for this is provided that invokes a RuleSet on a work space:

e

Rsi..wsl

In this example, the RuleSet bound to the variable Rs1 1s invoked with the value of the variable ws1
as its work space. The value of the invocation expression is the value returned by the RuleSet. The
double-dot syntax can be combined with the dollar notation to invoke a RuleSet by its Loops name, as
in

SMyRules. . wsl

which invokes the RuleSet object that has the Loops name MyRules.

“This form of {uI*S“z invocation is like subroutine calling. in that it creates an implicit stack of arguments

1S
and return addres This feature can be used as a mechanism for meta-control ot RuleSets as in:

90

THE LOOPS MANUAL

IF breaker:status="'0pen
THEM source<S0verloadRules. . .washingMachine;

IF source="NotFound
THEN $ShortCircuitRules..washingMachine;

In this example, two “meta-rules” are used to control the invocation of specialized RuleSets for diagnosing
overloads or short circuits.

11.14 Transfer Calls

An important optimization in many recursive programs is the elimination of tail recursion. For example,
suppose that the RuleSet A calls B, B calls C, and C calls A recursively. [f the first invocation of A must
do some more work after returning from B. then it is useful to save the intermediate states of each of the
procedures in frames on the calling stack. For such programs. the space allocation for the stack must be

enough to accommodate the maximum depth of the calls.

There is a common and special case, however, in which it is unnecessary to save more than one frame
on the stack. [n this case each RuleSet has no more work to do after invoking the other RuleSers, and
the value of each RuleSet is the value returned by the RuleSet that it invokes. RuleSert invocation in
this case amounts to the evaluation of arguments followed by a direct transfer of control. We call such
invocations transfer calls.

The Loops rule language extends the syntax for RuleSet invocation and message sending to provide this
as follows:

RS .. *ws

The RuleSet RS is invoked on the work space ws. With wansfer calls. RuleSet invocations can be
arbitrarily deep without using proportional stack space.

11.15 Task Operations

Tasks in the Loops rule language represent the invocation of RuleSets. They provide a mechanism for
specifying and controlling processes in terms of tasks that can be created, started, suspended. and restarted.
They also provide a handle for specifying concurrent processing. .

A Task records the work space of a RuleSet {ws), the value returned (value), and two special variables
called the status and reason. A Task can also have RuleSet-specific instance variables called task
variables for saving process information.

Creating Tasks: A Task is represented as a L.oops object and can be created and associated with a work
space as follows:

Task6«(+« 3Task New RuleSet workSpace)

[he workSpace argument is optional. Specialized versions of Task will eventually be available, such as
RemoteTask. Information about a Task is stored in its instance variables. and can be accessed like other
lLoops variables:

Stop Statements

Task6:status
TaskG:reason
Taskb:ws
Task6:value

Starting Tasks: The primary operations on [asks are starting them and waitng for them to finish execution.
These operations have been designed to work when [Loops s extended for concurrent processing. The
operations for starting tasks are as tollows:

(Startl taskList) [Function]
(StartAl11 taskList) [Function]
(StartAl1l taskList) ' [Function]

Each of the start operations takes an argument taskList which is either a Task object,
or a list of Task objects. A Task cannot be started if it is already running, as
indicated by its status variable. Startl iterates through its taskList and starts
the first Task that is not already running. The value of Startl is the Task that
was started. StartAl11 swrts all of the tasks. and does not return control until
all of the tasks have been started. StartTogether is like StartAll except
that none of the tasks are stasted until all of them are ready. The synchronization
aspect of StartTogether Is important for avoiding Task deadlock situations in
programs that share Tasks as resources. (It avoids the difficulties assoctated with
partial allocation of Tasks when a complete set of Tasks is needed.)

Waiting for Tasks: The following operations are provided for waiting for Tasks:

(Waitl taskList) [Function]

(WaitAl1l taskList) [Function]
Waitl iterates through its taskList and returns as its value the first Task that is not
running. WaitA11 returns when all of its Tasks have finished running The value
returned by the RuleSet that ran in a Task can be obtained from the Task object. as
in:

task6:value.

Running Tasks: In many cases, the specification of Task control can be simplified by using a run operation
that combines the start and wait operations. The run operations are as follows:

(Runl taskList) [Function]
(RunA11l taskList) . [Function]
(RunTogether taskList) [Function]

Runl goes through its arguments left to right and selects the first Task that is not
running. [t starts that Task and then waits for it to complete. The value of Runl
is the Task that was executed. RunA1l71 starts all of the Tasks running and then
waits for them all o complete. RunTogether waits for all of the Tasks to become
available. runs them all, and then waits for them all to complete.

11.16 Stop Statements

At invocation. the status in the Task is set to Running. If a RuleSet ends normally. the status in
the Task is set to Done and the reason saved in the RuleStep s Success. Other terminations can be

\)2

THE LOOPS MANUAL

specified in a Stop statement as follows:

(Stop wvalue status reason) [RuleSet Statement]
value 1§ the value to be returned by the RuleSet. status characterizes the termination
of the Task. and reason 1§ a svmbolic reason for the status. Typical examples of the
use of Stop are:

(Stop value 'Aborted reason)
{Stop value 'Suspended reason)

where Aborted means that the RuleSet has failed. and Suspended means that the
RuleSet has stopped but may be re-invoked. Particular applications will probably
develop standardized notatons for status and reason. Values tor these can be [nterlisp
atoms or Loops objects. The arguments status and reason are optional in a Stop
statement.

12 USING RULES IN LOOPS

The Toops rules language 1s supported by an integrated programming environment for creating. eduing,
compiling, and debugging RuleSers. This section describes how to use that environment.

12.1 Creating RuleSets

RuleSets are named [oops objects and are created by sending the class RuleSet a New message as
follows:

(¢« $RuleSet HNew)

After entering this form, the user will be prompted for a Loops name as

RuleSet name: RuleSetName

Afterwards, the RuleSet can be referenced using [oops dollar sign notation as usual. [t is also possible
to include the RuleSet name in the New message as follows:

(+ SRuleSet New NIL RuleSetName)
12.2 Editing RuleSets
A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. The editor

can be invoked with an EditRules message {or ER shorthand message) as follows:

(¢« RuleSet EditRules)
(« RuleSet ER)

If a RuleSet is installed as a method of a class. it can be edited conveniently by selecting the EM option
from a browser containing the class. Alternatively, the £EM function or EditMethod message can be

used:
(¢ ClassName EditMethod selector) [Message]
(EM ClassName selector) [Function]

Both approaches to editing retrieve the source of the RuleSet and put the user into the TTYIN editor,
treating the rule source as text.

[nitially, the source is a template for RuleSets as follows:

RuleSet Name: RuleSetName;
WorkSpace Class: Classhame;

Control Structure: doAll;

While Condition:

Audit Class: StandardAuditRecord;
Rule Class: Rule;

THE LOOPS MANUAL

Task Class:

Meta Assignments:
Temporary Vars:;

Lisp Vars: ;
Debug Vars: ;
Compiler Options: ;

(* Rules for whatever. Comment goes here.)

Figure 22, Inidal template for a RuleSet. The rules are entered after the comment ut the
hottom. The declarations at the beginning are filled in as needed and superfluous declarations
can be discarded.

The user can then edit this template to enter rules and set the declarations at the beginning. [n the current
version of the rule editor, most of these declarations are left out. If the user chooses the EditAl1Decls
option in the RuleSet editor menu. the declarations and default values will be printed in full.

The template is only a guide. Declarations that are not needed can be deleted. For cxample. if there
are no emporary variables for this RuleSet, the Temporary Vars declaratdon can be deleted. If the
control structure is not one of the while control structures. then the While Condition declaration can
be deleted. If the compiler option A is not chosen, then the Audit Class declaration can be deleted.

When the user leaves the editor, the RuleSet 1s compiled automatically into a LISP function.

[f a syntax error is detected during compilation. an error message is printed and the user 1 given another
opportunity to edit the RuleSet.

12.3 Copying RuleSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this
purpose, the method CopyRules is provided as follows:

(« oldRuleSet CopyRules newRuleSetName) [Message]
This creates a new RuleSet by some of the information from the pespectives of the old RuleSet. [t also
updates the source text of the new RuleSet to contain the new name.

124 Saving RuleSets on LISP Files

RuleSets can be saved on LISP files just like other Loops objects. In addition, it is usually useful to save
the [LISP functions that result from RuleSet compilation. In the current implementation. these functions
have the same names as the RuleSets themselves. To save RuleSets on a file, it is necessary 1o add two
statements o the file commands for the file as follows:

FNS * MyRuleSetNames)
¥
(INSTANCES * MyRuleSetNames)

where MyRuleSetNames is a LISP variable whose value s a list of the names of the RuleSets w be

Printing Rulebets

saved.
12.5 Printing RuleSets

To prnt a RuleSet without editing 1. one can send a PPRules or PPR message as tollows:

(¢ RuleSet PPRules) [Message]
(¢ RuleSet PPR) [Message]

A convenient way o make hardcopy listings of RuleSets is to use the tunction ListRuleSets. The
files will be printed on the DEFAULTPRINTINGHOST as is standard in Interlisp-D. ListRuleSets can
be given three kinds of arguments as follows:

(ListRuleSets RuleSetName)
(ListRuleSets ListOfRuleSetNames)
(ListRuleSets ClassName)
(ListRuleSets FileName)

[n the ClassName case, all of the RuleSets that have been installed as methods of the class will be printed.
In the last case. all of the RuleSets stored in the file will be printed.

12.6 Running RuleSets from Loops

RuleSets can be invoked from Loops using any of the usual protocols.
Procedure-oriented Protocol: The way to invoke a RuleSet from Loops is to use the RunRS function:

(RunRS RuleSet workSpace argy --- argy) [Function]
workSpace i1s the Loops object to be used as the work space. This is “procedural” in
the sense that the RuleSet is invoked by its name. RuleSet can be either a RuleSet
object or its name.

Object-oriented Protocol: When RuleSets are installed as methods in Loops classes. they can be invoked
in the usual way by sending a message to an instance of the class. For example, if WashingMachine is
a class with a RuleSet installed for its Simulate method, the RuleSet is invoked as follows:

(¢« washingMachinelnstance Simulate)

Data-oriented Protocol: When RuleSets are installed in active values, they are invoked by side-etfect as a
result of accessing the variable on which they are installed.

12.7 [nstalling RuleSets as Methods

RuleSets can also be used as methods for classes. This is done by installing automatically-generated
invocation functions that invoke the RuleSets. For example:

[DEFCLASS WashingMachine
{MetaClass Class doc (* comment) ...)

9%

