
•I’HE lOOPS .~IANU.\L

(InstanceVariables (owner ...

(Methods
(Simulate RunS imul ateWMRules)
(Check RunCheckWMRules

doe (* Rules to Check a washing machine.))

When an instance of the class Wash I ngMach I ne receives a Simulate message, the kule5et
SimulateWMRules will he invoked with the instance as its work space.

To simplify the definition of RuleSets intended to he used as Methods, the function DefRSM (for ‘Define
Rule Set as a Method”) is provided:

(DefRSM ClassName. Selector RuleSetName) [Function]
If the optional argument RuleSetName is given, DefRSM installs that RuleSet as a
method using the ClassName and Selector. It does this by automatically generating
an installation function as a method to invoke the RuieSet. DeERSM automatically
documents the installation function and the method.

If the argument RuleSetName is N IL, then DefRSM creates the RuleSet object, puts
the user into an Editor to enter the rules, compiles the rules into a LISP function.
and installs the RuleSet as before.

12.8 Installing RuleSets in ~ctiveValues

RuleSets can also be Lised in data-oriented programming so that they are invoked when data is accessed.
To use a RuleSet as a getFn. the function RSGetFn is used with the property RSGet as follows:

(InstanceVariables
(inyVar #(myVal RSGetFn NIL) RSGet RuleSetName))

RSGetFn is a Loops system function that can be used in an active value to invoke a RuleSet in response
to a Loops get operation (e.g.. GetVal ue) is performed. It requires that the name of the RuleSet be
found on the RSGet property of the item. RSGetFn activates the RuleSet using the local state as the
work space. The value returned by the RuleSet is returned as the value of the get operation.

To use a RuleSet as a putFu, the function RSPutFn is used with the property RSPut as follows:

(InstanceVariables
(rnyVar #(myVal NIL RSPutFn) RSPut RuleSetName))

RSPutFn is a function that can he used in an active value to invoke a kuleSet in response to a Loops put
operation (e.g.. PutVal ue). It requires that the name of the RuleSet he found on the RSPut property of
the item. RSGetFn activates the RuleSet using the new Value from the put operation as the work space.
The value returned by the RuleSet is put into the local state of the active value.

97

Tracing and Breaking RuleSets

12.9 Tracing and Breaking RuleSets

Loops provides breaking and tracing thcilities to aid in debugging RuleSets. These can be used in
conjunction with the auditing facilities and the rule executive for debugging RuleSets. figure 23 summarizes
the compiler options for breaking and tracing:

T Trace if rule is satisfied. Useful for creating a running display of executed

rules..

TI Trace if rule is tested.
B Break if rule is satisfied.
BT Break if rule is tested. Useful for stepping through the execution of a

RuleSec.
Figure 23. Compiler options for Breaking and Tracing the execution of RuleSers.

Specifying the declaration CompIi e r Options: T; in a RuleSet indicates that tracing information
should be displayed when a rule is satisfied. To specify the tracing of just an individual rule in the
RuleSet. the T meta-descriptions should be used as follows:

CT} IF coned THEN action;
This tracing specification causes Loops to print a message whenever the LHS of the rule is tested, or
the RHS of the rule is executed. ft is also possible to specify that the values of some variables (and
compound literals) are to be printed when a rule is traced. This is done by listing the variables in the
Debug Vars declaration in the RuleSet:

Debug Vars: a a:b a:b.c;

This will print the values of a. a: b. and a: b . c when any rule is traced or broken.

Analogous specifications are provided for breaking rules. For example, the declaration Compii e r
Options: B: indicates that Loops is to enter the rule executive (see next section) after the LHS is
satisfied and before the RHS is executed. The rule-specific form:
{B} IF cond THEN action:

indicates that Loops is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it is traced or broken.
This can be effected by using the PR compiler option as in

Compiler Options: T PR:
which prints out the source of a rule when the LEtS of the rule is tested and

Compiler Options: B PR:
which prints out the source of a rule when the LEtS of a rule is satisfied, and before entering the break.

98

12.10 The Rule Exce

~ k~d~ompi f-~il i ~ i
3
r ~ IOO~v iiivd ~u n IL L\vLuu\ v i~pro~idvd ~orWv rule iaaau ~ i h~~i’~

a a r~~rLCkG dui~ng hiL i~~\ u~oK~ue[1k 1 tSP unction RE During k~k~~re\~ution
the rule executive can he entered by typing ~f f<controi>-f~on the keYboard.

On the hrst invocation. RE prompts the user tor a window. It then displays a stack of Rulehct invocations
in a menu to the left of this window in a manner similar to the [nterlisp-D Break Package. Lsing the left
mouse button in this window creates an Inspector window for the work space for the RuleSet. Lsing the
middle mouse button pretty prints the Rulehet in the default prettvprint window.

In the main rule executive window. RE prompts the user with “re : “. Anything in the rule language
(other than declarations) that is typed to this executive will he compiled and executed immediately and
its value printed out. For example, a user may type rules to see whether they execute or variable names
to determine their values. For example:

re: traff icLight: color
Red
re:

this example shows how to get the value of the color variable of the trafficLight object. If the
value of a variable was set by a RuleSet running with auditing, then a why question can he typed to the
rule executive as follows:

re: why trafficLight:color

IF highLight:color Green farmRoadSensor:cars timer.TL
THEN highLight:color ~- ‘Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edited: Conway “13—Oct-82”

re:

The rule executive may he exited by typing OK.

12,11 Auditing RuleSets

[wo declarations at the beginning of a RuleSet affect the auditing. Auditing is turned on by the compiler
option A. The simplest form of this is

Compiler Options: A;

The Audit Cl ass declaration indicates the class of the audit record to he used with this RuleSet if it
is compiled in audit mode.
Audit Class: StaadardAuditRecord;

A Meta As s i g nmen t s declaration can be used to indicate the audit description to he used for the rules
~inless overridden by a ru1e~specificmeta~assignmentstatement in braces.

~ud0ing Rt0eSets

Meta Assignments: (cf~5 support~GroundWff):

100

13 Lsr\~GTHE l.~OOPSSYSTF.M

Loops k inegratcd with nterlisp-D. ~md m~ik~sus~ot~many ol ~ts dd\ anc~dr~catures. En oider tO [Ufl

I ~oupsone must have the ~~propriatc ‘.ersion of he 1nter!isp~Dsystem ~indthe corresponding vcr~ionsor
d ~et o~LispLsers packa~es. The InstrUctionS ror building the svsrem as of February 1. t9X3 are contained

~i document ot export instructions, currcndv ~1edon: (M~XC}<LOOPS> EXPORT INS TRUCT IONS TXT,

13.1 Starting up the System

Ar PARC, we rnain[ain two VerSion ot Loops most of the time, a current system which is a relcased
version, an another which is the system under development. There are two command files: loops . cm
and newLoops . cm which Start up a Lisp and retch the appropriale sysout from a server.

En the version of the system as loaded at PARC, we include We loflowing Lispusers packages: ITY,
TMENU. GRAPHER, HISTMENU, SIt’JGLEFILEINDEX, PATCHUP

The f-irst four packages must be included in any loadup of Loops; the second are ones we find useftil.
Documentation of these ~aciIitiesare to be Found on <LISPUSERS> directories on various servers.

13.2 The Loops Screen Setup

The screen as one sees it set up cont~insthe tbllowing windows(top to bottom, left to right):

Prompt Window — Small black window in upper left. Prompts f’or what will happen in various mouse
interactions appear here. Also vanous notifications of directory attachment changes. Labelled with the
date of the Lisp system loadup and of the Loops system loadup.

Top Level Window Normal interaction window. Labelled with the currently connected directory.

User Exec PPDef~iu1iWindow — Below die EditCommands menu is a title icon or~the IjserExec
window. When this is expanded it ~Ils the bottom half of the screen. It can be used for YFY interactions.
It can be made the primary window for such interactions by calling the Function UE. Typing OK when in
that window returns you to the previous TTYDIPLAYSTREAM. This window is also used as the default
place to prettyprint class and instance descriptions,

There are three icons on the right half of the screen.

Loops [con — This circular icon is active and if buttoned gives the user the option of setting up the
screen again (useful if it has been cluttered with many windows), and of’ producing a graph browser ot
the current classes in the system.

F! iswrv [coti — This icon will expand to give a History menu list. Sce the write up on <LI SPUSE RS> HI STMENU. fly.

Edui ft~rk;lrea — This window is shown only by a rnle con in the upper right. [t expands when
necessary, and takes L1~the entire right 1iaIf of the screen. It shrinks automatically when DoneEd it is
selected ftom the EditCommand menu. ft can he cxpanded to allow you Co look at the last expression
being edited.

1~01

L sing the Browser

13 3 1.~’s~rigthe Browser

F~o~pcciai classes in [he sv~tem~re used [0 buiid bro~scrsbased on [he ~raph~r p~icka~e.Fh~~cnera1
cijSS ~scjflcd La t t I ceB rows e r, md ~he p~rticuLtrsubClass thai is used by the s~stem is called
C 1 as sB rows e r. \Ve will ~Irstdescribe how to us~[he class browser which appears when requesced by
buttoning in the Loops con. We Lhen describe how to build your own browser.

13.3.1 Using the Class Browser

Fhe items n the class browser can be buttoned with cither [he left or middle button. When huLroned ~
pop up menu will appear, and the user can make a selection of one of these.

If a browser menu selection is followed by an asterisk (i.e.. Print*), this means that it has a number
of sub-commands. Selecting such a selection with the middle mouse button will present another pop~up
menu of sub-commands. Selecting a “starred” selection with the left mouse button will execute the
‘~defau1t”sub-command. The left and middle mouse buttons act the same when selecting an un~starrcd
selection.

The left button menu selections are:

Print* Prints a summary ot intormation about the selected class in the ‘User Exec —
PPDefault Window”. If selected with the middle mouse button, another pop-up
menu gives a choice of what Lo print:

PP PreityPrint Class definition.

PP! PrettvPrint Class definition including inherited information.

PPV! Same as PP! without seeing methods.

PPM Puts up a pop-up menu of’ all of the methods defined in the class.

and prettyprints the definition of the selected one.
Pr in tSummary

Prints a summary ot7 all of the in~brmation(instance variables, class
variables, and methods) for the selected class

If Print* is selected with the left button, PrintSurnmary is the default sub-
command that is executed.

Ooc* Prints documentation For Classes, [Vs. CVs, or Methods. Ilselected with the middle
mouse button, another pop-up menu gives a choice of what to print:

Cl as sDoc Prints Class doc intorTnation ~orselected class.

MethodDoc Puts up a pop-up menu of all ot the methods defined in [he class,
and prints the doc information ot the ~e1ecrcdone. IThis pop-up
menu is redisplayed until the user buttons outside the menu, so that
the user can see the doc inf’orrnation from multiple methods.

IVDoc Same as MethodDoc, except Lhat it prints Lhc doc intbrmation ~or

FHF I OOPS \~~ \I,

ii~nC~~dii ih1~)r L~e c1~i~s.

CVDoc ~ Me thodDoc. ~pt ~hjtit prih[s ~e inrm~~on
c!a~s ~n~ ~f ~ c1a~s.

El Doc~is ~e1ectedwith Lhe Icft hutton. Cl as sDoc s the deLiult sub-command that
k cxecutcd.

Wherels Fhis command is used to t~ndOtt which super class of the selected cldss a particular
IV, CV, or Method was inherited from. When selected with the left or middle

button, a pop-up menu is displayed ~nh the olemenN IVS. CVS. Methods.
Whiche~erelement is selecEed, I pop-up menu ot the c1ass~instance variables (or
class variables or methods) is displayed. When one of these is selected. [he super
class trom which that [V, CV or \4ethod was inherited is flashed, and its nameis
printed in the Prompt Window. This final pop-up menu is rcdisp~ayeduntil the user
buttons outside the menu, so that the user select mulLipie IVs (or CVs or methods),

Unread Unreads $classNarne into the typein buffer. This is useful when typing messages to

particular classes.

The middle button menu selections are:

EM* Edit a method in the selected class. ft selected with the middle mouse button, puts
up another pop-up menu:

EM Puts up a pop-up menu of all of the methods defined in the class,
and envokes the editor on the selected method.

EM! Same as EM, except that includes all inherited methods in the list.

If EM~ is selected with the left button, EM is the default sub-command that is
executed.

Add* \dd a new method. a specialized class, an IV, or a CV to the ~e1ectedclass, or make
a new insEance. If selected with We middle mouse button, puts up another pop-up
menu:

Special i ze Creates a new subclass oF the selected class. giving it a name t~ped
by the user.

DefMethod Define a new method to ftie selected class. \sks the user (iii the
prompt window) to type the name of a selector, and envokes the
editor on a dummy definition for that new method.

DefRSM [nstalls a RuleSet as a method in a class. \sks the user (in the
prompt window) to [~pethe name of a ~e1ector,~nd in\okes the
RuleSet editor. When the user exiLs the RuleSet editor, the RuleSet
is compiled and installed as the meEhod in the class.

Add IV \sks the user to t~pe~n instance \ariable name, md adds it to che
selected class.

AddCV \~k~We user to type a class variable name, md j,dds it to the

103

Lsing the (‘lass Browser

New S~s~hc Inter] kp variable I I to a new ut~[he ~Icc~d cLi~s.

ft Add is sei~c~cdwith ~heh~ft button, DefMethod is ne derault ~uh-cornmand
that is executed.

Delete Delete a met~hod.IV. or CV from the selected, or LhC whole selected class, Puts
up a pop—up menu with elements JVs, CVs, Methods. and Class. ftone o~the
first three is selected, a menu of the selected class’ instance variables, class variables.
or methods is given, and the selected one is deleted from the class. ft Class is
~e1ecued,the whole class is deleted.

Move* MoVe or copy an [V. CV, method, or super from [he selected class to another class.
The destination class is specified by using the BoxNode command, described below.
El selected with the middle mouse button, puts up anoWer pop-up menu:

Movelo Puts up a pop-up menu with elements IVS. CVS, Methods, and
Supers. Selecting one of these will put up still another menu.
listing the items of that type. Selecting one of’ these items will cause
it to be moved to the destination class specified with BoxNode.

Copylo The same as Movelo. except that the ~e1ec,teditem is copied to the
destination class.

El Moves is selected with the left button. MoveTo is the default sub-command that
is executed.

BoxNode Draws a box around the selected class node. lithe selected class is already boxed, the
box is removed. [F any other class node has been boxed, that box is removed. This
command is used in conjunction with the Move* command to specify a ‘~destinadon
class”, as described above,

Rename* Renames some part of the selected class, Puts up a pop-up menu with elements
IVS. CVS, Methods. and Class. Selecting one of’ these will put up still another
menu, listing the items of that ype. Selecting one of these items will cause it to be
renamed to a name typed in by the user.

Ed i t * Edit some part of the selected class, ft selected with the middle mouse button, puts
up another pop-up menu:

EditObject Calls the editor to edit the selected class.

Edit IVs Calls the editor to edit the instance variables ol the selected class.

Ed itCVs Calls the ~diror o cdit the class variables ot~the selected class.

Inspect Call the I ncerlisp inspector to inspect the selected class.

If Ed i t~is selected with the left button. Ed I tObj ec t is the det~iultsub-command
that is executed.

Pressing either the left or middle mouse button in [he ride region at the cop ot the class browser brings

104

iL~ ~Ii~)~‘~sc’. I ~e ~ mrnan~sarc:

~ ~L L~[~~L~~LU

~ddRoot ~ ~r.

De 1 e teRoo t)~. ~UT ~G R;~. Ni ~[~ iI~ ~ Hro~~r.

Save In IT Sore this hro~’~rhjcct n ~he nterlisp ~~riabieIT.

lo Create ~ C1~ssRrc~~r~or~i ~ma1’~ ~ ~cnd~ m~s~agcShow ~o[h~cLiss Cl as sB rowse r:

(~-r~Jew(~ClassBrowser) Show hrow~eList ~vindow)

I’his displays the class inheritance lattice starring with the ‘~startinglist” of objects browseList. browseList
can be a single className or class, or a list ot these. A new browse window will be created which contains
nodes for each class mentioned, and (recursk clv) all subclasses of those classes in the current environment
which have been accessed. If window is gi~en,then it will be used as the display window.

113.2 Building Your O~nBros~ser

* * The tollowing information is incorrect. [1’ ~ou want to build your QWfl browser, try poking around
the class LatticeBrowser. Good Luck. ~ * *

Fhe general class which supports browsing is~Latt i ceB rows e r. [‘he specialiiátion Cl as sB rowse r is
used to generate the ~Iass Inheritance Lt~tticeBrowser that we all use, ClassBrowser provides an
example of how to ~pecia1izeLat t ceB rows e r ~or ~our own use. Fhe ~o11o~ing is a brief description
of the LatticeBrowser messages.

if ($ Lb) is an insLance ot (an~subclass ot) (~ Lat t I ceB rows e r) Lhen:

(~- ($ Lb) Show browseList)

will create a graph of elements starting with those in browseList. browseList should be a list oF
objectNames or objects. Ii browseList is single item, it will be treated as list ot that item. [he browser
will show a lattice o~elements determined by a sub relation implemented h\ the LatticeBrowser
message GetS u b. For each object. (~- (~ Lb) GetSubs object) thould produce a list oF objects
which are the ~subs”of object, and (4- (~ Lb) GetLabel object) should produce a string to be
used in the graph as a label. l’he GetSubs method in LatticeBrowser just obtains the ‘~a1ueof
the in~cance variable sub, if it exists in that object (no error otherwise). ftc GetLabel method in
LatticeBrowser finds the name of the object.

Each node in the browser graph has actions associated with the left and middle mouse huttons. When
either button is clicked over a node, a menu of actions is brought up. I he items on the action menu are
determined h~the class ~ariablesLeftButton Items and MiddleButton Items.

{he ~a1ueobtained by selecting the menu item will he used as a message selector for an action. ftc
message will he sent either to the browser or to the object itself. Selectors on the class ‘~ariah1e
Local Commands, or hosc not understood b~the object will be sent in d message to the bro~~r,with
ar~urnentsot the object and object~Name. Otherwise. the object ~il1 he sent that ~lccror as J unai~
message (no ~rgumenLs).

105

Uui!d~ng\ our O~nRr~~scr

~ Le f t$u tton [tems ~ (?P PP! Ed I tObjec t) ~nd ~he~a1ue
• ~iirn~nds ~i~ N IL, ~nd Ed I tObj ec t k no~undcrsLmd b~objl ~e1ected in We bro~er,

~P)i P) ~nLI~ ~C~I)fl 1. •L1 ~oi1d k~ ~n h~~n~ss~~cPP {~rPP). ~~cting
~d iiItin~~din~h~’n~~ (~ Lb) EditObject obji (GetName 0jL)).

~ :eb rows~r rcsponds to [di tObj ect h~~endin~We ohjecr ~hemessage Edit ii 2 [TY
H ~CCC~~fV tO dllO~r~icmouse N) COntinUe [0 work in [he ~1OC~S world. ft obji might

~i~e ~ndeNwod die message Ed tOb j ec t. [hen that acorn ~hou1dappear on the list Local Commands
LO ~risurc [hdt the browser is sent the message rather than obji.

\~u~uai‘~ithmenus, it~m~need n~ch~~ If ~n it~rn 5 1 fist. E\ \L ~ We ~ec~nd clcmenc is
~c~urn~. }hu~one ni~htha\c the Riement (“Ed i t Wi th E E” E EObj ec t) on a menu item list,
~o d~~cring Ed~t With EE~will be disp1a~edin the ~‘vlenu,and the message EEObject cnt when
Wat item is selected.

ft the result ot~selecting an item returns a list, the CAR of the list is Lrealed as We selector, and CDR is
an extra argument to send. For example. in the class browser MiddleButton Items contains an item
(EditlVs (EditObject —2 EE)). Selecting EditlVs in the menu causes the ~o11owingmessage
to be sent: (~- (S Lb EditObject object (-2 EE))
Shij2ed 5elect/ons — If one selects a node with the LEFT or MIDDLE mouse button while holding down
the left shift ~ then a message is sent to the hro~ser:

(~- (S Lb) LeftShiftSelect object objNarne)
(~- (S Lb) MiddleShiftSelect object objName)

IhedefaultbehaviorforLeftShiftSelectistosendPP! toftieobject,andforMiddleShiftSelectto
send EEObject to the browser.

~1oving \‘odes — I-folding the CTRL key down when selecting allows one to move the selected node in
the browser ~indow. [his does not affect die underlying structure, just the display.

Format of the Brnw~erWindow — One can obtain a browser display with a specified title or in an existing
window. If one specifies windowOrTitle in

(~- (~ Lb) Show browseList windowOrTitle)

then if windowOrTitle is a string, it will be used as the title of a new window for the browser. If
windowOrTitle is a window, then that window will be used as is. If windowOrTitIe=~JIL, then the
title is obtained from the instance variable title, and a new window is created dnd stored in the
instance variable window, lithe instance variable topAl ign=T (the default) then GRAPHER will
align the graph to the top of the window. fte font used for labels is found in the instance variable
browseFont. At any time, the last object selected is round in lastSelectedObject.

tf ~1IR Y: Fo specialize a browser, define the method ror GetS u b s. ft the h [OWSC~ is not using
object names ~or its labels. speclali7e GetLabe 1 Set up the class ariables LeftBu t ton Items,
MiddleButtonltems and LocalCommands, SpecialiieLeftShiftSelectandMiddleShiftSelect
if desired.

LatticeBrowser [Classj

106

THE LOOPS \L\~.1AL

[CV of’ LatticeBrowser!
[tems for left button menu. Value sent as message to object or browser.

[CV of LatticeBrowser]
List otmessages that should be sent to browser when item is selected in menu, even
if object does understand them.

MiddleButtonltems [CV otLatticeBrowserj
Items for middle button menu. Value sent as message to object or browser.

Titleltems [CV o~LatticeBrowserj
Items tor menu in title ot window.

Methods:

(~ browser BoxNode object) [Method of LaiticeF3rowser]

Draws a box around the node in the graph representing the object.

(~- browser DoSe lectedComrnand command ohj obji\Tarne) [Method ot LatticeBrowser]
Does the selected command or tbrwards it to the object.

(+- browser E EOb j ec t object objName) [Method of LatticeBrowser]
Edit object. USiflg [he TTYIN editor (in a ITYPROCESS).

(~- browser Ed i tOb j ec t object objName args) [MeWod of LawceBrowser]
Edit object using Lisp cditor (in a TTYPROCESS), passing [he commands args.

box ed Node

b rowse F on t

1 astSel ectedObj

start ingLi st

tit1~

topAl ign

window

~[he laSt object boxed, f any. [R ot I atticeF~row~erf

The Font used r labels, [V ot I aiuceBrowse.rl

ect
List ~hject selected. [V or LitticeBrowser~

List of objects used to compute chis hro~v~er. [IV of Lattice Rrowserj

Title passed to GRAPHER package. [V of Lattice Browserj

Flag used to indicate whether graph should be al’a
window. ft topA ii g n = I (the det~iuIt)th ~ i~ned~iLh the top or bottom of the
top ot the window. t’. will align the graph to the

Window ft)r browsing. [IV of LatticeBrowserj

CVs:

LeftButtan Items

Local Commands

107

I’ diting in Loops

— ~row~er F 1 as hNode ~cde ,\ flasn Tme) I \feth~d01 1
C~l1F ii pNode 2 \~~ dc1~ing iir ilash lime rni]1i~condshct~e~n9i~s.Defiult

= ±iasri Pme~ 0.

(— browser F 1 as n N ode objec~) [\1c~hodof [~uce Rro~sen
[n~errs Lhe id~o~roun~i th~qode n We ~xap~ireprc~entin~object.

(— browser GetLabel object) [Method ot~[atticcl3rowserj
Returns the label for ohje~tdkplaved in the browser.

(*~‘ browser GetNodeList browseList goodLi~t) {\Ccthod ot I dLt1CCf3rOV~~r~
kcturns the node data ~tnicwrcs)t the ree starting ~it browseList. If goodLtst
is gi~en, only include elements ot it, ft goodLi.~t=1. this is the same as
goodList = browseList.

(~- browser GetSubs object) [Method of LatticeBrowser]
Returns a list of the subs from object.

(f— browser Lef tSh I f tSel ec t object objnarne) [Method oE~’LatticeBrowserj
Called when object is selected with the LEFT mouse button whUe the shift key is
down.

(~- browser MiddleShiftSelect object objname) [Method otLatticeBrowserj
Called when object is selected wih the MIDDLE mouse button while the shift key is
down.

(~- browser ObjNamePai r objOrNarne) [Method of LatticeBrowser]
objOrName may be either an object or a name used to label an object in rhe browser.
Returns the pair (object objName).

(~- browser Recompute) [\4eLhod ot I ~atticeBrowser!
Recompute the browser disp[a~using same window and browseList

(~- browser Show browseList windowOrTitie goodtist) [\1et~hodof LatticeBww~erJ
Show the items and their ~uhs on a browse window.

(~- browser Unread object objName) [Method of LatticeBrowserl
Put $objName into the Lty buffer

13.4 Editing in Loops

I’his section is about editing in Loops. It describes the Loops interface to the standard lnterlisp editors,
In ~iddition to the usual tcIet~peoriented editor. Inierlisp-D, provides a variety oF other editing programs
that make available the benefits of a bitmap display and a mouse. We will describe some of the interfaces
to these editors, hut leave the instruction on cditing to the appropriate other documents

13.4.1 E’diting a Class

the editor for c1a~sesis invoked by sending the rnes~agcEdit to the class to be edited. [he me~age
Ed t allows dfl optional argument. ~i list ~f ~diing commands, ~ do all the usual I isp editing r InCLIOnS.

108

THE LOOPS MANUAL

Example: To edit StudentEmployee:

(4- (S StudentEmployee) Edit)

An alternative way to edit a class is provided by the LISP flinction EC (for edit class”). EC cakes the
class name as its argument. For this example. the form is:

(EC (S StudentEmployee))

At this point. if you prettyprint the expression you will see:

[DEFCLASS StudentEmployee
(MetaClass Class)
(Supers Student Employee)
(InstanceVariables)
(ClassVariables)
(Methods)]

Suppose now you edit this slrucwre to the one shown below:

(OEFCLASS StudentEmployee
(MetaClass Class)
(Super’s Student Employee)
(InstanceVariables (name)

(project “KBE”))
(ClassVariables (numberEmployees 0))
(Methods (Work StudentEmployee.Work))

This specifies that each instance will have two instance variables, name and project. with default values
of NIL and “KBE”. respectiveLy. The class has a class variable numberEniployees. initialized to 0. If
we have an instance of this class bound to the Lisp variable worker, the folLowing expression causes this
instance to respond to the message Work:

(. worker Work 3)

The result of evaluating this expression is to call the Lisp function StudentEmpIoyee .Work with
arguments (the value of) worker and 3. This is described in more detail in the section on methods.

The normal way o terminate editing is with OK. This causes the revised definition to be installed. If you
exit from this editing session with STOP or tD. all the changes of this session will be Lost, since the list
structure is not saved; it is only used to build the new class structure. If you havemade any syntax errors
in editing, warning messages will be printed when you type OK, and you will be returned to the editor.

134.2 Editing an Instance

To edit an instance, send it the message Edit.

(i- object Edit)

This will put you in the Enterlisp editor editing a source for the instance. When you end with OK, the

new values will be inserted in the instance.

109

lfditin~a Method

An ~ way to cdit an instance is

(El oblect)

where object is an instance. (If one has an [nterl.isp variable, say X 1, bound to an instance then to edit

one should type ([I Xl).
When instances refer to other instances, they are printed out in the fbrm #“ UI &D I I that is as a bash
mark (#) followed by a string which is a unique identifier. When this is read hack in from the string
editing buffer of ATYIN, a readmacro for # converts it hack into a pointer to an instance with that unique
identifier. When a class is printed out for IdA IN it prints as #$C1 as stJarne, and the # readmacro
converts it hvack into a pointer to the class.

13.4.3 Editing a Method

Often it is convenient to type to enter only a skeletal definition for a method, and then finish making the
specifications by using an editor. To edit the function for a particular method:

EM className selector)

This puts you in the Lisp editor, editing whatever function is associated with the selector specified. The
name of the actual function is printed out as you enter the editing process. Aside from the syntactic
convention of having the first argument to a function implementing a method he self, these methods are
perfectly normal Lisp functions. However, special compilations can be done on these using the GLISP
compiler for Loops. This is documented in the section on Lisp interactions.

13.5 Inspecting in Loops

Loops is integrated into the Lisp system so that one can invoke the Inspector on Loops objects. This
uses the Loops inspect package, which allows a specialized way of viewing the objects in Loops terms as
described in the two sections below.

13,5.1 Inspecting Classes

To inspect a class, send the message Inspect:

(f’- ($ className) Inspect)

13.5.2 Inspecting Instances

An alternative way to modify an instance is to inspect it:

(~ object Inspect)

and then oou can set any values and properties. and add or delete any Rd.

lii

THE LOOPS MANUAL

13.6 Errors in Loops

Most errors in Loops which are not errors in Lisp call the function HELPCHECK. which prints out a
message, and goes into a Lisp break. The appropriate response to some errors is described below.

13.6.1 When the Object is Not Recognized

When the value of object in the form

(4- object selector arg1 ~ argjq)
is not a Loops object. Loops activates the NoObjectForMsg method in the kernel class Object.

The response to this condition can be changed as described below.

This condition can arise if the filler refers to an object that is not in the current environment. For
example,

(i- (S FOO) selector arg1 ... flN)

will cause the condition if there is no class named FOO in the current environment. In the default case,
this causes an error. A user can return from the error by typing
RETURN MyValue

to let the process continue. returning MyValue as the value that should have been returned had the
method been applied successfully.
Alternatively it is possible to create user-specific responses to this condition by creating a class with a
NoObjectForMsg method and setting the global LISP variable DefaultObject to that class. The
arguments to the NoObjectForMsg method are object and Selector. This method should carry out
whatever response is appropriate, apply the method that was intended, and return the value of that
application.

13.6.2 When the Selector is Not Recognized
/‘

If the object is recognized but the selector is not, then the object is sent aMessageNotUnderstood mes-
sage as fbllows:
(4- object MessageNotUnderstood selector)

In most cases. this invokes the default method on the kernel class Object which attempts to perfonn
spelling correction. If the correction fails, then a break is caused. If the user then types

RETURN selector

to the Lisp Break Package, the selector so named will be used.
Alternatively it is possible to create user-specific responses to this condition by providing aMessageNo tUnde r stood

111

Breaking and Tracing Methods

fle[h(d tn ~oniu super or the oh~e~t,I his meta d ~houId return a I ~sp atom)rher than N IL, wh~chis
then ised as the selector as the SEND is tr~cdigain.

13T Breaking and fracing Methods

(B reakMe thod className selector) [Function]
This function will break the method called by selector in the specified class. It will
find the function name end break it. even if the selector is only found in a superclass.
All calls to that function will he broken, e~enones that do not come from class\ame.

(1 raceMethod className selector) [Function]
Similar to BreakMethod, except that it traces the appropriate method.

The Lisp function UNBREAK will unbreak the function which was broken.

13.8 Monitoring Variable Access

(Breaklt self varName propName type breakOnGetAlsoFig) [Functionj
This function is used for causing an [nterlisp break when the ‘value’ of a variable
or property is set or fetched. The type argument is one of IV, CV, METHOD, or
CLASS for instance variables, class variables, method properties, or class properties
respectively. If it is NIL, then IV is assumed. If propName is NIL, then type must
be IV or CV and. Break It refers to the value of a variable.

If breakOnGetAlsoFLg is NIL then the break is only entered when an attempt is
made to store into the value. If breakOnGetAlsoFLg is 1, then breaks will also occur
on attempts to fetch the value.

(Tracelt self varName propName type traceOnGetAlsoFlg) [Function]
Similar to Breaklt, except that it will trace the value of a variable or property,
printing the old and new values when the variable or property is accessed.

(UnBreaklt self varName propName type) [Function]
This function is used to remove monitoring (breaking or tracing) for the specified
variable or property. If self NIL, then all known breaks and traces are removed,

7

112

14 THE LOOPS KERNE.l..

14.1 The Golden Braid (Ohject, Class. \letaClass)

All objects are directly or indirectly a subclass of the object called Object. Obj ect holds all the
methods for the defualt behavior of objects. Heuristics for using these classes. This is the only object
with no super classes.

Cl ass is the class which holds the default behavior for all classes as objects. Cl ass is the default
MetaClass for all classes. If C ass is not the MetaClass for a class, it must be on the supers of that
metaClass. There are messages fielded by Class that know how to create and initialize instances,

MetaClass is the class which holds the default behavior for classes which create classes, MetaClass
is the metaclass for Cl ass, and is the only class which is its own metaClass. In accordance with the
paragraph above Class is a super of MetaClass.

14.2 Perspectives and Nodes

In many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a father, as an employee, and
as a traveler. Each point of view, called a perspective, contains information for a different purpose.
The perspecitives are related to each other in the sense that they collectively provide information about
the same object. Loops supports this organizational metaphor by providing special mixin classes called
Perspective and Node.

Perspective [Class]

IVs:

perspectiveNode [IV of Perspective]
Indirect pointer to onode containing all perspectives of this object.

Methods:

(~- self AddPe rsp viewName view) [Method of Perspective]
Adds a7perspective to my node. *

(~- self DeleteMeAsPersp) [Method of Perspective]
Delete this object as a perspective of node.

(~- self DeletePersp viewName view dootCauseError) [Method of Perspective]
Deletes a perspective from node.

(~- self Destroy) [Method of Perspective]
* Destroy self but leave other perspectives on \ode.

(~ self Destroy!) [Method of Perspective]
Destroy self Node and all other perspectives on Node.

113

[seful \lixins

~e1f GetPe rsp DerspName causeError) [Method or Perspective]
Rewrns the perspective of this instance with Oew Name perspName.

(~- ~eIf MakePersp viewName nodeType) [Method of Perspective]
If no current perspectiveNode exists, then a node will he created of class nodeTvpe
(or Node if nodeType=NIL). riodeTrpe should he a subclass of Node. self will
he made the value of the property viewNarne on IV perspectives of node. if self
already has a node, then it is used.

Node [Class]

I Vs:

perspectives [IV of Node]
Associated objects are stored on the property list of perspectives under their
perspective names. The value of this IV is irrelevant.

Methods:

(~- self AddPersp viewName view dontCauseError) [Method of Node]
Adds a perspective to a node on the IV perspectives as value of property
viewName.

(~- self DeletePersp viewNarne view dontCauseError) [Method of Node]
Deletes a perspective of a node on the IV perspectives Ofl property viewName.
Checks for consistency. Removes from IV pespectiveNode of view, self as value,
and viewName from property myViewName. If view is not that perspective, then
causes an error, unless surpressed.

(~- self Destroy) [Method of Node]
Destroy the node after detaching all its perspectives.

(~- self Destroy!) [Method of Node]
Destroy the node and all its perspectives.

(~ self GetPersp persp2’Jame causeError) [Method of Node]
Returns the perspective of this node with viewName of perspName.

14.3 Useful Mixins *

NamedObject and GlobalNamedObject contain only one instance variable, name which holds the
name of this object. Any Loops object can he named, hut NamedObject and GlobalNamedObject
both have their names as part of their structure, and if the structure is changed they update their name.
As indicated by its name, instances of GlobalNamedObject are named in the global name table and
will be known independent of the environment they are in. Instances of NamedObject may only be
known in a single environment, and the name may he reused in another environment.

114

THE LOOPS MANUAL

NamedObject [ClassJ

GlobalNamedObject [Classj

DatedObject [Classi
DatedObject has appropriate initial active values on its two instance variables so
that they are filled in at creation with the right values.

LVs:

created [IV of DatedObjecti
Date and time of creation of object.

creator [IV of DatedObject]
USERNAME ofcreator of object

Varlength [ClassJ
VarLength is a mixin class which allows a class to have indexed instance variables.
from I to (4. obj Length). These have not yet been extensively used.

IVs:

index’edVars . [(V of Varlengthj
Place where indexed variables are stored for VarLength classes.

Methods:

(i- self Length) [MethodofVarlengthj

Returns number of indexed variables allocated in this instance.

14.4 The MetaClass Named ‘Class”

This sections,describes the methods defined in the metaClass Class. Any of these methods can be
augmented or superceeded in a particular class. The complete List of methods associated with a class can
be determined by using the browser.

The Add, Delete, List and Listl methods have an argument type which specifies the type ofelement
to be added, deleted,, or listed. For specifying single items, type should be one of IV. CV. IVProp.
CVProp. Method, Super, or Meta. For specifying sets of items, type should be IVs. CVs. IVProps.
CVProps. Methods, Supers. Selectors, or Functions.

In the following methods, adding or deleting instance variables and instance variable properties affects
the class, and and therefore affects only instances created after the change. Already existing instances are
not changed.

(.‘ self Add type name value propertyName) [Method of ClassJ
Add an instance specified by type to the class. E.g. if type= IV then add an instance
variable with the given name using the given value as default If property-Name is
given, use value instead as the property value on type created or found. The type
must be one of the item types specified above: IV, CV. IVProp. CVProp. Method.
Super. or Meta.

S 115

iThe \lctafthiss \arn~d‘~Class”

(~~1f CornmentMethods) [\Iethod oft hH
For each method in the class. onmm its argument list, and insert this in the ~iass
deoniuon under the merhed pnpert;~ a rg s. If the ~ource c~de ~d metn~d ~
core. extract the comment ahich should be the mutt item in he source c the. ird
insert in toe c~nsdefinition under the mechod properts doe. If no comment is
found in the source code, put the iser into the editor ooking it That unat~on,yy nen
editing is finished. retrieve the comment from the method.

(~ self CopyMethod mySelector uewClass newSelector) [Method of Class]
Cops the method associated with the selector rnySelector from self to newthlass
(under the new selectur newSelector). newdelector defaults to my6eiector.

(~- ‘elf DetMethod selector args exp) [Method ot Class]
\dds a method for selector to class. If args and expr are N IL, puts the user into the
editor)

(4- self Delete type name prop) [Method of Class]
Deletes the specified element from class, type must he one of IV. CV, IVProp,
CVProp, Method. Super. or Meta.

(~- self Destroy) [Method of Class]
Dectrovs (deletes) a class.

(~- self Destroy!) [Method of Class]
Recursive version of Destroy. Destroys class and its subclasses.

(~ self Edit commands) [Method of Class]
Calls the lnterlisp Editor on the source for class.

(~- self EditMethod selector commands) [Method of Class]
Finds the function associated with selector in class, and calls the Enterlisp Editor on
it.

(~- self FetchMethod selector) [Method of Class]
Returns the name of the function which implements this method in this class.

(~- self HasCV Cl/Name prop) [Method of Class]
Tests if class has the specified class variable/property.

(4_ self HasIV TVName prop) [Method of Class]
‘l’ests if class has the specified instance variable/property.

(~- self List componentType componentName propName) [Method of Class]
List the immediate components of a class, corn ponentType is one of the item or
set specifiers described above. If corn poneotType is one of the item cpecifiers. then
corn ponentName should he specified: L i st will show that item. If corn ponentType is
IVP rops or CVP rop s. then List will show just the property names of the named
item. Otherwise. liar all ~et descriptors, it will list all relevant items. propNarne
mtist he specified only if component is IVProps or CVProps. Selectors and
Methods are synonyms. returnine the list of selectors for the class: Functions
returns the list of names of frunctions called for methods in this class.

116

I DOPh \I.~\t ~I.

(~ ~1 L i at ype name verbose~Og) [\Iomod nf Cij~sj
Rccursi\e ‘crsion f Li at. :~it~Jsin~ :nncritad fr .ii~Object cM Ci as a
v~’rboseElg f.

(~ ~elf MethodDoc selector) [Mc[hod ot Cl NsJ
Print documentation for We method m~cijted ‘a ith ;elector in 1 1 Y a indoa.

(~-~self MoveMethod newClass selector) [Method of Claas]
Moves the method specified by selector from this class to the specified class, changing
the name of the function it it is (h to~className. selector.

(~- self New name supers) [Method of Class]
New method for MetaCl ass. Since MetaCl ass is its own rnetaClass, this needs to
work correctly whether self is Class or MetaC lass or a subClass of MetaCI ass.
Work is done by DefineClass in LOOPS.

(4- self Newlemp selector superFig) [Method of Class]
Make a new temporary instance of this class which will not get saved on a database
unless referred to by another saved object.

(~ self OnF il e file) [Method of Class!
Returns r if self is defined on the file file.

(4- self PP file) [Method of Class!
Prett~printsthe class on the file file.

(4- self PP! file) [Method of Class!
PrettvPrints the class at all ie~els.

(4- self PPM selector) [Method of Class]
Prert~printsthe function which implements selector in this class.

(4_ self PPMethod selector) [Method of Class]
Prett~printsthe function which implements selector in this class.

(~- self Put type name value prop) [Method of Class]
type must he one of IV. CV, IVProp, CVProp, Method, Super, or Meta. Adds
the specified type to the class.

(~- self Rename newName environment) [Method of Class]
Give a class a new name, renaming those methods of the form className, selector.

(~- self Repl aceSupe rs supers) [Method of Class]
Replace the entire supers list for this class.

(~- self SetName newName environment) [Method of Class]
Change the name of the class, forgetting old name. Change the names of all methods
which are of the form classAame .selector. Same as Rename.

(~ self SubClasses) [Method of Class]
Returns a list of immediate subclasses currenth known for this class.

l.~he(.‘l~~ssNamed “Object”

[4,5 The Class Nanied “Object”

All cLss.es have Ob j cc t as one of their supers, direc[iv or indirect.i~. l’hereforc. jil instances know how
m respond to the messaces defined in Obj ect. •fhese can of course i.e overridden in any class. l.rit
Object provides a set Of default beha~mrs. and generally available subroutines.

(~ self Add IV name value prop) [Method of Object]
Adds an IV to instance. If it is not in regular set. pLits it in assoc List on otherlVs.

(~- self AssocKB newKBName) [Method of Object]
Change assocKh of this object m newKi3Name,

(~- self At varName prop index) [Method of Object]
Returns the value of an “instance variable” for an object. For an instance object.
instance variables ‘hold local state. For an object that is a class, we use “instance
variable” to refer to the variables that are private to instances of the class. If the
value is an active value, GetVa 1 ue activates its getFn.

(~- self Break It varName propName type brkOnGetAlsoFlg) [Method of Object]
Creates an active value which will cause a break when this value is changed. If
brkOnGecAlso~1g 1. this will also break when the value is fetched.

(~- self Class) [Method of Object]
Returns the class of this object.

(~- self ClassName) [Method of Object]
Returns the className of the class of the object.

(~- self CopyDeep KBC) , [Method of Object]
Copies the unit, sharing the iName i~5t, copying instances, activeValues and lists.

(~- self CopyShal low) [Method of Object]
Makes a new instance (a copy of this instance, not copying the values of the instance
variables), with the same contents as self.

(~- self Delete IV varName propName) [Method of Object]
Removes an IV from an instance, No longer shares lVName List with class. Some
programs which depend on IV may not work,

(~ self DeletelVProp ivName ivProp) [Method of Object]
Deletes a property of an instance variable,

(~- self Destroy) [Method of Object]
Destroy an object in an environment. Removes all [Vs. class pointers. etc. For
garbage collection by user.

(~- self DoMe thod selector class argj argp arg3 arg4 argy argg argp argg argg arg1g)[Method of Object]
Message form of the tiinction DoMe thod.

(~ self Edit commands) [Method of Ohjec[]
Calls the Interlisp editor on the source of the object.

I W

[‘IlL [OOP~\I\N1 ~l

(~ ~oo’H as iV i vA’ame prop) [Me hod cf Objecrj
P acurns I if odF cn[~in~foe ~rLfofied It’,

(~MI Inspect C~YFE) {\lethod ct OhILc[]
Calls We Interliap inspector to examine self (as an object of upe ~tSTYPE).

(~ se~IIns tOf classfoame) [Method of Object]
Returns V if self is an immediate instance of the class with name className,

(~ self Ins tOll className) [Method of Ohiecr]
Returns I if self is an instance of the clays a i~hname foassName either dtrectlv or
through the supers chain of its class,

(~- self IVM isa I ng varName) [Method of Object]
Called from macro FetchlVDescr when there is no [~v varName. If varName is an
[V of the class, then it adds IV to the instance and returns the IVDescr as requested.
Will also do this if user returns with OK from HELPCHECK.

(~- self L I St typeName) [Method of Object]
List IV properties. IVS of object. or other properties inherited from class.

(~ self L I StI type name verboseFlg) [Method of Object]
Recursi\ e form of L I st for objects. Omits things inherited from Obj cc t unless
verboseFlg is I.

(4- self MessageNotUnde rstood selector superFig) [Method of Object]
Invoked when a selector is not found for an object during a message sending
operation. \ttempts to do spelling correction on the selector. Causes an error if this
fails.

(*- self NoObjectForMsg selector) [Method of Object]
Called from FetchMethodOrHel p when self is not a Loops object with a defined
class. A specialized response to this can he tailored in a given Loops application by
first reseting the global Interlisp variable Defaul tObject to point to an object. [‘his
default object will field NoObjectForMsg messages from FetchMethodOrHelp.
[‘he method for NoObjectForMsg on DefaultObject should return a default
~alue,usually dependent on the selector.

Ihis version of NoObjectForMsg just causes an error break. A user can return
from the error by typing RETURN value, where value is the value that should have
been returned as the result of sending selector to self.

(~- self PR) [Method of Object]
PrettyPrints an instance definition on file,

(~ self PR! file) [Method of Object]
Preas Prints an instance to all levels.

(~ self Pr I ntOn file) [Method ot Object]
‘l’his is the default printing function for Object. It distinguishes between temporary
objects. named objects. and others.

111

Functions for cii iin~ingI mops N~ructure

Or’ Pat Var, fome newtdr se orop Name md “c) [\Iat~od f Object]
P~its newMlue in in n~t.ccc ‘. triable (see Ge tVa 1 u e. pace 1W. If me ilue/cu ~peru
u he v an~nle con mm us in iv a . e . oh me. the paMn is mctiv ated.

self Rename newName environment) [Method of Object]
Removes an dd name, oid civ cv t new came.

(~- self SetName name environment noBitchFlg) [Method of Object]
\ssociates a name with in object in in environment. ‘[his works for instances snd
classes. tn object can have more than one name.

(4- ~elf Trace It var.\ame propName type traceGemAlsoFlg) [Method of Object]
Creates an active value which will cause tracing when this variable is changed. Will
also trace Ofl fetches if traceGetAlsoFlg I.

(4- self UnSetName name environment) [Method of Object]
If name actually names self in environment, then delete the association between self
and name.

(4’ self Understands selector) [Method of Object]
Tests if self will respond to selector.

(4- self Wherels name type propName) [Method of Object]
Searches the supers hierarchy until it finds the class from which type is inherited.
typeNIL defaults to METHODS.

14.6 Functions for changing Loops Structure

14.6.1 Moving and Renaming Methods

There are a number of [nterlisp functions available to help in the process of reorganizing class structures.
It is often the case in the development of a set of classes for some job that one finds some common super
class of a set of classes, and wants to move a method up to the super, or copy it down from the super.
Also renaming both the selector and the function of a method is sometimes useful.

(Re n ameMe t had className oldSelector newSelector) [Function]
Changes the selector oldSelector to newSelector in className and if the function
name is className. oldSelector does a RE NAME to className. newSelector.

(RenameMethodFunction class oldName newName) [Function]
Renames a function used as a method in class. Does not change the selector.
Complains if oldName is not found.

(MayeMe t hod oldClassname newClassName selector) [Function]
Moves the method from oldClassname to newClassName, and renames the function
if it is of the form oldClassname, selector to newClassName. selector.

(Call edFns classes definedFlg) [Function]
Given a list of classes, this function computes the list of dl functions called by those

IA)

HA I.OOPS NI kNI \l,

if ivfine i’’~~I ni returns the list of fo ~e functions a hicn are denned.

14. .: N los lug and Renaming \ ariables

It is sometimes cony enient to he able to move methods and ariables when reconfiguring classes in an
inher~tancclattice. 1 he following ninctions are provided for this.:

(RenameVariable className oldVarName newVarName classFlg) [“unction]
Changes the name of the v triable from oldVar,N’arrie to newVarName. Changes anc
references to these variables in methods ot the class.

(MoveVa ri ab 1 e oldClassName newClassname ‘rariableName) [Function]
Moves the entire description of an instance variable into the new class.

(MoveCl assVar jab] e oldClassName riewClassname variableName) [Function]
Moves the entire description of a class variable into the new class.

121

15 i.OOPS AN1.) ‘[‘HE iNTERLISP SYS’f F.M

15.1. Saving Class and Instance DeFinitions on Files’

Loops has been integrated with the [nterlisp file system to allow saving of class definitions on files. ‘[he

file command:

(CLASSES * classNameList)

added to the filecoms of any file will allow one to dump out the premtyprinted version of the source
you see when you edit the class definition. These class names can he listed in any order in a single list,
provided that all super classes of a class on the list are on the list as well, or will he previously defined.

(INSTANCES * instanceNameList)

added to the filecoms of any file will allow one to dump out the prettyprinted versions of named instances.
as well as any unnamed instances that they point to.
Functions used to implement methods are ordinary Interlisp functions. ‘[hose that are named automatically
by Loops as className. selector start with the same characters: they will he found alphabetically together
on any function list which is created. ‘l’he function CalledFns (page 120) can he used get a list of all
functions used by a list of classes.

15.2 Classes for Lisp Datatypes

One can use the message sending protocol with records (lists) whose first element is a class, or ordinary
Interlisp datatypes. In the first case, the first element is used as the class to look up the method to he
used. In the second case, the class is found using the function (GetLispClass obj), which looks it
tip in the hash table L I s pC 1 ass Tab] e, based on the type name of the datatype.

We call datatypes with associated classes and records with first element a class pseudoclassm. and instances
of them pseudoinslances. If GetVal ue or PutVal ue are called with self bound to a pseudoinstance.
then the method associated with the selector GetVal ue in the pseudoclass (call it PC) is called as follows:

(APPLY* (GetMethod PC ~GetValue) instance varName propName)

or

(APPLY* (GetMethod PC ~PutValue) instance varNarne newValue propName)

If the associated class PC has a GetValue (PutValue) method, then values of the variables can he

found. ‘[his allows a mixture of compiled access to datatype fields, and interpreted access within loops.

15.3 Some 1)etails of the Loops implementation

Methods are implemented by lisp functions. ‘I he message sending expression:

122

‘[HE lOOPS \L~NU~l.

object selector erg1 ‘ ‘ ‘ arg~’)

my expanded as a compiler MACRO mnto

(APPLY* (FetchMethodOrHelp object ‘selector) object erg1 ‘ arg~r)

GetMethod returns the name of the Interlisp t’unction associated with selector anywhere in the class of
object, or in the superClass chain of that class. Notice that the object is implicitly included a’s the first
argument of the function. as well as being the argument for GetMethod. By svmtactic convention the
first argument (bound to the object) in any function which is being used as a method is called se 1 f. ‘[‘he
expression for the object is evaluated only once.

Objects in Loops are represented in memory as Interlisp datatypes. “[he datatypes for classes have property
lists for methods, class variables, instance variables, and their properties. Datatypes for instances have
property lists for instance variables and their properties. In general. the selector names and variable
names are stored in the class objects. When instances are read in from a data base, they have their local
name tables aligned with the class standards. Special provisions are provided for handling instances whose
variable names do not correspond to current class definitions. Instances act as if they have local tables for
lookup of variables and properties. but they usually share the class name table and no storage is actually
allocated for local tables unless it is needed.

Default values for instance variables and properties are not copied to an instance. No space for instance
variables or properties is allocated until that variable or property has been set individually for the instance.
This means that the default values are not just initial values. In particular. if a class is altered to change
the default value of an instance variable, then all of the instances that do noi’ have individualized values
will reflect the new default value. Also, there is no storage overhead in instances fur unchanged properties
(e.g., for documentation) defined in classes. Since individualized values of variables are stored in the
instances, there is no need to search the class hierarachy after a variable or property has been set in the
instance. In contrast, since class variables are shared among instances it is always necessary to go to the
class (or a super class) to get a value.

Although many of the ideas of the Loops database were inspired by PIE, the implementation differs
along several dimensions. PIE was intended primarily for use with a browser (i.e., an interactive viewing
and editing program), and efficiency was not a primary concern. Since Loops was intended for use by
programs with potentially extensive computational processes. a need for efficient access was perceived and
this led to some different tradeoffs in the choice of implementation.

One difference between PIE and Loops is the grainsize of the changes written in layers. PIE performs
separate bookkeeping on changes to values of every variable in objects. Loops avoids the storage penalty
of this by keeping track only of which objects have been changed. ‘[‘his means that file layers in PIE
contain partial objects (e.g., a change to a single “amiable) while layers in Ioops contain complete objects.
In effect, loops economizes on space (and time) in memory instead of space in the databases.

Another difference is that the [.oops implementation tries to reduce the cost of references to values
by’ snapping links to references. However, link snanpine is fundamentally in conflict with a lookup
process that takes an environment as an argument. link snapping precludes the sharing of objects
between environments in those cases where the interpretation of the references in the shared objects is
sensitive to the environment. Loops preserves a complete isolation of environments, with exchange of
information permitted only as a knowledge base transaction. In general. realigning an cmiv ironment to
incorporate changes from another environment reqtumes writing out the changes, clearing the memory
in the environments, and re-opening the associated knowledge bases. In contrast. PIE always shared
information between contexts. hut it paid the overhead of reinterpreting the symbolic addresses repeatedly

12.3

,mt e’~ervreference.

Sonic Details of the I .oops iinplenientation

A (Ru/cLot (crop//er O’pt/ou) 99

access expressions 18

active values 9,19-20

(4- self Add type name value
property/Oem e) (Method of’ (‘lass)
115

Add’~ (Browser C’ommand) 103
AddCV (Browser Command) 1,03

(4- self AddEntities entityList)
(Method of KBState,) 57

(4- self AddEntities entityList)
(3’[ethod of Layer) 61

Add IV (Browser Command) 103

(4’ self AddIV name value prop)
(Method of’ Object) 118

(4- self AddPersp viewName view
don tCauseError) (Method of Node,)

(4- self AddPersp viewName view)
(si’[ethod of Perspective) 113

(4- self AddloContents newAddition)
(Method of KB) 58: 46,48,50

(4- seLf AddToContents newAddition)
(Method of’ KBState,) 57

(AddValue object varName newValue
propName) 20

(ApplyMethod object selector argList
class) 33

arg s (Method Property) 116
assocKB (IV of Environment,) 59

assocKB ([V of’ Layer,) 61
(4- self AssocKB akb)

(Method of Environment) 59: 49,54

(~self AssocKB newKBName)
(Method of Object) 118

(4- self At varName prop index)
(Method of’ Object) 118

AtCreation (Function) 35

Audit Class 81,89

audit more 73

audit records 75

audi tObject ([02r/ablfo 82

auditVarName (Var/able,) 82

B (Ru/Met Compiler Opt/on) 98

hoot layers 44

boxedNode (IV of’ LatticeBrowser) 107

BoxNode (Browser Command,) 104

(~- browser BoxNode object)
(Method of LarticeBro wser) 107

(Breaklt self varName propName type
breakOnGetAlsoFlg) 112

(4- self Breakit varName
propNarne type brkOuGetAlsoFlg)
(1Iethod of Object) 118

(BreakMethod className selector)

browseFont (IV of LatticeBrowser)
106

BI (RuleSet Compiler Option) 98

(CalledFns classes definedFlg) 120

caller (Var/able,) 82

(4- self Cancel) (Method of Environment,)
59: 51

(4- self ChangedKBs)
(Method of’ Environment,) 59: 57

Class (Class) 15

C 1 as s ([‘1etaClass,) 115; 113

(4- self Cl ass) (Method of’ Object) 118

class variables 13,18

ClassBrowser (Class) 105

Cl assDoc (Browser Command) 102

classes 7,13

CLASSES (F//c Package Command,) 122

114
112

107:

Index. I

(— MI Cl ass N ama) (If~mA A I Ob Or’!)
118

(s- self Cleanup
KBAames nollootf ay~’rF1g)
(tietliod of’ L’rivrrorimeni) 60:
45.51.54

(4- self Cleanup)
(tfeihod of’ EnvAosunent IF/ta) 62:
50

(4- self ClearobjectMemory)
([ethod q,t’ Environment,) 60

(4- self C 1 as e assocKBs)
(Method of Environment) 60:
45-46.49-50

(4- self C] ose leaveKBattachedFlg)
(llethod of EnvironmentMeta) 62:
50

(~ self CommentMethods)
(If ethod of’ Class) 116

compound literals 83

(4- self Connect nameTable)
(Method of KBState,) 57

(4- self Connect nameTable)
(tfethod of’ Layer,) 61

connectedEnvs (IV of’ KB) 58
(4- self ConnectForoutput riameTable)

(,[fethod of KB) 58
(4- self ConnectOutput KB)

(Ilethod of Environment,) 60

contents (IV of KB) 58
contents (IV of KB)) 43

contents (IF of’ KBStatg) 57

contents (IV of KBState,)) 43
Copy (,‘t’fethod of KB,) 54

(4- self CopyDeep KBC)
(Method of’ Object) 118

(4- self CopyFileLayer layer)
(3,Iethod of’ KB) 58

(4- self CopyFileLayers
layerDescnption) (Method of’ [vP)
58: 52

H eM Copyvie Mud m, b’~” r a ;v(A~’
ne vSelecsor) (I/s 1l~’I A’ (,‘smvt) ‘116

of self CopyObjects oh~LAt)
(Ifs rood uJ [cv ‘rrrs myot) 60: F/-S I

(4’ AdRule5et CopyRules
newR uleSetName) (lIes 509c) 95

(4- self CopyShallow)
(Method of’ Object,) [18

Cop yT o (Bro wver (‘ommand) 104

created (IF’ of’ DatedObject,) 115

creator (IV of’ DatedObject,~ 115

CurrentEnvironment (F7zriable,) 14,50

(4- self CurrentState)
(,Method of’ KBLtate) 57

currentWriter ([V of’ KB) 58

CVDoc (Browser Cornmand,~ 103

DatedObject (Class) 115

(DC className supersList) 15

DefaultObject (Variable) 111.119

(DefAVP InName putFlg) 29

DefineC]ass (Function,) 117

DefMethod (Browser Command) 103

DefMethod (Message,) 16

(4- self DefMethod selector args exp)
(Method of’ Class) 116

Del’ R SM (Browser Command,) 103

(Del’ RSM ClassName Selector
RuleSetName) 97

De 1 e te (Browser C’ommand) 104

(4- self Delete type name prop)
(Method of (‘lass) 116

(4- self Delete IV varName propName)
(Itethod of Object) 118

of self De]etelVProp ivAame mvProp)
(Method of’ Object) 118

Index.2

IN 1)1, \

H- MI DeleteMeAsPersp)
(t/s’t/’oj of P ‘rvps cA e) 113

of MI DeletePersp view,\’eme view
iontCauseLrror) (Ifrt,/’od of’ .\‘)
114

(4- self DeletePersp
viewName view dontCeuseError)
(Method of’ Perspective,) 113

(4- self DescribeLayers dateOrDays
assocKB) (Method of KBState) 5~:
52

t roy (Message,) 56

self Destroy) (Method

self Destroy) (Method

self Destroy) (Method

118
(4- self Destroy) (Method of Perspective,)

113

(4- self Destroy!) (Method of’ C/ass,)
116

(4- self Des t roy!) (Method of’ Node)
114

(4’ self Destroy!)
(Method of’ Perspective,) 113

(4- self Disconnect) (Method of KB)
58

(DM className selector argsOrFnName
form) 16

Do 1 (RuleSet Control S’tructure,) 66
DoA1 1 (RuleSet Control Structure) 66

doc (Method Property) [16
Doc* (Browser Command,) 102

(DoFringeMethods object selectorExpr
erg1 ‘‘‘ arg\r) 33

(DoMe thod object selectorExpr class arg1
arg~) 32

(4- self DoMe thod selector class erg1 ergg
erg3 erg4 ergg argg erg7 ergg ergg
erg10) (Method of Object) 118

DoNext (Ru/eSet (,‘ontrol Structure,) 72

croe~er DoSelactedCo’nmand
‘‘mrrmrns:ccl nfo eh~2~’s.rne)
i V mc ~/‘ / s 1! 0 //s’oi~ ‘Lr) 0)’

Cc SO

(4- self DumpToKB
kbA’eme essockBNemes)
(Method of’ L’nvm’ronmriit) 60: 53

(EC ciess,Vame —) 15: 109

Edit (Message) 15,108-109

(4- self Edit commands)
(Method of Class,) 116

(4- self Edit commands)
(Method of’ Object,) 118

Ed i t~ (Browser Command) 103

Edi tCVs (Browser Command,) 104

Cd it IVs (Browser (‘o~ninand) 1,04

(4- ClassName EditMethod selector)
(Message,) 94

(*- self Ed I tMethod selector commands)
(.t[ethod of’ Class) 116

Ed i tOb j ec t (Browser Command,) 104

(~- browser Ed’itObject object objName
ergs) (Method of’ LatticeBrowser,)
107

EditRules (Message) 94

(4- browser E EObj ect object objName)
(Method of’ Lattice Browser) 107

El (Function) 110

EM (Browser Command) [03

(EM ClassNarne selector) 94

(EM className selector ‘—) 17; 110

EM! (Browser Command) [03

EM* (Browser Command,) I03

Environment ((‘lass) 59

environmental objects 42

EnvironmentMeta (C/as,s) 62

Des
(4-

(4-

(4-

116

114
of Class)

of’ Node)

of Object)

Index,3

IN1)F\

en ironmaent~ 11,42-4

ER (M vuz7e) ~4

Error0nNameConflict ~Lyrr~l’) H

(4- self FetchMethod selector)
(Ilethod of (‘lass) 116

FetchMethodOrHelp (Function) 119.123

file (I F’ of Iam’er~ 61

fileliame (IV of KR,) 58

(4- self Files flleLst)
(,I[ethod of Environment,) 60

(4- self Files fileList)
(,Method of’ KBState,) 57

(4- self F ii es fileLst) (Method of’ [aver)

Fl rstFetch (Active Value,) 35

Firstfetch (Function,)- 26.35

(4- browser FlashNode
node N flashTime)
(.I[ethod of’ IatticeBrowser,) 108

(4- browser FlashNode object)
(Method of’ LatticeBrowser,) 108

(4- self F reezeKB name) (Method of’ KB,)
58: 47

(GetClass class propName) 22

(GetClassHere class propName) 22

(GetC]asslV class varName propName)

(GetClasson]y class propName —(4 22

(GetClassValue object varName
propName) 19

(GetClassValue0nly object varName
propNeme) 21

(GetCVHere object verName propNeme)

(Get It object rrarOrSelector propNeme
type) 23

((oH ,‘Hre obj’’~ srOrM,’c’nr
proo\’~me ope) 23

,uet1~.On1y ohj’ct ~“sr’rA(”~nr
ssn~r o~) H

(Get IVHe re oh1e~t ,‘~ry,amc prop2,Aznc)

(4- browser GetLabel object)
(Method of’ / otliy’eBrowser,) 108

GetLispClass (Janet/on) 122

(GetLocalState ectiveValue self
varf’Jame propName type) 28

(GetLocaiStateOnly activeValue) 28

(GetMe thod class selector prop/Verne)

(GetMethodHere class selector
prop/Verne) 23

(GetMethodOnly class selector
propName) 23

(4- browser GetNodeList browseList
goodList) (Method of / uttmceBrowser,)
108

(4- self GetPersp perspNeme causeError)
(Method of Node,) lid

(4- self GetPe rsp perspName
(Method of’ Perspective)

(4- browser GetSubs object)
(Method of’ LatticeBrow,ver,) [08

(GetValue object varName prop/Verne)

(GetValueOnly object var/Verne
prop/Verne) 21

global name table 44
GlobalNamedObject (Class) 115

(4- self HasCV CV2’Ieme prop)
(Method o7(’lass) 116

(4- self Has IV C/Name prop)
(Ilethod of’ (lass) 116

(*- self HasIV ivName prop)
(Method of Object) 119

H

61

causeError)
lid

19

21

Index.4

HE L P C HE C K (//srrcmr’os’A I 11

I n dcx edVa rs (/ V of’ L’ar/en~th) 115

inheritance networks 8

I n spec t (Browser Command,) 1.04

Inspect (,Message) [10

(4- self Inspect ASTYPE)
(Method of Object) 119

instance variables 13.18

instances 13

INSTANCES (File Package Command,) 122

(4- self Ins tOf class/Verne)
(Method of Object,) 119

(4— self Inst0’f! class/Verne)
(Method of’ Object) 119

(4- self IsCurrent)
(Method of’ Environment) 60: 50

IT (Variable,) 104
IVDoc (Browser Command) 102
(4- self IVMissing var/Verne)

(,Method of Object,) 119

KB (C’iass,) 58
K B Me t a ((‘lass) 61

kbName (IV of’ Layer,) 61

KBs 43
KBState (Class,) 57

KBStates 43

knowledge bases 10.41

“5

lastSelectedObject (IV of’ Latticel3rowser,l
107: 106

LatticeBrowser (Class) 106: 105

Layer ICluss) 61

L(/Ct’S 43

“~ band side $0

be ‘f tBu t ton items ((V 0/’ [.oii/ceBrowser)
1.07’. 105

(~browser LeftShiftSelect object
objname) (Method Al Latt/c’eBrowser,)
108: 106

(4- sell Len g t h) (Mel/rod of’ I Ar/en pA,)
115

I.,HS 80

LispClassTable (Variable) 122

(4- self L ‘I st corn ponent Type
component/Verne prop/Verne)
(.Method of Class) 116

(4- self List type/Verne)
(‘Method of Object,) Il9

(1- self List! type name verboseFig)
(Method of Class,) 117

(4- self L I s t! type name verboseFlg)
(Method of’ Object) 119

ListRuleSets (Function,) 96

LocalCommands ((‘V of’ LatticeBrowser,)

107: 105

(MakeActivevalue self varOrSelector
newGetFu newPutFn newLocalSt
propName type) 29

(4’ self MakeCurrent)
(Method of’ Environment,) 60:
50-5 1,54

of self MakeNotCurrent
bitchif/VotCurrent) (Method of’ En vironment)
60: 50

(4- self MakePersp view/Verne nodeType)
(Method of Perspective) 114

(4’ self MapObjectNames
mapFn essocKBs noULDs)
(,I[ethod of’ Env/ronment) 60: 53-54

(4- self MapObjectNames mapFn
noUlDs) (.1/ct hod of Lover,) 61: 56

lndex.5

I’s 1)15

M ~ “ar’kdeTeted ~cj’ ~tAAs

1/, ii~5/ ~II /‘ Ti “re , ceoi) nO

Al) ‘rj

~IessagedotUnde rs tood (lfc’~,,~i~s) it

(4- self MessageNotUndersteod erector
superFlg) (1/H-to 1 ii’ O6iect) 119

meta-descripuon 80

Me taC 1 ass (.Metsc/ass) 36.113

meraclasses .13

Me t ho dD o c (Browser (‘ommand,) 102

(4- self MethodDoc selector)
(Method of’ (‘lass) 117

methods 7.13

MiddleButtonltems (CV of LatticeBrowser,)

107; lOS
(4- browser MiddleShiftSelect object

objnerne) (Method of I,atiiceBrowser)
108: 106

Move* (Browser (‘omrnand,) 104

(MoveClassVariable oldClass/Varne
newClassnarne variable/Verne) 121

(MoveMet hod oldClessnarne newClass/Verne
selector) 120

(4- self MoveMethod newClass selector)
f,Method of’ Class,) 117

MoveObjects (,Message,) 54

MoveTo (Browser Command,) 104
(MoveVar i able oldCless/Veme

newClassname variable/Verne) 121

multiple alternatives 12.42

(4- self MyKB) (,Method of’ KB,S’tate) 57

name ([V of’ GlobalNamedObject,) 114
‘5

name (IV of’ KBSiate,) 57

name (IV of ,VamedObject) lid

IlamedObject (Class) 115: 15

name Tab 1 e (IF” of’ Environment) 59

Ic a (or o ~ur I ‘~rolls’ ti di .04

H- ‘lass New) (If ‘~ue’i’) 14

I ‘ ‘n~Cla~ New c’a~ss.5’sm” suoersm ,4v)
HI. tsa~s) 15 i4H-

(4’ H-f New name sueers)
(i/ct/sod of (.‘slSS) 117

(4- self New kb/Verne env2$ame
newVersionFlg) (IletA d of’ KB Memo)
61: 44.46,51)

NewTemp (.Message) 55

(4- self NewTemp selector superFlg)
(Method of’ Class) 117

(4- class NewWithValues
valDescriptionList) (Message,) 34: 35

Node ((‘lass) 114

NoObjectForMsg (,Message,) ill

(4- self NoObjectForMsg selector)
(Method of’ Object,) 119: 111

NotSetValue (VariabLe,) 19,21-23

,NoUpdatePermitted (Function) 26

Object (Class,) 118: 113

(Object? X) 14

objects 13

(4- browser ObjNamePair objOr/Verne)
(Method of LatticeBrowser) 108

(4- self Old kb/Verne coy/Verne)
(.Method of’ KBMeta,) 61: 45-48.52

(4- self OnFile file) (Method of’ Class,)
117

(4- self Open) (Method of’ Environment)

60: -15’46,48,50

openEnvironments (FAr/able) 50

(4- self OpenFiles)
(Method of’ Environment I/eta) 62

ou tputKB ([V of Environment) 59

owners ([V of’ RB) 58

Index.6

N 1)1’S

Pc rspect I ~e ‘/ oj;i 113 (oH- Put vpe name value prop)
M1 food of (lass) 117

porspectiveNode (V . / r~’’ctt”)
(e I Put var,\arne newHiue prop,\’emn’

‘a Ie(4 (l/ot/sssd of’ Object) 120

PutCl ass class newVelue prop/Verne)

(PutClassIV class var/Verne newValue
prop/Verne)

(PutCI assOnly
prop/Verne) 22

(PutClassValue object var/Verne
newValue prop/Verne) 20

(PutClassValueOnly object- varNarne
newValue prop/Verne) 21

(Putlt object varOrSelector newVelue
prop/Verne type) 23

(PutltOnly object verOrSelector
aewVelue prop/Verne type) 23

(PutLocalState ectiveVelue newValue
self var/Verne prop/Verne type) 28

(PutLocalStateOnly ectiyeVelue
newValue) 28

(PutMethod class selector newVelue
prop/Verne) 23

(PutMethodOnly class selector newValue

prop/Verne) 23
(PutValue object var/Verne newVelue

prop/Verne) 20
(PutValueOnly object var/Verne newVelue

prop/Verne) 21

RE (Function) 99

(4- self ReadBoot) (Method of KBlIeta,)
62

of self ReadBoot) (Method of KB~S’tate)

of self ReadOldBootLayer kb/Vame
numBack) (1/ct/sod of’ KB.lleta) 62:

reason (Property ,Name)

22

class newVaiue

113

perspectives H

perspectives ([I’ of \‘ode,i 114

posi tion (IV of’ Layer) 61
PP (Browser I, ommanj) 102

PP (Message,) 56

(4- self PP file) (Method of’ Class,) 117

(4- self PP) (Method of’ Object) 119

PP! (Browser Command,) 102

(4- self PP! file) (Method of’ Class,) 117

(4- self PP! file) (Method of’ Object) 119
PPM (Browser Command,) 102

(4- self PPM selector) (.Method of’ (‘lass)

117
(*_ self PPMethod selector)

(Method of Class,) 117

(4- RuleSet PPR) (Message) 96

(4- RuleSet PPRu 1 es) (Message,) 96

PPV! (Browser Command) 102

PR (RuleSet (‘ompiler Option,) 98

P r i n t * (Browser Command,) 102

(4- self PrintContents file)
(Method of KB,) 58

(4- self PrintOn file) (Method of Object,)

119

Pr in tSumma ry (Browser Command,) 102

properties 7

propName (Variable) 35

pseudoc lasses 122
pseudoinstances 122

(PushClassValue object var/Verne
newVelue prop/Verne) 20

(PushValue object var/Veme newValue
prop/Verne) 20

57

54

Index.7

[NI”) FIX

reasons (‘l’/mr/ob/e) 82

of browser Recompute)
(.lfct/see! os” I ati~cePro wser/ 108

(‘- self Rename new/Verne environment)
(.11cf/sod of’ C/ass) 117

(4- self Rename new/Verne environment’)
(~Methodof’ Object) 120

Rename * (Brovvser Command,) 104

(Re n ameMe t hod class/Vame oldSelector
riewSelector) 120

(RenameMethodFunction class old/Verne
new/Verne) 120

(RenameVar lab 1 e class/Verne old Var/Verne
newVar/Verne clessFlg) 121

(ReplaceActiveValue ectiveVel
newValue self var/Verne prop/Verne
type) .28

ReplaceMe (Function) 27

(4- self ReplaceSupers supers)
(Method of Class) 117

RHS 80

right hand side 80

r s (Variable,) 82

RSGet (Property Name) 97

RSGetFn (Function) 97

RSPut (Property Name,) 97

RSPutFn (Function,) 97

Rule Class 81

ruleAppl led (Variable) 82: 67,72

ruleLabel (Variable,) 82

ruleNumber (Variable) 82

ruleObject (Variable) 82

RuleSet (Class) 94

RuleSets 65

(Runl teskLiss) 92

(RunAll teskList) 92

Run PS RuleSet workSpace argo
argtg) 96

(RunTogether taskList) 92

selectors 7

self (Variable) 82: 35,81

SEND (Function) ‘ 13

SFNDSLJPER Mac 32

of self SetContents 1st)
(Method of’ KB,) 59

of self SetContents 1st)
(Method of KBState) 57

(4- object SetName name) (Message,)
14: 34,39

(4- self SetName new/Verne environrnent)
(Method of’ (‘lass,) 117

(4- self SetName name environment
noBitcbFlg) (Method of’ Object,)

Shared (Litatom,) 26

(4- browser Show
browseList windowOrTitle goodList)
(,Method of’ LatticeBrowscr,) 108

Special ize (Browser Command,) 103

Special ize (Message,) 39

(Starti teskList) 92

(StartAll teskList) 92

startingList (IV of LatticeBrowser,)

107
status (IF’ of’ Environment) 59

status (IV of’ KB) 58

(Stop velue status reason)
(RuleSet ,S’tatemeni,) 93

(4- self SubClasses) (Method of (‘lass)

117

SubRuleSets 65

(4- sell Summarize
fromKB/Verne toKB/Veme

120

index. $

IN 1)1’S

:sscr’KBd’ames namc’dObjectsOnl5’)(I/elK 1 r’ RB I/eta) 62:) 3

sner c(tSSLs 13

~upers 13

supers list 8

T (RuleAet Compiler Option) 98

task (PAr/able,) 82

Task Class 81

(asks 69
Temp 1 ate (lletaClass) 38

(4- self ThawKB name) (,Method of KB,)
59: 48

title (IV of latticeBrowser) 107: 106
Titleltems (CV of LatticeBrowser) 107

topAl ign (IV of’ LatticeBrowser) 107:
106

(T race I t self var/Verne prop/Verne type
traceOuGetAlsoFig) 112

(4- self Tracelt var/Verne prop/Verne type
traceGetAlsoFlg) (.llethod of Object,)
120

(1 rac eMe th od class/Verne selector) 112

TT (Rule,S’et Compiler Option) 98

UE (Function) 101

(UnBreaklt self var/Verne prop/Verne
type) 112

(4- self Understands selector)
(Method of’ Object) 120

Unread (Browser Command,) 103

(4- browser Unread object obj\.iame)
(1/ct/sod of’ / atticeBrowser) 108

(4- self UnSetName name environment)
(.1[ethod of Object) 120

variables

tiarlenptn ((Ky)

v a r 11ame I t ir’ ([14’)

(Waitl teskList) 92

(Wal tAll teskList) 92

Where Is (Browser (‘cinmand) 103

(4- self Wherels name type prop/Verne)
(Met/sod of’ Object) 120

Wh I 1 e 1 (RuleSet (‘ontrol ,S’tructure,.) 67

Wh i 1 eAl 1 (RuleSet (‘ontrol Structure,) 67

Wh 11 eNext (RuleSet Control Structure,)

window (IV of’ /.atticeBrowser) 107: 106

(4- self WriteBoot)
(.Method of Environment) 60

(4- self Wri teBoot) (Ifethod of KB)

(4- self WriteEntityFile
chengedEntities nernedEritities
essockb/Verne) (Method of’ KB)

(4- self WriteFileLayer kb/Verne
nameTeble) (Method of KB) 59

(~- self WriteUpdate kb/Verne)
(Method of Environment,) 61

(4- object Selector erg1 ‘‘‘ arg/V) 13

~! 13

~-+ (Rule Infix Operator) 90

~-‘ (Rule In, ix Operator) 90

(‘-@ eccessExpr newVelue) (Macro,) 18

(~@object eccessExpr newValue) (Macro)

~New (Macro) 34

(~Super object selector erg1
arg/V) 31

(~SuperFringe object selector arg1
argxj) 32

115

72

59

59

18

I ndex,9

INflEX

— (Rule C/nary Operator) 84

—= (Ruth Infix Operator) 84

$ (Function) 13-14

$1 (Function) 15

* (Rule Infix Operator) 83

+ (Rule. Infix Operator) 83

++ (Rule Infix Operator) 83

- (Rule Infix Operator) 83

- - (Ruth Unary Operator) 84

-- (Rule Infix Operator) 83

/ (Ruth Infix Operator) 84

<(Ruth Infix Operator) 84

<< (Ruth Infix Operator) 84

< (Ruth Infix Operator) 84

= (Ruth Infix Operator) 84

s= (Ruth Infix Operator) 84

> (Ruth Infix Operator) 84

> = (Rule Infix Operator) 84

(8 accessExpr) (Macrn) 18

(8 object accessExpr) (zi’facrn) 18

Endex.1O

Filed on: (Indigo ~<E oops>l ,oopsLau rse>{ oopsCourceSurr mar’ ,Prav o

East edited: Gb June 14, 1’ ~ 3 h:r P\l

LOOPS Course Summary

sfi/j~O~/jfcts_and\ariahles
(8 named a’, lluateS ~o ae oh~eas,r class ~a ned ‘no
i$! ~ ‘, ~auatcsLU the hject ~,r lass S lose name ~s thy tIne I mu
of uccesslJvpr) cv abates to the v ouc oi the ‘nstance ‘~aisahIe,cia~s anab Ic, or ‘~r~~ey

retdrred to on seem .vsLapr in selL
((4 obj accessExpr) evaluates to the clue 01’ the snstancc variable, class unable, ‘r prL p0. t u

referred to by accessl/’xpr in obj
of(4 accessLi’xpr new fralue) sets the value of the variable accessed by accessEepr in sel(to isesti Jiue
(~(4obf accessExpr newfralue) sets the value or the variable accessed by accessl/’xprin ohjto uln~i 1/Ui’
accessExpr is the concatenation ot any combsnation of the toIlo~ing vvith cv Auction ~trictlnleft to nicK

/s’,’Vame instance variable ~v,’vatue
cv~Vame class variable cv~Vamne
,propName value of property propNamne
,selector value returned by sending the unary message selector

N.B. a ! (bang) after any of’ the puctuation in the four lines above will cause the atom following it to he evaluated
and that value to he used as the name. Within an accessEvpra lisp variable is prefixed with a backslash “A’

(i.e. ::fee.fie:!\foe:,fum will get the value of CV fee of selfand send it the message lie, then it will get the instance
variable whose name is the value of the lisp variable foe from the object returned by the message tie, then it
will get the value of property furn of that IV)

~nin and Ed~ Classes
(DC classiVame supersI~ist) 0- (S Class) New class,Vaine supersList) create a class with name c/ass,\amc and

supers supersi ‘St
(EC class~Vame) (4- (5 className) Edit) edit the class definition of class c,’ass,\’am~’
Defining and Editing Methods

(DM class~Vameselector)

(DM classiVarne selectorfnName)

(EM classiVame selector)

ç~ti~gJdj~n,an4jnsecti~gjnstances
(4- class New)
0- class New ‘name)
(4’ objEdit) (Elobj)
(4- obj Inspect) (INSPECT obj)
(~Newclass selector erg! ,., argm’v”)

~nX1e~s
0- objselectorargi ,,, argN’)
(~Superobj selector erg! ,.. argV)

(4-SuperFringe obj selector argi argN)

(~!obj expr erg! ,,. argiV)

creates a function with the name className,selectorto he used hn the metheo
called by selectorand puts you in the editor
causes the function with the nan’iefh~Vameto he used by the method called
by selector
edit the method used by selector in class c1ass~Vame

creates a new instance of class
creates a new instance of class with the name name

edit obj
create an inspect window for obj
create a new instance of class and sends it the the message selector’s ith
arguments argi ,., arg,V

send obj the message selector with arguments erg! .,,
in method selector invokes super method for that selectorwith arguments
erg! ~.. argmV
invokes all the immediate super methods of obj for that selector with the
arguments erg! ~. erg.~
send obf the message vvhose selector is the value of e spr with the
arguments erg! erg\m

~ctive Values
~(localState getFn putfo) localS tate is where the value is stored (this man he another active value)

~etFn is the function called on read scccss and put!”n is called on write access
the value returned by get/As in the value of the get operation and put/A has
responsibility for changing the value of lace/State using the function PutT ocalState

I)ehuggjng
I hreaelt e,~‘ mr\,mmc’) ‘:‘~~ k ‘,vbmno,’ r the :ist,muyc , K ~‘~‘ ,~v,

(Lnhoaslt A/,’~,rkam~~ “Oh ‘,ashchro k , ‘r:m’’o , ~‘ ‘i ‘ ‘0
breakAo~”coL/. 5 zm’~ ‘ i’,’~i’) ‘~no ik ‘‘on. r ‘no ‘no a A ‘ ‘~ ,~‘

s~wCO i K , ‘.5 a’s’
l’racc\Iathod c,’,,sn\ i/ill ~m~’~nc,‘) o .c~~o:or’o~er“to aoL K “ ris ~

scyc ‘r ,o ;o S a i

~L\i3RF,\K ms/i MoyR ~cr!i/:’5) sta~’dana1 ~ a u~no is ‘~r~i’”,c’ noL~ ,s
(i!reasit (4Lam’kumun’pr ~ ‘vai”’’pn’ ‘ “KG K I K ‘A ‘n oK ‘OLL ito’~n’ boo i’ ‘1 ‘‘ ‘

l’nicclt oh,) ;ar,\ame prop \al’s’ ripe l’reuuthm’y’ /, I’so/”,A :r ice U none’. or ‘no ‘, ,rOnIo a’\ i’m 1 ~p~’,s~cossod
(LnBreaklt oil ar\ame prop S mmn irpA nomov o the brook so ‘,ui’l ~nk •ar\ ;m”~ a’ y
[‘a attach a gauge and monitor a .aniabbc:

0-New (8 geugeTepe) Sttach obj my Same reActor) ItLiches a gauge ortnpe paugelmpn’ to the instance
variable it~,Vmine of ‘hj

Rules
mE gets iou into the Rule Executive
(OK gets you outof itand LE puts you in the Lser Executive (where OK will get nou hack again>)
k’ariahles are accesed by using the access expressions as defined above

eccessExpr gets value of variable (do not use fti)
eccessEvpr~-newVelue variable accessed gets new frhlue
\lisp Var/Verne for referring to lisp variables use backslash
selector sends unary message to self

(unary message is one that requires no arguments besides self)
(DeIRSM classiVerne selector) creates a new rule set for the class class/Verne invoked by selector and

places iou in the rule editor
(4- ruleSei CopyRules ‘newRuleSe~Varne) copies the ruleset rule,S’et into a new one called newRule,~’et,’v,mmne
(4- ruleSet ER) ER(ruleSet) edit ru!eXet
(ListRuleSets class/Verne) generates a listing of ill the rule sets defined for the class
className

Browsers
(Browse classList) creates a browser window for the class lattice structure of the classes in class! /51 and their

descendants
left or middle hutton in title area of the browser window updates the lattice structure

I eft Mouse Button gets pop-up menu to print information about class structure and methods
Middle Mouse Button gets pop-up menu to aid in generating new classes or methods

An asterisk at the end of the name of any item in the menu signifies that there are multiple options for this item
To use the default option, click the left button, for a menu of options click the middle button (i,e, EM~will get

a menu with E\f and FM!)
To copy from class to class use the left button to “BoxNode” of recepient class then with the middle button

menu select the “Move” item with the middle button to get a menu for either copying of moving of lAs, CVs,
Methods, or RuleSets

“Specialize” on the middle hutton menu will create a new subclass of the one selected and ask for a name in the
prompt window

“DefineMethod” on the middle button menu will create a new method for that cIa~sand prompt for its selector

Savino and Restorin°Files
(FILES?) Lisp will ask you to assign a filename to each entity it does not already have a file name for

Type yes to specifr the file names, For each entity type the jilenarne to save it Onto not
have it saved
LineFeed ([F) means the same as the previous antits

(A \KEFII,Efi/enarne) saves the file on the file seruer on the directory currently connected
(LOAD filename) loads the file from the file server on the directory currently connected

