Reprinted from

Volume 14 Number 2 September 1980

[ntelligence

AN INTERNATIONAL JOURNAL

Planning with Constraints
(MOLGEN: Part 1)

Mark Stefik*

Computer Science Department, Stanford University, Stanford,
CA 94305, U.S.A.

Recommended by Daniel G. Bobrow

qw

¢ ¥ 2

‘51?//}
=

Q{;ﬁ Rg
,‘N b

ARTIFICIAL INTELLIGENCE

Planning with Constraints
(MOLGEN: Part 1)

Mark Stefik*
Computer Science Department, Stanford University, Stanford,
CA 94305, U.S.A.

Recommended by Daniel G. Bobrow

ABSTRACT

Hierarchical planners distinguish between important considerations and details. A hierarchical
planner creates descriptions of abstract states and divides its planning task into subproblems for
refining the abstract states. The abstract states enable it to focus on important considerations, thereby
avoiding the burden of trying to deal with everything at once. In most practical planning problems,
however, the subproblems interact. Without the ability to handle these interactions, hierarchical
planners can deal effectively only with idealized cases where subproblems are independent and can be
solved separately.

This paper presents an approach to hierarchical planning, termed constraint posting, that uses
constraints lo represent the interactions between subproblems. Constraints are dynamically formulated
and propagated during hierarchical planning, and used to coordinate the solutions of nearly
independent subproblems. This is illustrated with a computer program, called MOLGEN, that plans
gene-cloning experiments in molecular genetics.

1. Introduction

Divide each problem that you examine into as many parts as you can and
as you need to solve them more easily. Descartes, OEuvres, vol. VI, p. 18;
“Discours de la Methods”’

This rule of Descartes is of little use as long as the art of
dividing . . . remains unexplained. . . . By dividing his problem into unsuit-
able parts, the inexperienced problem-solver may increase his difficulty.
Leibniz, Philosophische Schriften, edited by Gerhart, vol. IV, p. 331 from
Polya [12]

* Current address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
94304, U.S.A.
Artificial Intelligence 16 (1981) 111-140

0004-3702/81/0000-0000/$02.50 © North-Holland Publishing Company

112 M. STEFIK

Subproblems interact. This observation is central to problem solving, parti-
cularly planning and design. When interactions can be anticipated, they can
guide the division of labor. When they are discovered late, the required
changes can be difficult and expensive to incorporate. The difficulty of
managing interactions is compounded by problem size and complexity. In large
design projects, unforeseen interactions often consume a substantial share of
the work of project managers [2].

This paper is concerned with ways to cope with and exploit interactions in
design. Section 2 presents the constraint posting approach for managing inter-
actions in design. Constraint posting has been implemented in a computer
program (named MOLGEN) that has planned a few experiments in molecular
genetics. In Section 3, the design of an experiment is used to illustrate the
constraint posting ideas. In Section 4, the effectiveness of constraint posting on
the sample problem is examined. The remaining sections trace the intellectual
connections to other work on problem solving and propose suggestions for
further research.

This is the first of two papers about my thesis research on MOLGEN. Both
papers are concerned with the use and organization of knowledge to make
planning effective. This paper discusses the use of constraints to organize
knowledge about subproblems in hierarchical planning. A companion paper
[21] discusses the use of levels to organize control knowledge. It also develops
a rationale for deciding when a planner should use heuristic reasoning.

The research was carried out as part of the MOLGEN project at Stanford. A
long term goal of this project is to build a knowledge-based program to assist
geneticists in planning laboratory experiments. Towards that goal, two proto-
type planning systems have been constructed and used as vehicles for testing
ideas about planning [7, 20].

2. The Constraint Posting Approach to Design

The constraint posting approach depends on the view of systems as aggregates
of loosely coupled subsystems. It models the design of such systems in terms of
operations on constraints.

2.1. Nearly independent subproblems

In Sciences of the Artificial [18], Simon discussed the study and design of
complex systems. He observed that when we study a complex system, whether
it is natural or man-made, we often divide it into subsystems that can be
studied separately without constant attention to their interactions. For exam-
ple, in studying an automobile, we delineate subsystems such as the electrical
system, fuel system, engine, and the brake system; in an animal, we delineate
the nervous system, circulatory system, and the digestive system.

Similarly, when we design complex systems, we tend to first map out the
design in terms of subsystems. Designers have advocated this top-down ap-

PLANNING WITH CONSTRAINTS 113

proach for the design of such diverse things as computer programs, machines,
and buildings. This approach is so familiar and universally practiced that we
seldom consider the motivations for it. Some of these motivations are: (1) the
apparent complexity of the design problem is often reduced by partitioning it
into subproblems, and (2) the partitioning can be done before the specifications
of the subsystems are worked out because most of the details are irrelevant to
the global design, and (3) the labor and expertise of designing the detailed
subsystems can often be divided among several specialists.

A key step in design is to minimize the interactions between separate sub-
systems. Simon coined the phrase nearly decomposable system to characterize
the way that a complex system can be built from loosely coupled subsystems.
Winograd [26] addressed the same point in representational terms:

“...we must worry about finding the right decomposition to
reduce the apparent complexity, but we must also remember
that interactions among subsystems are weak but not negligi-
ble. In representational terms, this forces us to have represen-
tations which facilitate the weak interactions.”

The view of a system in terms of nearly decomposable subsystems cor-
responds to the view of the design process in terms of nearly independent
subproblems. In hierarchical planning a solution is first sketched out in terms of
abstract steps, which are refined into specific plan steps during the planning
process as shown in Fig. 1. The abstract steps and their subsequent refinements

" Abstract Operation

Abstract State

' Specific States and Operations
F1G. 1. Nearly independent subproblems. The upper level represents an abstract (or less detailed)
plan. The arcs represent abstract operations and the circles represent abstract states. In hierarchical
planning, such abstract plans are refined into more specific plans, as suggested by the refinement-
cones. Each cone can be viewed as a refinement-subproblem. Interactions between the refinement
subproblems need to be managed during planning.

114 M. STEFIK

correspond to nearly decomposable subsystems; they are connected together in
a plan and the output of each plan step must match the required input of the
following plan step. These input/output relationships make a plan work as a
whole. The design subproblems, that is, the refinements of the abstract plan
steps into specific steps, are only nearly independent. They are not completely
independent because their solutions must interface correctly. When the ab-
stractions partition the plan into nearly independent subproblems, interactions
do not dominate the planning process. However, efficient planning usually
requires that the weak interactions be taken into account during the planning
process. The key idea in constraint posting is to use constraints to represent the
interactions between subproblems.

2.2. The meanings of constraints

For the purposes of planning, constraints can have several different inter-
pretations. A constraint expresses a relationship among plan variables. Con-
straints are represented as predicates. For example, consider the following:

(Lambda (Gene DNA-structure) (Contains Gene DNA-Structure)).

If the Lambda variables (Gene and DNA-Structure) are bound to the
constants Tc"-gene and DNA-13, then the predicate Contains may be evalu-
ated to determine whether the Tc’-gene is contained in DNA-13. The full
representation of constraints implemented in MOLGEN allows the plan vari-
ables to have different names than the Lambda variables and contains other
information related to the constraint. Constraints may involve more than two
variables; they may also apply over sets of variables.

The first interpretation of constraints is as elimination rules from the per-
spective of object selection. A constraint in MOLGEN is associated with a set
of plan variables that usually refer to laboratory objects. When the variables
are not yet bound, the constraint may be interpreted as a condition to be
satisfied. It constrains the set of allowable bindings; potential selections are
eliminated if they do not satisfy the constraint.

A second interpretation of constraints is as partial descriptions and com-
mitments from the perspective of plan refinement. During the process of
planning, there are many opportunities for deciding which part of a plan to
make more specific. A least-commitment approach is to defer decisions as long
as possible. A constraint is essentially a partial description of an object; a
selection is a full description. By formulating constraints about objects,
MOLGEN is able to make commitments about partial descriptions of the
objects without making specific selections.

A third interpretation of constraints is as a communication medium for
expressing interactions between subproblems. A constraint represents an in-

PLANNING WITH CONSTRAINTS 115

tended relationship between (possibly uninstantiated) plan variables. In
MOLGEN, these variables are often shared among various steps in the plan;
they represent objects having a rich set of relationships. For example, they may
represent laboratory objects which are to be constructed out of other labora-
tory objects. If a problem solver has a calculus of expressions, it can take
constraints relating to variables in one part of the plan and infer new con-
straints relating to variables in another part of the plan, even though the
variables themselves are still unbound. This amounts to the propagation of
constraints in a plan, and we will see that this enables a problem solver to
coordinate the solution of subproblems. '

2.3. Operations on constraints

The constraint posting approach is essentially a marriage of ideas from hierar-
chical planning and constraint satisfaction. It distinguishes three operations on
constraints:

(1) constraint formulation,

(2) constraint propagation,

(3) constraint satisfaction.

All of these operations could be broadly characterized as inferences in problem
solving. A major point of this paper is that it is useful to consider these
operations in terms of the substantially different roles they play in the problem
solving process.

Constraint formulation is the adding of new constraints as commitments
in the design process. A planner can proceed hierarchically by formulat-
ing constraints of increasing detail as planning progresses. Thus, a problem-
solver that can introduce new constraints need not work with all of the details
at once. This idea is consistent with the common experience of working on
problems that are imprecisely formulated, but which become more tightly
specified during the solution process. In contrast, the traditional constraint
satisfaction approach works with a fixed number of constraints that are all
known at the beginning.

Constraint propagation is the creation of new constraints from old constraints
in a plan. In MOLGEN, this operation performs communication between
refinement subproblems during planning. Refinement subproblems are usually
under-constrained when viewed in isolation because there are many choices for
refining abstractions in genetics plans. When constraints are propagated, they
bring together the requirements from separate parts of the problem. Constraint
propagation makes possible a least-commitment strategy of deferring decisions
for as long as possible. The problem solver works to keep its options open, and
reasons by elimination when constraints from other subproblems become

known.

116 M. STEFIK

Constraint satisfaction is the operation of finding values for variables so that
a set of constraints on the variables is satisfied. Constraint satisfaction can take
different forms. For example, linear programming is a constraint satisfaction
method that assigns numeric values of variables satisfying linear inequalities.
Constraints in MOLGEN describe requirements about laboratory objects
needed in the plans; constraint satisfaction implements a ‘buy or build’ decision
process. MOLGEN first tries to satisfy the constraints by selecting an available
object ‘off the shelf’. Computationally, this involves searching MOLGEN’s
knowledge base for a record of an object that is marked as available and which
satisfies the constraints. For example, MOLGEN might search for an organism
carrying a particular gene on its chromosome. If the search process fails,
MOLGEN marks the constraint as unsatisfied and may later propose building
an object to satisfy the constraint. In such a case, the construction of the object
becomes a subgoal in the plan. When the constraints and variables come from
different subproblems, constraint satisfaction plays a coordinating role by
pooling the constraints and intersecting their solutions.

3. An Example of Planning with Constraints

This section illustrates the constraint posting idea with an experiment that was
planned by MOLGEN. MOLGEN has been used to plan experiments in a class
of synthesis problems known as gene cloning experiments.! The goal in gene
cloning experiments is to use bacteria as a biological system for synthesizing a
desired protein product. The experiments involve splicing a gene coding for the
protein into bacteria, so that the bacteria will manufacture it. The laboratory
plan illustrated in this example is a solution to a gene cloning problem called
the rat-insulin problem which was reported by Ullrich et al. in 1977 [24].

Before starting the example, it should be mentioned that the main use of
MOLGEN is as a vehicle for testing approaches to reasoning about design. It
would be misleading to suggest that MOLGEN is currently a useful com-
putational aid for geneticists. MOLGEN’s knowledge base is too narrow and
there are serious difficulties in upgrading MOLGEN to a routinely useful
system (see Section 6.2). The rat-insulin experiment is one of a few gene
cloning experiments that have been planned by MOLGEN. Even in this
narrow class of experiments, there are laboratory techniques (e.g., involving
protein transcription) that are currently beyond MOLGEN’s ken, and experi-
ments which MOLGEN fails to solve satisfactorily. The trace of MOLGEN’s
reasoning in this experiment took over 30 pages of computer print out (without
annotations). The interested reader is referred to Stefik [20] for a complete
trace of the planning of this experiment.

' A very readable review of these experiments is available in Gilbert and Villa-Komaroff [8].

PLANNING WITH CONSTRAINTS 117

3.1. First steps

The first part of MOLGEN’s trace is similar to the behavior of previous
problem-solving programs like GPS (Newell [11]). MOLGEN compares goals,
finds differences, and chooses operators to reduce the differences. Like several
recent planning programs (see Section 5.1), MOLGEN plans hierarchically. It
uses a simplified model of genetics to set up an abstract plan, and then refines
that to a plan of specific laboratory steps. This section shows how MOLGEN
sets up an abstract plan for achieving a synthesis goal. The constraint posting
ideas do not appear until Section 3.2.

3.1.1. Abstract objects and operators

MOLGEN views synthesis experiments as compositions of four abstract
operators called the ‘MARS’ operators. (The word ‘MARS’ is an acronym
formed from the first letters of their names.)

(1) Merge”®—to put separate parts together to make a whole. Examples:
connecting DNA structures together (Ligate), adding an extrachromosomal
vector to an organism (Transform). ,

(2) Amplify —to increase the amount of something. Examples: incubating
bacteria in ideal growth conditions (Incubate), introducing something from
stock (Get-Off-Shelf).

(3) React — altering the properties of something. Examples: cleaving DNA
with a restriction enzyme (Cleave), using alkaline phosphatase to change
terminal phosphates to hydroxyl groups in DNA molecules (Add-Hydroxyl).

(4) Sort—to separate a whole into parts according to their properties.®
Examples: separating polynucleotides according to mass and topology (Elec-
trophoresis), killing organisms not resistant to a given antibiotic (Screen).

MOLGEN’s knowledge is represented in a hierarchical knowledge base*
divided into objects and operators. The knowledge base describes the labora-
tory entities at various levels of abstraction. The most abstract laboratory
operator is called Lab-Operator; the next level contains the four MARS
operators, and the next level contains thirteen specific laboratory operators.
The most abstract laboratory object is Lab-Object; the next level contains
Antibiotic, Culture, DNA-Struc, Enzyme, Organism, and Sample. This hierarchy
is six levels deep and contains descriptions of 74 kinds of objects.

2This paper uses the convention that operators are indicated by underlining; objects and steps
are indicated by italics. References to units are indicated by capitalizing their first letter; references
to slots are indicated by italics with the first letter not capitalized.

3 This is the usual meaning of sort and not the computer science meaning, which requires a linear
ordering. Some of the laboratory operators classified as Sort operators do provide a linear ordering
(such as Electrophoresis); others do not (such as Screen). An alternative name for this category of
operators would be separative techniques.

4 See Stefik [19] for a discussion of the representation language.

118 M. STEFIK

3.1.2. Finding a difference

The synthetic goal for the rat-insulin problem is shown in Fig. 2. This goal is a
partial description of the desired state that leaves some of the details to be
filled in by the planner. It describes a culture of an unspecified bacterium,
having an unspecified vector that carries gene for rat-insulin. A vector is a
self-replicating DNA molecule that can be used to transmit genes into bacteria.
Bacteriophages and plasmids are typically used as vectors. Determining what
bacterium and vector to use is part of the problem. MOLGEN interprets this
goal as a request to design a laboratory plan to get the described bacterium.

An important part of creating a laboratory plan is the selection of (possibly
abstract) operators. Like several earlier problem solvers, MOLGEN keys its
selection of operators by differences. MOLGEN’s first steps in doing this are
shown in Fig. 3. The key item in the figure is the data structure Difference-1.

Prototpe is SYNTHESIS-PROBLEM

GOAL: [CULTURE-1 with
ORGANISMS: [BACTERIUM-1 with
EXOSOMES: [VECTOR-1 with
GENES: [RAT-INSULINJ]]

TO-PLAN: META-PLAN-INTERPRETER
PLAN-NUMBER: 1

DESCR: This synthesis problem is to clone the
gene for rat-insulin. This problem was
discussed by Ullrich et.al. in Science,
Vol. 196, pp. 1313-1319.
FI1G. 2. Goal of the rat-insulin problem. The goal slot contains a symbolic description of the
synthetic goal. Bacterium-1 and Vector-1 are variables, which will become instantiated during

planning.

->STRATEGY-STEP-1 (FOCUS)
“>PLAN-STEP-1 (FIND-UNUSUAL-FEATURES) Input: ($LAB-GOAL-1)
<-PLAN-STEP-1 DONE SUCCESS Output: (DIFFERENCE-1)

----- DIFFERENCE-1---- -

MISMATCH: EXOSOMES

OBJECT: BACTERIUM-1

COMPARED-TO: BACTERIUM

LEVEL: 2

DEFN-ROLE: PART-OF

TYPE: MORE-SPECIFIC

EXCEPTIONS: (VECTOR-1 (*P VECTOR))
REPRESENTATION: LIST

MAKER: PLAN-STEP-1

DESCR: Created by FIND-UNUSUAL-FEATURES

F1G. 3. Finding unusual features. The Find-Unusual-Features design operator compares the objects
in Lab-Goal-1 against their prototypes, and outputs a description of their unique features as
Difference-1. (It quits after finding the highest level difference.)

PLANNING WITH CONSTRAINTS 119

Difference-1 summarizes the unusual features of the bacterium described in the
goal (Bacterium-1) that were found when it was compared to the prototypical
bacterium in the genetics knowledge base. The interpretation of Difference-1 is
that Bacterium-1 was unusual in that it had a specific vector (Vector-1) as an
exosome.

The rest of Fig. 3 exposes some aspects of MOLGEN’s planning machinery
that are the topic of the companion paper. For now it is enough to know that in
addition to laboratory operators which operate on laboratory objects, MOL-
GEN has operators which operate on plans. These operators are further
classified as planning (or design) operators, which operate on plans, and
meta-planning (or strategy) operators, which control the design steps. These
operators are described in detail in the companion paper. The design operators
represent the constraint posting approach in terms of operators for refining
objects and operators, creating and propagating constraints, simulating labora-
tory steps, and finding differences. The design operator in Fig. 3 is Find-
Unusual-Features.

MOLGEN's progress in planning takes place in a series of steps, which are
executed. In Fig. 3, the start of execution of a step is indicated in the trace by a
line beginning with the symbols ‘“—’. The name of the operator follows in
parentheses (e.g., Focus in the first line). The names of the objects input to the
operator in the step, if any, follow. The termination of a step is indicated by a
line beginning with the symbols ‘«~’ and followed by the step name, an
indication of the status of the step at termination, an indication of the reason
for the status, and the names of the objects output from the step. Finally, a
representation of each of the objects output from the step is printed.

3.1.3. Making an abstract plan
Starting with Difference-1, MOLGEN goes on to develop an abstract plan. It

-> PLAN-STEP-2 (PROPOSE-OPERATORS) Input: (DIFFERENCE-1)
<+ PLAN-STEP-2 DONE SUCCESS Output: (LAB-STEP-1)

----- LAB-STEP-1-----
OPERATOR: MERGE
INPUT:

OUTPUT:

FWD-GOAL: $LAB-GOAL-1

STATUS: PROPOSED

REASON: APPLICABLE

NEXTSTEPS:

PREVSTEPS:

DESCR: Created to reduce: (DIFFERENCE-1)
MAKER: PLAN-STEP-2

FIG. 4. Proposing the first laboratory step. Lab-Step-1 is a partially instantiated laboratory step in
the abstract plan. It specifies that the operator is Merge. No previous or following steps in the plan
are known yet. The input and oufput slots will be filled with descriptions of the objects that are
input and output to the laboratory step. The fwd-goal slot refers to a description of the intended

output of the step.

120 M. STEFIK

begins by partially instantiating a laboratory step (Lab-Step-1) as shown in Fig.
4. This step is created by the design operator, Propose-Operators. It specifies
the abstract operator, Merge, but not what objects will be merged or any
previous or next steps in the plan. The next few design operations fill in the
backwards goals in Lab-Step-1, and propose additional steps. They are omitted
here for brevity. When they have been executed, MOLGEN has the two-step
abstract laboratory plan in Fig. 5. The planning in this part of the trace has
been quite straightforward; it is about to get more interesting.

Vector-2 Rat-insulin Gene

O NS

Merge

Bacterium-3 y

& O

Merge

Y

Goal

F1G. 5. MOLGEN’s abstract plan. This figure characterizes the experiment in terms of two abstract
Merge operations.

3.2. Introducing a constraint

In the next part of the trace, MOLGEN refines its abstract plan. Fig. 6 shows
the important developments:

(1) The specific laboratory operator, Transform, has replaced the abstract
operator, Merge.

(2) The input slot of Lab-Step-1 has been filled with a description of the
objects being combined.

(3) Constraint-1 has been introduced to the plan.

The formulation of Constraint-1 illustrates an important aspect of MOL-
GEN’s decision-making. When MOLGEN decided to refine Merge to the
Transform operator, the bacterium and vector in Lab-Step-1 were still un-
specified. For Transform to work properly, it is necessary that the bacterium
and vector be biologically compatible. One approach would be for MOLGEN
to immediately select a bacterium and vector for compatibility, and to bind the

PLANNING WITH CONSTRAINTS 121

>PLAN-STEP-6 (REFINE-GPERATORY) Input: (LAB-STEP-1)
<--PLAN-STEP-6 DONE SUCCESS
Output: {(LAB-STEP-1 REFINEMENT-1 CONSTRAINT-1)

----- LAB-STEP-1--
OPERATOR: TRANSFORM
INPUT: [SAMPLE-1 with

STRUCS: [VECTOR-1 with
GENES: [RAT-INSULINJ],
CULTURE-1 with

ORGANISMS: [BACTERIUM-3]]

OUTPUT:

FWD-GOAL: $LAB-GOAL-1

STATUS: REFINED

REASON: NEW-OPERATOR

NEXTSTEPS:

PREVSTEPS: [LAB-STEP-2}

DESCR: Created to reduce: (DIFFERENCE-1)
MAKER: PLAN-STEP-2

----- REFINEMENT-1-----

ABSTRACT: MERGE
SPECIFIC: TRANSFORM
CONSTRAINTS: [CONSTRAINT-1}
GOODLIST:

LAB-STEP: LAB-STEP-1
MAKER: PLAN-STEP-6
DESCR:

----- CONSTRAINT-1-----

TYPE: MANDATORY

ARGS: [BACTERIUM-3,
VECTOR-1]

PREDICATE: (LAMBDA (BACTERIUM VECTOR)
COMPATIBLE BACTERIUM VECTOR))

STATUS: PROPOSED

REASON: FORMULATED

MAKER: PLAN-STEP-6

LAB-STEP: LAB-STEP-1"

DESCR: From refinement of MERGE to TRANSFORM in LAB-
STEP-1

FiG. 6. Refinement of Lab-Step-1 introduces the constraint that the bacterium (Bacterium-3 from
Culture-1) and the vector (Vector-1 from Sample-1) must be compatible. (The syntax of Constraint-
1 has been simplified slightly by eliminating the expression which tests whether enough information
is available to evaluate the constraint.)

plan variables (Bacterium-3 and Vector-1) accordingly. The trouble with this
approach is that it would preclude the consideration of other constraints that
might be uncovered later in the planning process. Since many combinations of
values are possible for these variables, MOLGEN decides to keep its options
open. Instead of choosing values for the variables, it formulates a constraint on
their values that can be taken into account in a later constraint satisfaction
step. Constraint-1 states that the bacterium and vector input to the Transform
step must be compatible. By posting the constraint, MOLGEN makes the
requirement explicit so that it can be combined with other constraints. This

M. STEFIK

Vector-2 Rat-Insulin Gene

O avi

Constraint-1 I l

Compatible

Merge
Bacterium-3 / vy Vector-1

Merge —_> Transform

h 4

Goal

F1G. 7. The plan after introducing the compatibility constraint.

Vector-2 Rat-Insulin Gene

O NS

Merge
Bacterium-3 y Vector-1

e O

Transform

y

D @9

Bacterium-3 Bacterium-4

Simulation Results

Goal
FiG. 8. Simulation of the Transform step predicts that some of the bacteria will not get the vector.

PLANNING WITH CONSTRAINTS 123

deferring of decisions until necessary is part of a least-commitment approach to
problem solving. Fig. 7 illustrates the plan at this stage pictorially.

3.3. Predicting results of a lab step

One of the important ideas for using symbolic representations is symbolic
execution. For each of its laboratory operators, MOLGEN has a simulation
model which it can use to predict the results of a laboratory step. The
simulation of Transform in Lab-Step-1 is illustrated in Fig. 8. The simulation
takes account of the fact that transformation in the laboratory never works to
completion. Transformation is essentially the absorption of vectors across cell
membranes. In practice, some of the bacteria inevitably end up without
vectors. Thus, the output of Lab-Step-1 includes Bacterium-4, which has the
vector, and Bacterium-3, which does not.

Vector-2 Rat-Insulin Gene

O NS

Merge

Bacterium-3 v

e O

Transform

Antibiotic-1

D @D =

Bacterium-3 Bacterium-4 ’

I N
Constraint-4
Screen
Resists
¥ Antibiotic-1
Doesn’'t Resist
Antibiotic-1

Constraint-5

F1G. 9. Introducing an antibiotic. To get rid of the unwanted bacteria, a Screen step is proposed,
which utilizes an antibiotic. At this point in the plan, MOLGEN has not yet determined the type of
bacteria. It introduces some new constraints that tie the selection of the bacteria to the selection of

the antibiotic.

124 M. STEFIK

3.4. Introducing a variable

When MOLGEN compares the simulation output of Lab-Step-1 with the
goals, it discovers the extra bacteria resulting from the incompleteness of the
Transform step. The comparison process yields a difference, which is used to
key the selection of an abstract laboratory operator (Sert) to remove the
bacterium. After several planning steps similar to what we have already seen,
MOLGEN refines the Sort operator to the Screem operator, which kills
bacteria with an antibiotic as shown in Fig. 9. This particular refinement
introduces some of the most interesting constraints in the plan. When Refine-
operator looks for a specialized kind of Sort to remove unwanted bacteria, it
finds only the Screem laboratory operator, which kills the bacteria with an
antibiotic. This means that an antibiotic must be introduced into the plan. The
antibiotic should kill the extra bacteria, those without the vector (Bacterium-3)
but not harm the others (Bacterium-4). Although MOLGEN could arbitrarily
choose an antibiotic at this point, it prudently decides to defer the decision in
case other factors are found that bear on the selection. In order to refer to an
antibiotic without selecting a particular one from the knowledge base, MOL-
GEN introduces the variable, Antibiotic-1, and posts a pair of constraints to
indicate which of the bacteria are supposed to be resistant to it.

3.5. Propagating constraints

Subproblems in plans interact. A simple form of interaction occurs when
variables are shared between subproblems. In this case, constraints from the
subproblems are combined when a value for the variable is determined. A
more complicated way to account for interactions is to propagate symbolic
constraints between subproblems. In such cases, new constraint expressions are
inferred from other constraint expressions on possibly distinct variables.

The virtue of constraint propagation can be seen by viewing planning as a
generate-and-test process. Constraints are the rules for pruning in the fest part
of the process. The key to efficiency in finding solutions is to apply constraints
as early as possible, so that branches corresponding to possible plans can be
eliminated before much computational effort is expended. When constraints
can be propagated across partial solutions to subproblems, they enable a
planner to anticipate interactions and effectively prune some possible choices
without generating them.

An example of constraint propagation is shown in Fig. 10. The figure shows
the plan at a much later point than where we left off in the previous section. In
this propagation, the constraints on which bacteria resist the antibiotic are
converted, through a series of transformations, into a constraint on the selec-
tion of the vector at the top of the figure. The propagation process ap-
proximates the following genetics argument:

PLANNING WITH CONSTRAINTS 125

Constraint-7 Rat-Insulin Gene

Carries Resistance Vector-2

Gene for

Antibiotic-1 @ /V
P f
S S — _._]

(Many Steps)
. —
Bacterium-3 [¥

e 4+ O

] |

Transform l
e e

Antibiotic-1

) 1
@D @D | | A~
|
I
s
l
|

Bacterium-3 Bacterium-4

Constraint-4

Screen
Bacterium-4

Resists Antibiotic-1

Bacterium-3
Doesn’t Resist

Constraint-5
HG. 10. Propagating Constraints. The constraint propagation process creates new constraints in the
plan from existing constraints. This process regresses constraints through the plan in time, one step at a
time.

By Constraint-4, Bacterium-4 is resistant to Antibiotic-1. By
Constraint-5, Bacterium-3 is not resistant. Resistance to an
antibiotic is conferred by a resistance gene, which can be
either on the bacterial chromosome, or on some extrach-
romosomal element. The two bacteria are of the same type,
that is, they have the same chromosome. This means that the
resistance can not be conferred by a resistance gene on the
bacterial chromosome. Therefore the resistance gene must be
conferred by an extra-chromosomal element. Vector-1 is the
only exosome in Bacterium-4 that is not in Bacterium-3.
Therefore, Vector-1 must carry a resistance gene for Antibio-
tic-1. Vector-1 was constructed from Vector-2 and the rat-
insulin gene. Since the rat-insulin gene carries no resistance
genes for any antibiotic, a resistance gene must be carried by
Vector-2. (This is the predicate of Constraint-7.)

126 M. STEFIK

3.6. Satisfying constraints

The third operation on constraints is constraint satisfaction. Constraints in
MOLGEN describe restrictions on laboratory object in plans; satisfaction is
simply a search of the knowledge base for records of available objects that
satisfy the constraints on the plan variables. Fig. 11 illustrates an example of
constraint satisfaction. Constraint-1 is the constraint we saw earlier requiring
compatibility for values for the variables Bacterium-3 and Vector-1. Refine-
Object is the name of the design operator for constraint satisfaction on
laboratory objects. It searches the knowledge base for possible bindings and
records them in the data structure Tuple-1. (These should properly be termed
‘tuple-sets’, since they represent sets of solutions expressed as n-tuples.)
‘Tuple’ data structures list the possible solutions to constraints. The inter-
pretation of Tuple-1 is that Bacterium-3 can be bound only to E. coli, and that
Vector-1 can be bound to any of four plasmids (e.g., Col. EI) listed in the
figure.

As discussed further in Section 6.3, MOLGEN uses distinct variable names
to refer to objects at different times in the plan, that is, in distinct states. Such
variables are linked by a same-type relationship in the representation language;
solutions for one variable imply solutions for others. For example, Bacterium-3
is known to be the same type of bacterium as Bacterium-4. When MOLGEN
anchored Bacterium-3, it propagated the information to Bacterium-1 and
Bacterium-4 as well.

As MOLGEN picks constraints to satisfy, it sometimes discovers that the
objects are mentioned in several constraints. In such cases, the tuples are
combined and the solutions are intersected. This is shown in Fig. 12 where the
constraint satisfaction step integrates the results of satisfying Constraint-7 with

-> PLAN-STEP-15 (REFINE-OBJECT) Input: (CONSTRAINT-1)
(Anchoring BACTERIUM-3 to E.COLI)
(Updating slots: GRAMSTAIN MORPHOLOGY in BACTERIUM-1)
(Updating slots: GRAMSTAIN MORPHOLOGY in BACTERIUM-4)
<- PLAN-STEP-15 DONE SUCCESS Output: (TUPLE-1)

----- TUPLE-1---
CONSTRAINTS: [CONSTRAINT-1]
VARIABLES: [BACTERIUM-3,

VECTOR:-1]
PRIMARIES: [BACTERIUM-3,
VECTOR-1]
COMPATIBLES: ((BACTERIUM-3 E.COLI)
VECTOR-1 COLE1
PSC101 PBR322 PMBY)))
MAKER: PLAN-STEP-15

DESCR:
FIG. 11. Satisfying a constraint. Constraint satisfaction involves a ‘buy or build’ decision. Here
MOLGEN searches the knowledge base for combinations of bacteria and vectors that satisfy the

compatibility constraint.

PLANNING WITH CONSTRAINTS 127

-> PLAN-STEP-33 (REFINE-OBJECT) Input: (CONSTRAINT-6)
<- PLAN-STEP-33 CANCELLED REPLACED QOutput: (NONLE)
=> PLAN-STEP-35 (REFINE-OBJLECT) Input: (CONSTRAINT-7)
< PLAN-STEP-35 DONE SUCCESS Output: (FUPLE-2)

----- TUPLE-2---

CONSTRAINTS: [CONSTRAINT-3, CONSTRAINT-2, CONSTRAINT-1,
CONSTRAINT-7]
VARIABLES: [RESTRICTION-ENZYME-1,
VECTOR-2,
BACTERIUM-3,
VECTOR-1,
ANTIBIOTIC-1]
. PRIMARIES: [RESTRICTION-ENZYME-1,
VECTOR-2,
BACTERIUM-3,
ANTIBIOTIC-1]
COMPATIBLES: (((RESTRICTION-ENZYME-1 RESTRICTION-
ENZYME)
(BACTERIUM-3 E.COLI)
(ANTIBIOTIC-1 COLICIN-E1)
(VECTOR-2 COL.E1))
((RESTRICTION-ENZYME-1 RESTRICTION
ENZYME)
(BACTERIUM-3 E.COLI)
(ANTIBIOTIC-1 TETRACYCLINE AMPICILLIN)
(VECTOR-2 PBR322))
((RESTRICTION-ENZYME-1 RESTRICTION-
ENZYME)
(BACTERIUM-3 E.COLI)
(ANTIBIOTIC-1 TEITRACYCLINE)
(VECTOR-2 PMB9 PSC101)))
MAKER: PLAN-STEP-21

F1G. 12. Integrating constraints. MOLGEN uses a tuple notation to keep track of possible values
for variables. When constraints are considered which tie together variables from different tuples,
the requirements are combined.

the other constraints in Tuple-2. Constraint-7 is a constraint requiring that
Vector-2 carry a resistance gene for Antibiotic-1.

3.7. Finishing the plan

The rest of the trace of MOLGEN’s performance on this experiment uses the
same kinds of problem solving techniques that we have seen already. New
constraints are introduced about restriction enzymes and resistance genes and
more variables are introduced and anchored as the constraints on the plan
accumulate. In Lab-Step-7, MOLGEN introduced a ‘molecular adapter’ (Lin-
ker-1) so that the rat-insulin gene can be readily attached to the vector. At
this point, the solution was somewhat predetermined in that MOLGEN’s
knowledge base only had one available linker (called Hind3decamer) that could
be used. This narrowed the number of possible solutions to the accumulated
constraints more than would have been possible if a full complement of linkers
had been available. Even so, MOLGEN had four solutions after satisfying all
of the constraints as shown in Table 1. The fourth solution was the one

128 M. STEFIK

TABLE 1. Final solutions to the constraints

Solution Bacterium Vector Antibiotic Enzyme Linker
1 E. coli pBR322 Tetracycline HIND3 HIND3DECAMER
2 E. coli pBR322 Ampicillin - HIND3 HIND3DECAMER
3 E. coli pSC101 Tetracycline HIND3 HIND3DECAMER
4 E. colt pMB9 Tetracycline HIND3 HIND3DECAMER

reported by Ullrich et al. [24]. A picture of MOLGEN’s plan for the experi-
ment is shown in Fig. 13.

In reporting their experiments, geneticists customarily report only the details
of their final experiments. Infrequently they report some of their thoughts in
planning an experiment and even less frequently are any of the constraints
reported. In review articles (such as Boyer [1]) one can sometimes find a
discussion of the constraints or experimental considerations once the technique
has worked its way into the methodology of the field. The constraints that
MOLGEN formulated in the rat-insulin problem are listed below together with
a description of their introduction to the plan:

(1) The bacterium should be biologically compatible with the vector.

(Formulated as a commitment when Merge was refined to Transform in
Lab-Step-1.)

(2) The vector should have sticky ends prior to ligation in Lab-Step-2 for some
restriction enzyme (Restriction-Enzyme-1).

(Formulated as a commitment when Merge was refined to Ligate in Lab-
Step-2.)

(3) The DNA carrying the Rat-insulin gene should have sticky ends for
Restriction-Enzyme-1 prior to ligation in Lab-Step-2.

(Formulated as a commitment when Merge was refined to Ligate in Lab-
Step-2.)

(4) The bacterium carrying the plasmid (Bacterium-4) should be resistant to
some antibiotic (Antibiotic-1).

(Formulated as a commitment when Sort was refined to Screen in Lab-Step-
4.)

(5) The bacterium without the plasmid (Bacterium-3) should not be resistant
to Antibiotic-1.

(Formulated as a commitment when Sort was refined to Screen in Lab-Step-
4)

(6) The vector input to the transformation step (Vector-1) should carry a
resistance gene for Antibiotic-1.

(Result of propagating Constraint-4 and Constraint-5 through the Transform
operator in Lab-Step-1.)

PLANNING WITH CONSTRAINTS

Rat-insulin Gene

E

Get-off-sheif
Lab-Step-3

Linker

— |

129

Ligate
Lab-Step-7

-
Z;

L

Cleave

v Lab-Step-6

%

R

Restriction Enzyme

Vector

?(_

Q

Y

Cleave
Lab-Step-5

r

T~

R

Bacterium

Ligate
Lab-Step-2

A4

L

Transform
Lab-Step-1
ION/™
Screen
wLab-StepA
o
[

FIG. 13. Final plan for the rat-insulin problem.

(7) The vector out of which Vector-1 is made should carry a resistance gene for

Antibiotic-1.

(Result of propagating Constraint-6 through the Ligate operator in Lab-

Step-2.)

130 M. STEFIK

(8) Restriction-Enzyme-1 should not cut the resistance gene for Antibiotic-1.

(Result of propagating Constraint-7 through the Cleave operator in Lab-
Step-5.)

(9) Restriction-Enzyme-1 should not cut the rat-insulin gene.

(Result of propagating Constraint-2 through the Cleave operator in Lab-
Step-5.)

(10) The vector should have a site for Restriction-Enzyme-1.

(Formulated as a commitment when React was refined to Cleave in Lab-
Step-5.)

(11) The DNA carrying the rat-insulin gene should have a site for Restriction-
Enzyme-1.

(Result of propagating Constraint-3 through the Cleave operator in Lab-
Step-6.)

(12) The linker should have a site for Restriction-Enzyme-1.

(Formulated as a commitment when React was refined to Cleave in Lab-

Step-7.)

If MOLGEN had a more detailed model of genetics (i.e., including the logic
of gene promoters) even more constraints would have been formulated.

4. The Effectiveness of Constraint Posting

The power of constraint posting comes largely from two abilities: (1) the ability
to plan hierarchically by introducing new constraints and variables, and (2) the
ability to anticipate interference between subproblems (using constraint pro-
pagation) and to eliminate the interfering solutions. The effectiveness of this
during the planning of the rat-insulin problem is illustrated in Table 2.

Each row in the table corresponds to the introduction of a constraint in the
plan; the first row shows the situation before any constraints have been
introduced. The shaded squares in each row indicate which variables are
involved in the constraint. For example, the compatibility constraint in the
second row involves the variables Bacterium and Vector. The power of con-
straint formulation is illustrated by the column labeled “Total Combinations’,
which shows how the number of solutions decreases from 3456 to 4 as
constraints are added. This column shows the number of acceptable com-
binations of values for all of the variables. These numbers understate the
combinations seen by MOLGEN because they reflect the use of genetics
knowledge to reduce the combinatorics. For example, a plan actually contains
many variables representing bacteria at different stages of planning. MOLGEN
knows that these bacteria represent an equivalence class for the purposes of
constraint satisfaction, because no laboratory operator will change a bacterium
from one type to another. If the variables were counted independently, the
columns would be powers of the numbers shown. In the first row, no com-

PLANNING WITH CONSTRAINTS 131

TABLE 2. Elimination of Solutions

Antibiotic
Bacterium
Enzyme
Linker
Combinations
Constraint Total Considered Vector
3456 0 9 3 32 11 4
Compatible 1152 4 9 b1y 32 14
Carries Resistance 3 SR
160 5 33 1 32 14
Gene . ,
Has Sites 21 21 3 1 6 1E4
Doesn’t cut ‘
Resistance 10 10 24 1 6 11 4
Gene
Has Sites 4 4 211 i1 3

binations are ruled out and 3456 is the product of the number of solutions for
each variable. As planning continues, the possible solutions are only a subset of
this because some of the combinations are ruled out.

Because MOLGEN does not consider solutions for variables until they are
introduced, it works with a substantially reduced number of combinations as
shown in the column labeled ‘Considered Combinations’. MOLGEN intro-
duces new variables as it plans hierarchically. For example, the variable
Enzyme is not really considered in the problem until it first appears in a
constraint for sites on a vector. Thus, hierarchical planning greatly reduces
MOLGEN’s bookkeeping requirements during constraint satisfaction. The
largest number of combinations that MOLGEN needed to simultaneously
record during planning was 21, when the Enzyme variable was introduced.

The global control of interactions is illustrated in the declining numbers of
solutions for each variable. A decrease in the number of solutions for a
variable usually happens only when an additional constraint involving that
variable is introduced. For example, the number of solutions for the Bacterium
variable is reduced from 3 to 1 by the first constraint. In the last row of the

132 M. STEFIK

chart, the number of-solutions for the Vector variable decreases from 4 to 3,
even though it is not involved directly in the new constraint. This is because
constraint satisfaction implicitly includes all of the previous constraints. All of
the solutions involving the eliminated vector (a subset of the 10 solutions
satisfying the previous constraints) also involved a particular solution for the
Enzyme variable. When the last constraint reduced the number of possible
enzymes from 6 to 1, it eliminated all of the solutions that permitted the
deleted value for the Vector variable. This shows how the bookkeeping of
constraint satisfaction automatically coordinates requirements from different
parts of the problem.

5. Relationships to Other Work

The constraint posting approach builds on previous research in hierarchical
planning, subgoal interactions, and constraint satisfaction. Several recent and
detailed reviews of this research are available with extensive bibliographies
[13, 15, 20]. In the interest of brevity, the following discussion will be limited to
the main ideas.

5.1. Hierarchical planning

Many Al programs have had the ability to break a problem into subproblems,
that is, to find a solution by a divide and conquer strategy. However, a program
uses a hierarchical approach only if it has the additional capability to defer
consideration of the details of a problem. Non-hierarchical programs suffer
from the tyranny of detail. If in the course of solving a problem there is some-
thing they need to know, they must determine it immediately. This fault is ex-
pressed in the common wisdom as ‘not being able to see the forest for the trees’.
Abstraction, as the basis for hierarchical planning, is a way of suppressing
detail. It was used in the General Problem Solver (GPS) reported by Newell,
Shaw, and Simon, for finding proofs in propositional logic. Hierarchical ap-
proaches have been integral to most recent planning programs.

When hierarchical and non-hierarchical approaches have been systematically
compared, the former have usually dominated. For example, the ABSTRIPS
program (Sacerdoti [17]) was a version of the non-hierarchical STRIPS plan-
ning program, retro-fitted with a scheme for abstract reasoning. In this com-
parative study of the two programs on a sequence of blocks world problems,
Sacerdoti reported that ABSTRIPS was substantially more efficient than
STRIPS, and that the effect increased dramatically as longer plans were tried.
Hierarchical and non-hierarchical methods have also been compared in special
purpose applications, such as Paxton’s study [14] of approaches to speech
recognition. Paxton’s measurements indicated that a hierarchical ‘island-driv-
ing’ approach does not necessarily dominate a simpler left-to-right processing
approach. When planning islands are formed by an abstraction process, the

PLANNING WITH CONSTRAINTS 133

abstraction process must be appropriate. In the terminology of this article, the
abstraction process must divide the planning decisions into nearly independent (or
loosely-coupled) subproblems. As a practical matter, the more loosely the
subproblems are coupled, the better the hierarchical approaches have performed
because the methods for handling interactions between subproblems have been
weak.

MOLGEN differs from these earlier hierarchical planning programs in its
ability to add details to a plan by adding constraints. This approach to
hierarchical planning avoids the issue of trying to assign global criticality levels
to the domain vocabulary (as in ABSTRIPS), and reflects the perspective that
commitments in planning can be characterized as new constraints. This facili-
tates knowledge-based approaches to backtracking that examine the reasons
for making commitments in planning.

5.2. Interactions between subproblems

When subproblems in a problem do not interact, they can be solved in-
dependently. However, the experience with problem-solving programs in the
past few years has shown that this ideal situation is unusual in real world
problems. Interactions appear even in highly simplified AI domains such as the
blocks world. Recognition of this has led researchers to focus on the nature of
interactions to determine how they should be taken into account during
planning. :

The first of the recent programs to focus on the interactions between steps
was the HACKER program reported by Sussman [22]. HACKER solved
problems in the blocks world by making some simplifying assumptions to
create an initial plan, and then debugging the plan. HACKER’s main assump-
tion (termed the linearity assumption) was that to solve a conjunction of goals,
each one may be solved in sequence. In many simple blocks world problems,
the effects of satisfying one goal interfere with solving another one. Sussman
created procedures called critics that could recognize such interference.
HACKER was often able to repair the plan by rearranging the steps in the
plan.

Other approaches to satisfying conjunctive goals have been explored by Tate
and Waldinger. In his INTERPLAN program, Tate’s approach was to abstract
the original goals and to determine holding periods over which they could be
assumed to be true. INTERPLAN analyzed these periods with a view toward
moving goals around to ease conflict situations. Waldinger [25] developed an
approach called goal regression for problems from program synthesis and
blocks world. It involved creating a plan to solve one of several goals followed
by constructive modifications to achieve the other goals. It differed from
HACKER in that it used notation about protection of goals to guide the linear
placement of actions in the plan. Thus, rather than building incorrect plans and

134 M. STEFIK

then debugging them, it built partial linear plans in non-sequential order. The
term goal regression is suggestive of the way the program worked, moving goals
backwards through the planned actions to where they did not interfere.

A novel approach to planning with interfering conjunctive goals was repor-
ted by Sacerdoti [16] for his NOAH program. NOAH avoided HACKER’s
linearity assumption by considering the plan steps as parallel (that is, partially
ordered) as long as possible. NOAH had constructive critics which sequenced
the steps according to the interactions that were uncovered. If an action for one
goal deleted an expression that was a precondition of a conjunctive goal, then
the action with the endangered precondition was moved so that it would be
performed first. In 1977 Tate [23] extended these techniques somewhat in his
planning program, NONLIN, which he applied to blocks world problems and
to generator maintenance in power stations.

MOLGEN is like NOAH in its use of a least commitment strategy for
handling interactions. NOAH used this idea for resolving the order of opera-
tors; MOLGEN used it mostly for object selection. (See Stefik [21] for a
discussion of MOLGEN’s recourse to heuristic reasoning when least commit-
ment fails.) Constraint propagation in MOLGEN is like Waldinger’s goal
regression, except that MOLGEN is a hierarchical planner. Section 6 discusses
some weaknesses in MOLGEN’s representation of time which bear on the use
of constraint propagation across planning situations.

5.3. Reasoning with constraints

This section discusses several Al programs that use constraints. It begins with
search, a model for problem solving in AI in which solutions are found by
traversing a space of possibilities for candidates that satisfy some constraints.

DENDRAL and its descendant CONGEN (Buchanan and Feignenbaum [3])
are examples of programs that use constraint-satisfaction. CONGEN accepts as
input a set of constraints about chemical structures — an atomic formula, lists of
required and disallowed substructures, and partial specifications of inter-atomic
connections. It searches for solutions using a hierarchical generate-and-test
approach. An exhaustive depth-first generator of chemical structures delivers
partial solutions for testing against the constraints. CONGEN’s applicability to
practical problems depends on (1) the availability and use of powerful problem-
specific constraints for limiting the generation of candidates, and on (2) the
application of these constraints early in the generation process.

When constraints can be applied early in the solution process on partial
solutions, the time to solution can usually be reduced. This leads to the idea of
processing the constraints in ways that facilitate their early application. In 1970,
Fikes [5] reported a problem-specification language and problem solver, REF-
ARF, that was able to represent and solve a number of discrete numeric and
symbolic constraint satisfaction problems. REF-ARF combined backtracking

PLANNING WITH CONSTRAINTS 135

with constraint manipulation routines. Given a partial instantiation of the
variables, these routines attempted to simplify the remaining constraints by
reducing choices for the other variables or by deriving a contradiction. For
example, an unbound variable could be expressed as a function of bound
variables to yield an immediate solution. By alternating constraint manipula-
tion and variable instantiation, REF-ARF demonstrated an impressive per-
formance that was much superior to backtracking methods, which require
complete variable instantiation before acceptance tests can be applied. Mack-
worth [9] and Freuder [6] have recently reviewed some sources of redundancy
in backtracking and have suggested ways to improve efficiency.

For several years, several researchers as MIT have been working on pro-
grams for electronic circuit analysis and design. In 1977, McDermott [10]
reported an ambitiously conceived program (NASL) for designing electrical
circuits. NASL designed circuits hierarchically by combining and instantiating
schemata representing functional subcircuits; it was capable of propagating and
manipulating various kinds of algebraic constraints about circuits. Although
NASL was never fully implemented and relied on human intervention for the
more difficult aspects of constraint manipulation, this research established some
of the ideas for later design programs. In 1978, Sussman and de Kleer [4]
reported the SYN program for the synthesis phase of circuit design, that is, for
determining the parameters of a circuit given desiderata for its behavior.
Solution of the parameters by algebraic means (i.e., solving equations) is
infeasible. SYN introduces constraints by making engineering assumptions
about the operation of various components (e.g., by assuming that a transistor
is in its linear operating region) and then propagates them through the circuit
using electrical laws. The constraints are composed of algebraic expressions
with variables. In some cases, SYN introduces variables for unknowns. It
combines and reduces the resulting algebraic expressions using an adaptation
of a rational simplifier from MACSYMA.

MOLGEN differs from constraint satisfaction programs like DENDRAL
and REF-ARF in that it is not limited to the initial set of constraints.
MOLGEN formulates constraints dynamically as it runs. NASL and SYN both
augmented the constraint satisfaction idea with the use of constraint pro-
pagation between subproblems. Many of the ideas that were important for
MOLGEN were anticipated in NASL, although they were not imple-

mented.

6. Limitations and Further Research

Research often raises more questions than it answers. While this paper offers
some suggestions for understanding the process of design in terms of constraint
posting, it leaves open several fundamental questions about the constraints
themselves. The following sections raise some issues about constraints and the

136 M. STEFIK

representation of time, the generality of MOLGEN’s ability to use constraints,
and some practical limitations of MOLGEN.

6.1. Constraints and meta-constraints

The generality of MOLGEN’s ability to reason with constraints stems from
the simple requirements of constraint satisfaction. Constraint satisfaction
requires only the ability to evaluate constraints. As long as MOLGEN can
generate potential solutions, it can easily test whether arbitrary constraints are
satisfied. This use of constraints for testing ignores the more powerful idea of
using them to guide generation, by applying them early to partial solutions.

MOLGEN’s ability to apply constraints early depends on its implementation
of constraint propagation, which has some serious weaknesses. MOLGEN’s
constraint propagation operators are based strictly on syntactic matches of the
constraints. Unfortunately, MOLGEN has no capability for recognizing the
equivalence of logical predicates in constraints. Although MOLGEN is able to
propagate constraints that it was generated, it has no ability to propagate
logically equivalent variations of these constraints or arbitrary constraints
outside of its limited vocabulary. This results in a practical limitation on
MOLGEN’s ability to use constraints; while it may eventually generate a plan
that satisfies a new constraint, it may practically take too long for MOLGEN to
propose a satisfactory plan if it can only apply the constraint late in the
planning process.

A second limitation is that MOLGEN’s does not use constraints to describe
processes; all of the examples in this paper deal only with object specification.
The simplest example of this would be to constrain the selection of laboratory
operators. The difficulty is that MOLGEN lacks powerful ways to describe
processes. No constraints on partial process descriptions have been developed
within the representational framework used in MOLGEN.

A third limitation is that MOLGEN’s does not use meta-constraints. First-
order constraints are about the objects in the plans; meta-constraints would be
about the plan or the planning process. For example, there could be a
constraint that the plan have no more than twelve steps, or constraints on its
overall yield or time of execution. In the companion paper, we will see that
MOLGEN’s interpreter is organized in layers. Within this layered structure,
the knowledge about manipulating constraints simply appears at too low a level
to support constraint reasoning about the design process.

6.2. The knowledge acquisition bottleneck

Although ideas like meta-constraints have some exotic appeal, it is difficult to
assess their impact on making a practical system. To keep things in perspective,
it is worth remarking on a serious practical limitation to the use of computers
in problem solving: the difficulty of getting the relevant knowledge into the

PLANNING WITH CONSTRAINTS 137

computer. This' difficulty is compounded in a rapidly expanding field like
molecular genetics because the knowledge can quickly become out of date.
Most knowledge-based systems (including MOLGEN) fail to use what they
know to make the transfer of expertise less painful. They don’t take an active
part in trying to understand what they are told and don’t improve their ability
to acquire new knowledge.

Constraint posting is a knowledge intensive style of problem solving; it
requires substantial knowledge about when to formulate constraints and how to
propagate them. Missing knowledge about constraint formulation has a more
serious effect than missing knowledge about constraint propagation. When
MOLGEN fails to formulate some necessary constraint in planning, it fails to
model the genetics accurately and may propose experiments that will not work
in the laboratory. When MOLGEN fails to propagate constraints, interference
between planning decisions will not be discovered until much extra work is
done. This results in only a soft failure in planning; MOLGEN may still plan
successfully, but only after much extra backtracking. In practical terms, the
amount of extra computation can sometimes mean that MOLGEN will never
finish. The difficulty of incorporating such knowledge easily into a knowledge
base illustrates the need for more research in knowledge acquisition.

6.3. Representing time

MOLGEN uses an inadequate representation of time. To deal with the changes
in objects over time, MOLGEN changes the names of the objects. At different
points in a plan, a bacterium may be known as Bacferium-1, or Bacterium-3, or
some other name. These different names refer to the same bacterium in
different ‘states’. The determination of the times during which various con-
straints are satisfied is indicated indirectly by the names of the objects that are
referenced. While this approach is good enough to indicate when constraints
are satisfied (in terms of states), it does not provide a satisfactory represen-
tation of time for further planning work. For example, it does not facilitate (1)
reasoning explicitly about the periods of satisfaction of constraints or (2)
maintaining records of distinct possible worlds.

Reasoning about possible futures is tricky because what will happen depends
on what we do and on things that we do not know about. For example, we
want to reason as far into the future as knowledge and commitments permit. I
know of no planning programs which can realistically reason about the future
or construct useful scenarios. To do this, they would need to understand the
limits of their knowledge and the sources of uncertainty about the future.

7. Summary

This paper presents an approach to hierarchical planning which focusses on the

138 M. STEFIK

use and interpretation of constraints. Constraints are viewed (1) as elimination
rules for ruling out solutions, (2) as commitments made by the planner to
partially describe solutions, and (3) as a communication medium for expressing
interactions between subproblems. Constraint posting is an approach to
hierarchical planning which exploits the different interpretations of constraints
to plan effectively. It formulates constraints during hierarchical planning to add
new commitments and propagates them so that they can be utilized early in the
design process to eliminate interfering solutions.

A computer program has been implemented with a genetics knowledge base
to test the idea of constraint posting. It models the experiment design process
in terms of operations on constraints: formulation, propagation, and satis-
faction. Constraint formulation adds details to parts of the plan. Constraint
propagation spreads information between the nearly independent subproblems.
Constraint satisfaction finds values for the variables subject to constraints from
the subproblems. :

Constraint posting is a knowledge intensive approach to problem solving. An
impediment to the routine application of such approaches is the lack of
effective means for transferring such information into a computer. This work
does not address the knowledge acquisition issue but has identified several
kinds of inferential knowledge for handling constraints.

ACKNOWLEDGMENT

The research réported here was drawn from my thesis [20]. Special thanks to my advisor, Bruce
Buchanan, and the other members of my reading committee: Edward Feigenbaum, Joshua
Lederberg, Earl Sacerdoti, and Randall Davis. Thanks also to the members of the MOLGEN
project — Douglas Brutlag, Jerry Feitelson, Peter Friedland, and Lawrence Kedes for their help.
Thanks to Daniel Bobrow, Lewis Creary, and Austin Henderson for helpful comments on earlier
drafts of this paper. Research on MOLGEN was funded by the National Science Foundation grant
NSF MCS 78-02777. General support for the planning research was provided by DARPA Contract
MDA 903-77-C-0322. Computing support was provided by the SUMEX facility under Biotech-
nology Resource Grant RR-00785.

REFERENCES

1. Boyer, HW., Betlach, M., Bolivar, F., Rodriguez, R.L., Shine, J. and Goodman, H.M., The
construction of molecular cloning vehicles, in: Beers, R.F. and Bassett, E.G., Eds., Recom-
binant Molecules: Impact on Science and Society (Raven Press, New York, 1977).

2. Brooks, F.P., The Mythical Man-month: Essays on Software Engineering (Addison-Wesley
Publishing Company, Reading, MA, 1975).

3. Buchanan, B.G. and Feigenbaum, E.A., DENDRAIL and Meta-DENDRAL: Their ap-
plications dimension, Artificial Intelligence 11 (1978) 5-24.

4. de Kleer, J. and Sussman, G.J., Propagation of constraints applied to circuit synthesis, MIT Al
Memo 485 (September 1978).

S. Fikes, R.E., REF-ARF: A system for solving problems stated as procedures, Artificial
Intelligence 1 (1970) 27-120.

6. Freuder, E.C., Synthesizing constraint expressions, Communications of the ACM 21(11) (1978)

958-966.
7. Friedland, P., Knowledge-based hierarchical planning in molecular genetics, Doctoral Dis-

PLANNING WITH CONSTRAINTS 139

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

sertation, Computer Science Department, Stanford University. (Also Computer Science
Department Report STAN-CS-79-771.)

Gilbert, W. and Villa-Komaroff, L., Useful proteins from recombinant bacteria, Sci. Am.
(April 1980) 74-94.

Mackworth, A K., Consistency in networks of relations, Artificial Intelligence 8 (1977) 99-118.
McDermott, D.V., Flexibility and efficiency in a computer program for designing circuits,
Doctoral Dissertation, Massachusetts Institute of Technology, Report AI-TR-402 (June 1977).
Newell, A. and Simon, H.A., GPS, A program that simulates human thought, in: Feigenbaum,
E.A. and Feldman, J., Eds., Computers and Thought (McGraw-Hill, New York, 1963).

Polya, G., Mathematical Discovery. 2 (John Wiley and Sons, New York, 1965).

Nilsson, N.J., Principles of Artificial Intelligence (Tioga Publishing Co.; Palo Alto, 1980).
Paxton, W.H., A framework for speech understanding, Doctoral Dissertation, Computer
Science Department, Stanford University (1977). (Also SRI Artificial Intelligence Center
Technical Note 142).

Sacerdoti, E.D., Problem solving tactics, Proceedings of the Sixth International Joint Conference
on Artificial Intelligence (August 1979) 1077-108S.

Sacerdoti, E.D., A Structure for Plans and Behavior. (American Elsevier Publishing Company,
New York, 1977 (originally published, 1975)).

Sacerdoti, E.D., Planning in a hierarchy of abstraction spaces, Artificial Intelligence 5(2) (1974)
115-135.

Simon, H.A., The science of design and the architecture of complexity, in: Sciences of the
Artificial (MIT press, Cambridge, 1969).

Stefik, M.J., An examination of a frame-structured representation system, Proceedings of the
Sixth International Joint Conference on Artificial Intelligence (1979) 845-852.

Stefik, M.J., Planning with constraints, Doctoral Dissertation, Computer Science Department,
Stanford University (January 1980). (Also Stanford Computer Science Department Report No.
STAN-CS-80-784.)

Stefik, M.J., Planning and meta-planning, Ariificial Intelligence 16(2) (1981) 141170 [this issue].
Sussman, G.J., A Computer Model of Skill Acquisition (American Elsevier, New York, 1975).
Tate, A., Generating project networks, Proceedings of the Fifth International Joint Conference
on Artificial Intelligence (1977) 888-900.

Ullrich, A., Shine, J., Chirgwin, J., Pictet, R., Tischer, E., Rutter, W.J. and Goodman, H.M.,
Rat insulin genes: construction of plasmids containing the coding sequences, Science 196 (June
1977) 1313-1319.

Waldinger, R., Achieving several goals simultaneously, SRI Artificial Intelligence Center
Technical Note 107 (July 1975).

Winograd, T., Frame representations and the procedural/declarative controversy, in: Bobrow,
D.G. and Collins, A., Eds., Representation and Understanding: Studies in Cognitive Science
(Academic Press, New York, 1975).

Received June 1980 revised version received September 1980

