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ABSTRA~F
Hierarchical planners distinguish between important considerationsand details. A hierarchical
plannercreatesdescriptions of abstractstatesand divides its planning task into subproblemsfor
refining theabstractstates.The abstractstatesenableit to focuson importantconsiderations,thereby
avoiding the burdenof trying to deal with everythingat once. In mostpractical planning problems,
however, the subproblemsinteract. Without the ability to handle theseinteractions, hierarchical
plannerscandealeffectivelyonly with idealizedcaseswheresubproblemsareindependentandcan be
solvedseparately.

This paperpresentsan approach to hierarchical planning, termedconstraintposting, that uses
constraintsto representtheinteractionsbetweensubproblems.Constraintsaredynamicallyformulated
and propagated during hierarchical planning, and used to coordinate the solutions of nearly
independentsubproblems.This is illustrated with a computerprogram,calledMOLGEN, that plans
gene-cloningexperimentsin moleculargenetics.

1. Introduction

Divide eachproblemthat youexamineinto as manypartsas you can and
as you needto solvethemmoreeasily. Descartes,OEuvres,vol. VI, p. 18;
“Discours de la Methods”

This rule of Descartes is of little use as long as the art of
dividing. . . remains unexplained.. . . By dividing his problem into unsuit..
able parts, the inexperiencedproblem-solver may increase his difficulty.
Leibniz, PhilosophischeSchriften,edited by Gerhart,vol. IV, p. 331 from
Polya [12]
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112 M. STEFIK

Subproblemsinteract.This observationis central to problem solving, parti-
cularly planning and design. When interactionscan be anticipated,they can
guide the division of labor. When they are discoveredlate, the required
changescan be difficult and expensive to incorporate. The difficulty of
managinginteractionsis compoundedby problemsizeandcomplexity. In large
designprojects,unforeseeninteractionsoften consumea substantialshareof
the work of project managers[2].

This paperis concernedwith ways to copewith and exploit interactionsin
design.Section2 presentsthe constraintposting approachfor managinginter-
actions in design. Constraint posting has been implementedin a computer
program(namedMOLGEN) that hasplanneda few experimentsin molecular
genetics. In Section 3, the design of an experimentis used to illustrate the
constraintpostingideas.In Section4, theeffectivenessof constraintpostingon
the sampleproblemis examined.The remainingsectionstracethe intellectual
connectionsto other work on problem solving and proposesuggestionsfor
further research.

This is the first of two papersaboutmy thesisresearchon MOLGEN. Both
papersare concernedwith the use and organizationof knowledgeto make
planning effective. This paper discussesthe use of constraintsto organize
knowledgeabout subproblemsin hierarchical planning. A companionpaper
[21] discussesthe useof levels to organizecontrol knowledge.It also develops
a rationalefor decidingwhen a plannershoulduseheuristicreasoning.

Theresearchwascarriedout aspartof theMOLGEN projectat Stanford.A
long term goal of this project is to build a knowledge-basedprogramto assist
geneticistsin planning laboratoryexperiments.Towardsthat goal, two proto-
type planning systemshavebeenconstructedand usedas vehiclesfor testing
ideasaboutplanning [7, 20].

2. TheConstraintPostingApproachto Design

Theconstraintpostingapproachdependson theview of systemsas aggregates
of looselycoupledsubsystems.It modelsthe designof such systemsin termsof
operationson constraints.

2.1. Nearly independentsubproblems

In Sciencesof the Artificial [18], Simon discussedthe study and design of
complexsystems.He observedthat when westudy a complex system,whether
it is natural or man-made,we often divide it into subsystemsthat can be
studiedseparatelywithout constantattention to their interactions.For exam-
ple, in studying an automobile,we delineatesubsystemssuchasthe electrical
system,fuel system,engine,and the brake system;in an animal,we delineate
the nervoussystem,circulatorysystem,and thedigestivesystem.

Similarly, when we designcomplex systems,we tend to first map out the
design in terms of subsystems.Designershave advocatedthis top-down ap-
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proachfor the designof suchdiversethings as computerprograms,machines,
and buildings. This approachis so familiar and universallypracticedthat we
seldomconsiderthe motivationsfor it. Someof thesemotivationsare: (1) the
apparentcomplexity of the designproblemis often reducedby partitioning it
into subproblems,and (2) the partitioningcanbedonebeforethespecifications
of the subsystemsareworkedout becausemostof thedetails are irrelevantto
the global design, and (3) the labor and expertiseof designingthe detailed
subsystemscanoften be divided amongseveralspecialists.

A key stepin design is to minimize the interactionsbetweenseparatesub-
systems.Simon coinedthe phrasenearly decomposablesystemto characterize
the way that a complexsystemcan be built from loosely coupledsubsystems.
Winograd[26] addressedthe samepoint in representationalterms:

we must worry about finding the right decompositionto
reducethe apparentcomplexity, but we must also remember
that interactionsamongsubsystemsareweak but not negligi-
ble. In representationalterms,this forcesus to haverepresen-
tationswhich facilitate theweak interactions.”

The view of a system in terms of nearly decomposablesubsystemscor-
respondsto the view of the design processin terms of nearly independent
subproblems.In hierarchicalplanninga solutionis first sketchedout in termsof
abstractsteps,which are refined into specific plan stepsduring the planning
processasshownin Fig. 1. Theabstractstepsand theirsubsequentrefinements

Abstract Operation

Specific States and Operations
FIG. 1. Nearly independentsubproblems.Theupperlevel representsan abstract(or lessdetailed)
plan.The arcsrepresentabstractoperationsandthecircles representabstractstates.In hierarchical
planning, such abstractplansare refined into more specificplans,as suggestedby the refinement-
cones.Eachconecan be viewedas a refinement-subproblem.Interactionsbetweentherefinement
subproblemsneedto be managedduring planning.

Abstract State
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correspondto nearly decomposablesubsystems;they areconnectedtogetherin
a plan and the output of eachplan stepmust matchthe requiredinput of the
following plan step. Theseinput/output relationshipsmakea plan work as a
whole. The design subproblems,that is, the refinementsof the abstractplan
stepsinto specific steps,are only nearly independent.They are not completely
independentbecausetheir solutions must interfacecorrectly. When the ab-
stractionspartition the plan into nearly independentsubproblems,interactions
do not dominate the planning process.However, efficient planning usually
requiresthat the weak interactionsbe taken into accountduring the planning
process.Thekey ideain constraintpostingis to useconstraintsto representthe
interactionsbetweensubproblems.

2.2. The meaningsof constraints

For the purposes of planning, constraintscan have several different inter-
pretations.A constraintexpressesa relationshipamongplan variables.Con-
straintsarerepresentedaspredicates.For example,considerthefollowing:

(Lambda (Gene DNA-structure) (Contains GeneDNA-Structure)).

If the Lambda variables (Gene and DNA-Structure) are bound to the
constantsTc’~-geneand DNA-13, then the predicateContainsmay be evalu-
ated to determinewhether the TcT-gene is containedin DNA-13. The full
representationof constraintsimplementedin MOLGEN allows the plan vari-
ablesto havedifferent namesthan the Lambda variablesand containsother
information relatedto the constraint.Constraintsmay involve more than two
variables;they may also applyoversetsof variables.

The first interpretationof constraintsis as elimination rules from the per-
spectiveof objectselection.A constraintin MOLGEN is associatedwith a set
of plan variablesthat usually refer to laboratoryobjects.When the variables
are not yet bound, the constraintmay be interpretedas a condition to be
satisfied. It constrains the set of allowable bindings; potential selectionsare
eliminatedif they do not satisfythe constraint.

A secondinterpretationof constraintsis as partial descriptionsand com-
mitments from the perspectiveof plan refinement. During the processof
planning, there are many opportunitiesfor deciding which part of a plan to
makemorespecific. A least-commitmentapproachis to deferdecisionsaslong
as possible. A constraint is essentiallya partial description of an object; a
selection is a full description. By formulating constraintsabout objects,
MOLGEN is able to make commitmentsabout partial descriptionsof the
objectswithout making specific selections.

A third interpretation of constraintsis as a communicationmedium for
expressinginteractionsbetweensubproblems.A constraintrepresentsan in-
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tended relationship between (possibly uninstantiated)plan variables. In
MOLGEN, thesevariablesareoften sharedamongvarioussteps in the plan;
theyrepresentobjectshavinga rich set of relationships.For example,they may
representlaboratoryobjectswhich areto be constructedout of other labora-
tory objects. If a problem solver hasa calculus of expressions,it can take
constraintsrelating to variables in one part of the plan and infer new con-
straints relating to variables in anotherpart of the plan, even though the
variables themselvesare still unbound. This amountsto the propagationof
constraintsin a plan, and we will see that this enablesa problem solver to
coordinatethe solution of subproblems.

2.3. Operationson constraints

Theconstraintposting approachis essentiallya marriageof ideasfrom hierar-
chical planning andconstraintsatisfaction.It distinguishesthreeoperationson
constraints:

(1) constraint formulation,
(2) constraintpropagation,
(3) constraintsatisfaction.

All of theseoperationscould bebroadlycharacterizedasinferencesin problem
solving. A major point of this paper is that it is useful to consider these
operationsin termsof the substantiallydifferent rolestheyplay in theproblem
solving process.

Constraint formulation is the adding of new constraintsas commitments
in the design process.A planner can proceedhierarchically by formulat-
ing constraintsof increasingdetail as planning progresses.Thus, a problem-
solver that can introducenewconstraintsneednot work with all of the details
at once.This idea is consistentwith the common experienceof working on
problems that are imprecisely formulated, but which become more tightly
specified during the solution process.In contrast,the traditional constraint
satisfactionapproachworks with a fixed numberof constraintsthat are all
known at thebeginning.

Constraintpropagationis thecreationof newconstraintsfrom old constraints
in a plan. In MOLGEN, this operation performs communicationbetween
refinementsubproblemsduring planning. Refinementsubproblemsareusually
under-constrainedwhenviewedin isolation becausetherearemanychoicesfor
refining abstractionsin geneticsplans. Whenconstraintsarepropagated,they
bring togethertherequirementsfrom separatepartsof theproblem.Constraint
propagationmakespossiblea least-commitmentstrategyof deferring decisions
for aslong aspossible.Theproblemsolverworks to keepits optionsopen,and
reasonsby elimination when constraints from other subproblemsbecome
known.
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Constraint satisfaction is the operationof finding valuesfor variablesso that
a set of constraintson the variablesis satisfied.Constraintsatisfactioncan take
different forms. For example,linear programmingis a constraintsatisfaction
method that assignsnumericvaluesof variablessatisfying linear inequalities.
Constraints in MOLGEN describe requirementsabout laboratory objects
neededin theplans;constraintsatisfactionimplementsa ‘buy or build’ decision
process.MOLGEN first tries to satisfytheconstraintsby selectingan available
object ‘off the shelf’. Computationally,this involves searchingMOLGEN’s
knowledgebasefor a recordof an objectthat is markedasavailableandwhich
satisfiesthe constraints.For example,MOLGEN might searchfor anorganism
carrying a particular gene on its chromosome.If the search processfails,
MOLGEN marks the constraintasunsatisfiedandmay later proposebuilding
anobject to satisfytheconstraint.In sucha case,theconstructionof theobject
becomesa subgoalin theplan. When the constraintsandvariablescomefrom
different subproblems,constraint satisfaction plays a coordinating role by
pooling the constraintsandintersectingtheirsolutions.

3. An Example of Planning with Constraints

This sectionillustratesthe constraintpostingideawith an experimentthat was
plannedby MOLGEN. MOLGEN hasbeenusedto planexperimentsin aclass
of synthesisproblemsknown asgenecloning experiments.’The goal in gene
cloning experimentsis to usebacteriaasa biological systemfor synthesizinga
desiredproteinproduct.Theexperimentsinvolve splicing a genecodingfor the
proteininto bacteria,so that the bacteriawill manufactureit. The laboratory
plan illustrated in this exampleis a solution to a genecloning problemcalled
the rat-insulin problem which was reportedby Ullrich et al. in 1977 [24].

Before starting the example,it should be mentionedthat the main useof
MOLGEN is asa vehiclefor testingapproachesto reasoningaboutdesign. It
would be misleadingto suggest that MOLGEN is currently a useful com-
putational aid for geneticists.MOLGEN’s knowledgebaseis too narrowand
there are seriousdifficulties in upgradingMOLGEN to a routinely useful
system (see Section 6.2). The rat-insulin experimentis one of a few gene
cloning experimentsthat have been planned by MOLGEN. Even in this
narrow class of experiments,thereare laboratory techniques(e.g., involving
protein transcription)that are currently beyondMOLGEN’s ken, andexperi-
mentswhich MOLGEN fails to solve satisfactorily.The traceof MOLGEN’s
reasoningin this experimenttook over30 pagesof computerprint out (without
annotations).The interestedreader is referredto Stefik [20] for a complete
traceof the planningof this experiment.

A very readablereview of theseexperimentsis available in Gilbert andVilla-Komaroff [8].
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3.1. First steps

The first part of MOLGEN’s trace is similar to the behaviorof previous
problem-solvingprogramslike GPS(Newell [11]). MOLGEN comparesgoals,
finds differences,and choosesoperatorsto reducethedifferences.Like several
recentplanning programs(seeSection 5.1), MOLGEN plans hierarchically.It
usesasimplified model of geneticsto setup an abstractplan, andthenrefines
that to a plan of specific laboratorysteps.This sectionshows how MOLGEN
setsup an abstractplan for achievinga synthesisgoal. The constraintposting
ideasdo not appearuntil Section3.2.

3.1.1. Abstractobjectsand operators

MOLGEN views synthesis experiments as compositions of four abstract
operatorscalled the ‘MARS’ operators.(The word ‘MARS’ is an acronym
formedfrom the first lettersof theirnames.)

(1) Merge2—to put separateparts togetherto makea whole. Examples:
connectingDNA structurestogether (Ligate), adding an extrachromosomal
vector to anorganism(Transform).

(2) Amplify — to increasethe amount of something.Examples:incubating
bacteria in ideal growth conditions (Incubate), introducing something from
stock (Get-Off-Shelf).

(3) React—alteringthe propertiesof something.Examples:cleaving DNA
with a restriction enzyme (Cleave), using alkaline phosphataseto change
terminal phosphatesto hydroxyl groupsin DNA molecules(Add-Ilydroxyl).

(4) Sort— to separatea whole into parts according to their properties.3

Examples:separatingpolynucleotidesaccordingto massand topology (Elec-
trophoresis),killing organismsnot resistantto a given antibiotic (Screen).

MOLGEN’s knowledge is representedin a hierarchical knowledgebase4

divided into objectsandoperators.The knowledgebasedescribesthe labora-
tory entities at various levels of abstraction.The most abstract laboratory
operator is called Lab-Operator; the next level contains the four MARS
operators,and the next level containsthirteen specific laboratoryoperators.
The most abstractlaboratory object is Lab-Object; the next level contains
Antibiotic, Culture, DNA-Struc, Enzyme, Organism, andSample.This hierarchy
is six levels deepandcontainsdescriptionsof 74 kinds of objects.

2This paperusesthe conventionthat operatorsareindicatedby underlining; objectsand steps

areindicatedby italics. Referencesto unitsareindicatedby capitalizingtheir first letter; references
to slotsareindicatedby italics with the first letter not capitalized.

3This is theusualmeaningof sort andnot thecomputersciencemeaning,whichrequiresa linear
ordering.Someof the laboratoryoperatorsclassifiedas Sort operatorsdo providealinear ordering
(suchas Electrophoresis);othersdo not (suchas Screen).An alternativenamefor this categoryof
operatorswould beseparativetechniques.

~SeeStefik [19] for adiscussionof the representationlanguage.
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3.1.2. Finding a difference

Thesyntheticgoal for therat-insulin problemis shownin Fig. 2. This goal is a
partial description of the desiredstate that leavessome of the details to be
filled in by the planner. It describesa culture of an unspecifiedbacterium,
having an unspecifiedvector that carries genefor rat-insulin. A vector is a
self-replicatingDNA moleculethat canbeusedto transmitgenesinto bacteria.
Bacteriophagesand plasmidsare typically usedasvectors.Determiningwhat
bacteriumand vector to useis part of the problem.MOLGEN interpretsthis
goal as a requestto designa laboratoryplan to get the describedbacterium.

An importantpart of creatinga laboratoryplan is the selectionof (possibly
abstract)operators.Like severalearlierproblem solvers,MOLGEN keysits
selectionof operatorsby differences.MOLGEN’s first steps in doing this are

shownin Fig. 3. The key item in the figure is the datastructureDifference-i.

Prototpeis SYNTHESISPROBLEM

GOAL: ICULTURE-1with
ORGANISMS:[BACTERIUM-i with

EXOSOMES:[VECTOR-i with
GENES: [RAT-INSULIN]]]]

TO-PLAN: META-PLAN-INTERPRETER

PLAN-NUMBER: 1

DESCR: Thissynthesisproblemis to clonethe
genefor rat-insulin. Thisproblemwas
discussedby Ulirich et.al.in Science,
Vol. i96, pp. i313-13i9.

FIG. 2. Goal of the rat-insulin problem. The goal slot containsa symbolic description of the
syntheticgoal. Bacterium-I and Vector-i are variables, which will becomeinstantiatedduring
planning.

->STRATEGY-STEP-1(FOCUS)
>PLAN-STE1~-1(FIND-UNUSUAL-FEATURES)Input:(sLAB-GOAL-I)

<1~LAN-SfEP-1DONESUCCESSOutput:(I)IFFERENCE-I)

DIFFERENCE-I

MISMATCH: EXOSOMES
OBJECT: BACTERIUM-i
COMPARED-TO: BACTERiUM
LEVEL: 2
DEFN-ROLE: PART-OF
TYPE: MORE-SPECIFIC
EXCEPTIONS: (VECTOR-i (*P VECTOR))
REPRESENTATION: LIST
MAKER: PLAN-STEP-i
DESCR: Createdby FIND-UNUSUAL-FEATURES

FiG. 3. Finding unusualfeatures.The Find-Unusual-Featuresdesignoperatorcomparestheobjects
in Lab-Goal-i againsttheir prototypes,and outputs a description of their unique featuresas
Difference-i.(It quits after finding thehighestlevel difference.)
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Difference-isummarizestheunusualfeaturesof the bacteriumdescribedin the
goal (Bacterium-i) that were foundwhen it wascomparedto the prototypical
bacteriumin thegeneticsknowledgebase.The interpretationof Difference-i is
that Bacterium-i was unusualin that it had a specific vector (Vector-i) as an
exosome.

The rest of Fig. 3 exposessomeaspectsof MOLGEN’s planning machinery
that arethe topic of thecompanionpaper.For now it is enoughto know that in
addition to laboratoryoperatorswhich operateon laboratoryobjects,MOL-
GEN has operatorswhich operate on plans. These operatorsare further
classified as planning (or design) operators,which operate on plans, and
meta-planning(or strategy)operators,which control the designsteps. These
operatorsaredescribedin detail in thecompanionpaper.The designoperators
representthe constraintposting approachin terms of operatorsfor refining
objectsand operators,creatingand propagatingconstraints,simulating labora-
tory steps, and finding differences. The design operator in Fig. 3 is Find-
Unusual-Features.

MOLGEN’s progressin planning takesplace in a seriesof steps,which are
executed.In Fig. 3, thestartof executionof a stepis indicatedin the traceby a
line beginning with the symbols ‘—~‘. The name of the operatorfollows in
parentheses(e.g.,Focus in the first line). The namesof theobjectsinput to the
operatorin thestep, if any, follow. The terminationof a stepis indicatedby a
line beginning with the symbols ‘+—‘ and followed by the step name, an
indication of the statusof the stepat termination,an indication of the reason
for the status,and the namesof the objectsoutput from the step.Finally, a
representationof eachof the objectsoutputfrom thestep is printed.

3.1.3. Making an abstractplan

Startingwith Difference-i, MOLGEN goeson to developan abstractplan. It

-> PLAN-STEP-2(PROPoSE-OPERATORS)Input: (DIFFERENCE-i)
<- PLAN-STEP-2l)ONESUCCESSOutput:(LAB-STEP-i)

LAB-STEP-i

OPERATOR: MERGE
INPUT:
OUTPUT:
FWD-GOAL: SLAB-GOAL-i
STATUS: PROPOSED
REASON: APPLICABLE
NEXTSTEPS:
PREVSTEPS:
DESCR: Createdto reduce:(DIFFERENCE-i)
MAKER: PLAN-STEP-2

FIG. 4. Proposingthe first laboratorystep.Lab-Step-iis apartially instantiatedlaboratorystepin
theabstractplan. It specifiesthat theoperatoris Merge.No previousor following stepsin theplan
are known yet. The input and output slots will be filled with descriptionsof theobjects that are
input andoutput to the laboratorystep.Thefwd-goal slot refersto a descriptionof the intended
output of thestep.



120 M. STEFIK

beginsby partially instantiatinga laboratorystep (Lab-Step-i)asshownin Fig.
4. This stepis createdby the designoperator,Propose-Operators.It specifies
the abstractoperator,Merge, but not what objectswill be mergedor any
previousor next steps in the plan. The next few designoperationsfill in the
backwardsgoals in Lab-Step-i,andproposeadditional steps.They are omitted
here for brevity. When they have been executed,MOLGEN hasthe two-step
abstractlaboratoryplan in Fig. 5. The planning in this part of the trace has
beenquite straightforward;it is aboutto get more interesting.

Vector~2 Ratinsuliri Gene

Hi __

FIG. 5. MOLGEN’s abstractplan.This figure characterizestheexperimentin termsof two abstract
Merge operations.

3.2. Introducing a constraint

In the next part of the trace,MOLGEN refinesits abstractplan. Fig. 6 shows
the importantdevelopments:

(1) The specific laboratoryoperator,Transform, has replacedthe abstract
operator,Merge.

(2) The input slot of Lab-Step-i hasbeenfilled with a description of the
objectsbeingcombined.

(3) Constraint-i hasbeenintroducedto the plan.
The formulation of Constraint-i illustrates an important aspectof MOL-

GEN’s decision-making.When MOLGEN decided to refine Merge to the
Transform operator,the bacteriumand vector in Lab-Step-i were still un-
specified.For Transform to work properly, it is necessarythat the bacterium
and vectorbebiologically compatible.Oneapproachwould be for MOLGEN
to immediatelyselecta bacteriumandvectorfor compatibility, and to bind the

Bacterium~3

Goal
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->PLAN-STEP-6(REFINE-OPERATOR)Ii~put:(LAB-STEP-i)
<--PLAN-STEP-6I)ONESUCCESS
Output:(LAB-STEP-I REFINEMENT-I CONSTRAINT-I)

LAB-STEP-I

OPERATOR: TRANSFORM
INPUT: [SAMPLE-i with

STRUCS:[VECTOR-i with
GENES:IRAT-INSULIN]l.
CULTURE-i with
ORGANISMS: [BACTERIUM-311

OUTPUT:
FWD-GOAL: SLAB-GOAL-i
STATUS: REFINED
REASON: NEW-OPERATOR
NEXTSTEPS:
PREVSTEPS: [LAB-STEP-2J
DESCR: Createdto reduce:(DIFFERENCE-i)
MAKER: PLAN-STEP-2

REFINEMENT-i

ABSTRACT: MERGE
SPECIFIC: TRANSFORM
CONS1RAINTS: [CONSTRAINT-il
GOODLIST:
LAB-STEP: LAB-STEP-i
MAKER: PLAN-STEP-6
DESCR:

CONSTRAINT-i

TYPE: MANDATORY
ARGS: IBACTERIUM-3,

VECTOR-il
PREDICATE: (LAMBDA (BACTERIUM VECTOR)

COMPATIBLE BACTERIUM VECTOR))
STATUS: PROPOSED
REASON: FORMULATED
MAKER: PLAN-STEP-6
LAB-STEP: LAB-STEP-1
DESCR: From refinementof MERGEto TRANSFORM in LAB-

STEP-i

FIG. 6. Refinementof Lab-Step-iintroducestheconstraintthat thebacterium(Bacterium-3 from
Culture-i) andthevector (Vector-i from Sample-I)mustbecompatible.(The syntaxof Constraint-
1 hasbeensimplified slightly by eliminating theexpressionwhich testswhetherenoughinformation
is availableto evaluatetheconstraint.)

plan variables(Bacterium-3and Vector-i) accordingly.The trouble with this
approachis that it would preclude the considerationof otherconstraintsthat
might be uncoveredlater in theplanningprocess.Sincemanycombinationsof
valuesarepossiblefor thesevariables,MOLGEN decidesto keepits options
open.Insteadof choosingvaluesfor thevariables,it formulatesa constrainton
their values that can be taken into accountin a later constraintsatisfaction
step. Constraint-i statesthat thebacteriumandvectorinput to the Transform
step must be compatible. By posting the constraint,MOLGEN makes the
requirementexplicit so that it can be combinedwith other constraints.This
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Vector-2

Hi
Rat~Insulin Gene

FIG. 7. The plan after introducingthecompatibility constraint.

Vector-2
Rat-InsulinGene

SimulationResults

Goal
FiG. 8. Simulationof theTransform steppredictsthatsomeof thebacteriawill not get thevector.

Constraint-i

Goal

Bacterium-3
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deferringof decisionsuntil necessaryis partof a least-commitmentapproachto
problemsolving. Fig. 7 illustratesthe plan at this stagepictorially.

3.3. Predicting results of a lab step

One of the important ideas for using symbolic representationsis symbolic
execution. For eachof its laboratoryoperators,MOLGEN hasa simulation
model which it can use to predict the results of a laboratory step. The
simulation of Transform in Lab-Step-iis illustrated in Fig. 8. The simulation
takesaccountof the fact that transformationin the laboratoryneverworks to
completion Transformationis essentiallythe absorptionof vectorsacrosscell
membranes. In practice, some of the bacteria inevitably end up without
vectors.Thus, the output of Lab-Step-i includesBacterium-4, which hasthe
vector, andBacterium-3, which doesnot.

Constraint-5

Rat-InsulinGene

FIG. 9. Introducing an antibiotic. To get rid of theunwantedbacteria,a Screenstepis proposed,
whichutilizes an antibiotic. At this point in theplan,MOLGEN hasnot yet determinedthe type of
bacteria.It introducessomenewconstraintsthat tie theselectionof thebacteriato theselectionof
theantibiotic.

Vector-2

Bacterium-3

Antibiotic-i

Doesn’tResist

Antibiotic-i
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3.4. Introducinga variable

When MOLGEN comparesthe simulation output of Lab-Step-i with the
goals, it discoversthe extrabacteriaresulting from the incompletenessof the
Transform step. The comparisonprocessyields a difference,which is usedto
key the selectionof an abstract laboratory operator (Sort) to remove the
bacterium.After severalplanning stepssimilar to what we havealreadyseen,
MOLGEN refines the Sort operator to the Screen operator,which kills
bacteria with an antibiotic as shown in Fig. 9. This particular rejinement
introducessomeof the most interestingconstraintsin the plan. When REfine-
operator looks for a specializedkind of Sort to removeunwantedbacteria,it
finds only the Screen laboratory operator,which kills the bacteria with an
antibiotic. This meansthat anantibiotic must be introducedinto the plan.The
antibiotic should kill the extrabacteria,thosewithout thevector(Bacterium-3)
but not harmthe others (Bacterium-4). Although MOLGEN could arbitrarily
choosean antibiotic at this point, it prudentlydecidesto defer the decisionin
caseother factorsare foundthat bearon theselection.In orderto refer to an
antibiotic without selectinga particularone from the knowledgebase,MOL-
GEN introducesthe variable,Antibiotic-i, and postsa pair of constraintsto
indicatewhich of the bacteriaare supposedto be resistantto it.

3.5. Propagatingconstraints

Subproblemsin plans interact. A simple form of interaction occurs when
variablesare sharedbetweensubproblems.In this case,constraintsfrom the
subproblemsare combined when a value for the variable is determined.A
more complicatedway to accountfor interactionsis to propagatesymbolic
constraintsbetweensubproblems.In suchcases,newconstraintexpressionsare
inferredfrom otherconstraintexpressionson possiblydistinct variables.

The virtue of constraintpropagationcan be seenby viewing planning as a
generate-and-testprocess.Constraintsare therulesfor pruning in the testpart
of the process.The key to efficiencyin finding solutionsis to apply constraints
asearly as possible,so that branchescorrespondingto possibleplans can be
eliminated before much computationaleffort is expended.When constraints
can be propagatedacrosspartial solutions to subproblems,they enable a
plannerto anticipateinteractionsand effectively prunesomepossiblechoices
without generatingthem.

An exampleof constraintpropagationis shownin Fig. 10. The figure shows
theplan at a much laterpoint thanwherewe left off in theprevioussection.In
this propagation, the constraintson which bacteriaresist the antibiotic are
converted,through a seriesof transformations,into a constrainton the selec-
tion of the vector at the top of the figure. The propagationprocessap-
proximatesthe following geneticsargument:
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1~
I Constraint-4
~ 8acterium-4

ResistsAntibiotic-i

Constraint~5

FIG. 10. PropagatingConstraints.The constraintpropagationprocesscreatesnewconstraintsin the
planfromexistingconstraints.This processregressesconstraintsthroughtheplanin time,onestepata

time.

By Constraint-4, Bacterium-4is resistantto Antibiotic-i. By
Constraint-5, Bacterium-3 is not resistant.Resistanceto an
antibiotic is conferred by a resistancegene, which can be
either on the bacterial chromosome,or on some extrach-
romosomalelement.The two bacteriaare of the sametype,
that is, they havethe samechromosome.This meansthat the
resistancecan not be conferredby a resistancegeneon the
bacterial chromosome.Thereforethe resistancegenemust be
conferredby an extra-chromosomalelement.Vector-i is the
only exosome in Bacterium-4 that is not in Bacterium-3.
Therefore,Vector-i must carry a resistancegenefor Antibio-
tic-i. Vector-i was constructedfrom Vector-2 and the rat-
insulin gene. Since the rat-insulin genecarries no resistance
genesfor any antibiotic, a resistancegenemust be carriedby
Vector-2.(This is the predicateof Constraint-7.)

Rat-InsulinGene

Antibiotic-i

Screen

Bacterium-3
Doesn’tResist
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3.6. Satisfying constraints

The third operation on constraintsis constraintsatisfaction.Constraintsin
MOLGEN describerestrictionson laboratoryobject in plans; satisfactionis
simply a searchof the knowledgebasefor recordsof availableobjectsthat
satisfy the constraintson the plan variables.Fig. 11 illustratesan exampleof
constraintsatisfaction.Constraint-i is the constraintwe sawearlier requiring
compatibility for valuesfor the variablesBacterium-3 and Vector-i. Refine-
Object is the name of the design operator for constraint satisfactionon
laboratoryobjects. It searchesthe knowledgebasefor possiblebindings and
recordsthem in the datastructureTuple-i. (Theseshould properlybe termed
‘tuple-sets’, since they representsets of solutions expressedas n-tuples.)
‘Tuple’ data structureslist the possible solutions to constraints.The inter-
pretationof Tuple-i is that Bacterium-3 canbe boundonly to E. coli, andthat
Vector-i can be bound to any of four plasmids (e.g., Col. Ei) listed in the
figure.

As discussedfurther in Section6.3, MOLGEN usesdistinct variable names
to refer to objectsat different times in the plan, that is, in distinctstates.Such
variablesarelinked by a same-typerelationshipin therepresentationlanguage;
solutionsfor one variableimply solutionsfor others.For example,Bacterium-3
is known to be the sametype of bacteriumas Bacterium-4. When MOLGEN
anchored Bacterium-3, it prop~gatedthe information to Bacterium-i and
Bacterium-4aswell.

As MOLGEN picks constraintsto satisfy, it sometimesdiscoversthat the
objectsare mentionedin severalconstraints.In such cases, the tuples are
combinedandthe solutionsare intersected.This is shownin Fig. 12 wherethe
constraintsatisfactionstep integratesthe resultsof satisfyingConstraint-7 with

-> PLAN-STEP-IS(REF1NE-OBJECT)Input:(CONSTRAINT-i)
(AnchoringBACTERIUM-3 to E.COLI)
(Updatingslots: GRAMSTAIN MORPHOLOGY in BACTERIUM-i)
(Updatingslots: GRAMSTAIN MORPhOLOGY in BACTERIUM-4)

<-PLAN-STEP-15DONE SUCCESSOutput:(TUPLE-1)

TUPLE-1

CONSTRAINTS: [CONSTRAINT-il
VARIABLES: [BACTERIUM-3,

VECTOR-li
PRIMARIES: [BACTERIUM-3,

VECTOR-il
COMPATIBLES: (((BACTERIUM-3 E.COLI)

VECTOR-i COL.E1
PSCIO1 PBR322PMB9)))

MAKER: PLAN-STEP-15
DESCR:

FIG. 11. Satisfying a constraint.Constraintsatisfactioninvolves a ‘buy or build’ decision.Here
MOLGEN searchestheknowledgebasefor combinationsof bacteriaandvectorsthat satisfy the
compatibility constraint.
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-> Pi.AN-STEP-33(I1EEINE-OB.JE(1)Input: (C()NSFRAINI’-6)
< P1 ~NSIIPU( \MEIIII)Rll’I \(ll)Oulput (NONE)
> Pt ~ ‘~UP15(1111INI OBJI (I) Input (( ONSIRAINI 7)

<- PLAN-STEP-35 l)ONE SUCCESSOutput: (FUPLE-2)

TUPLE-2

CONSTRAINFS: [CONSTRAINT-3,CONSTRAINT-2,CONSTRAINT-I,
CONSTRAINT-7J

VARIABLES: [RESTRICtION-ENZYME-I,
VECTOR-2,
BACTERIUM-3,
VECtOR-I,
ANTIBIOTIC-il

PRIMAREES: [RESTRICTION-ENZYME-i,
VECTOR-2,
BACTFRI UM-3,
ANTIBIOTIC-I]

COMP\ FIRE IS (((RFS I RICI ION FN/YME I RI SI RICI ION
ENZYME)
(BACTERIUM-3 E.COLI)
(ANTI I3IOTIC-I COLICIN-EI)
(VECTOR-2COLE1))

((RESTRICfION-ENZYM E-i RESIRICTION
ENZYME)
(BACTERIUM-3 E.COLI)
(ANTI BIOTIC-i TETRACYCLINE AMPICI LI IN)
(VECTOR-2 PBR322))

((RESTRICTION-ENZYME-iRESTRICTiON-
ENZYME)
(BACTERIUM-3 E.COLI)
(ANTI BIOTIC-i TEIRACYCLINE)
(VECTOR-2PMB9 PSC1Oi)))

MAKER: PLAN-STEP-2i
FIG. 12. Integratingconstraints.MOLGEN usesa tuple notation to keeptrack of possiblevalues
for variables.Whenconstraintsareconsideredwhich tie togethervariablesfrom different tuples,
the requirementsarecombined.

the other constraintsin Tuple-2. Constraint-7 is a constraintrequiring that
Vector-2carry a resistancegenefor Antibiotic-i.

3.7. Finishing theplan

The restof the traceof MOLGEN’s performanceon this experimentusesthe
samekinds of problem solving techniquesthat we have seen already. New
constraintsare introducedabout restrictionenzymesand resistancegenesand
more variables are introducedand anchoredas the constraintson the plan
accumulate.In Lab-Step-7,MOLGEN introduceda ‘molecularadapter’ (Lin-
ker-i) so that the rat-insulin genecan be readily attachedto the vector.At
this point, the solution was somewhatpredeterminedin that MOLGEN’s
knowledgebaseonly hadone availablelinker (calledHind3decamer)that could
be used.This narrowed the numberof possiblesolutions to the accumulated
constraintsmore thanwould havebeenpossibleif a full complementof linkers
had beenavailable.Evenso, MOLGEN had four solutionsafter satisfyingall
of the constraintsas shown in Table 1. The fourth solution was the one



128 M. STEFIK

TABLE 1. Final solutionsto theconstraints

Solution Bacterium Vector Antibiotic ~p~me Linker

i E. coli pBR322 Tetracycline H1ND3 HIND3DECAMER
2 E. coli pBR322 Ampicillin HIND3 HIND3DECAMER
3 E. coli pSC1OI Tetracycline HIND3 HIND3DECAMER

4 E. coli pMB9 Tetracycline HIND3 HIND3DECAMER

reportedby Ullrich et al. [24]. A picture of MOLGEN’s plan for the experi-
ment is shownin Fig. 13.

In reportingtheir experiments,geneticistscustomarilyreportonly the details
of their final experiments.Infrequently they report someof their thoughtsin
planning an experimentand even less frequently are any of the constraints
reported. In review articles (such as Boyer [1}) one can sometimesfind a
discussionof theconstraintsor experimentalconsiderationsoncethetechnique
hasworked its way into the methodologyof the field. The constraintsthat
MOLGEN formulatedin therat-insulin problemare listed below togetherwith
a descriptionof their introductionto the plan:

(1) Thebacteriumshouldbe biologically compatiblewith the vector.
(Formulated as a commitment when Merge was refined to Transform in

Lab-Step-i.)
(2) The vectorshould havesticky endsprior to ligation in Lab-Step-2for some

restriction enzyme(Restriction-Enzyme-i).
(Formulatedas a commitmentwhen Merge was refined to Ligate in Lab-

Step-2.)
(3) The DNA carrying the Rat-insulin gene should have sticky ends for

Restriction-Enzyme-iprior to ligation in Lab-Step-2.
(Formulatedas a commitmentwhen Merge was refined to Ligate in Lab-

Step-2.)
(4) The bacterium carrying the plasmid (Bacterium-4) should be resistantto

someantibiotic (Antibiotic-i).
(Formulatedas a commitment whenSort was refinedto Screenin Lab-Step-

4.)
(5) The bacterium without theplasmid (Bacterium-3) should not be resistant

to Antibiotic-i.
(Formulatedasa commitmentwhenSort wasrefinedto Screen in Lab-Step-

4.)
(6) The vector input to the transformationstep (Vector-I) should carry a

resistancegenefor Antibiotic-i.
(Resultof propagatingConstraint-4 and Constraint-5throughthe Transform

operatorin Lab-Step-i.)
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Rat-insulinGene

Bacterium

FIG. 13. Finalplan for therat-insulinproblem.

(7) Thevectoroutof which Vector-i is madeshouldcarry a resistancegenefor
Antibiotic- i.

(Result of propagatingConstraint-6 through the Ligate operator in Lab-
Step-2.)

129

Linker

I

Ligate

Lab-Step-2

~iOnJ

Transform
Lab-Step-i
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(8) Restriction-Enzyme-ishouldnotcut theresistancegenefor Antibiotic-i.
(Result of propagatingConstraint-7 through the Cleave operator in Lab-

Step-5.)
(9) Restriction-Enzyme-ishouldnot cut therat-insulin gene.
(Result of propagatingConstraint-2 through the Cleave operatorin Lab-

Step-5.)
(10) Thevectorshouldhavea sitefor Restriction-Enzyme-i.
(Formulatedas a commitmentwhen React was refined to Cleave in Lab-

Step-5.)
(11) TheDNA carrying therat-insulin geneshouldhavea sitefor Restriction-

Enzyme-i.
(Result of propagatingConstraint-3 through the Cleave operator in Lab-

Step-6.)
(12) Thelinker shouldhavea sitefor Restriction-Enzyme-i.
(Formulated as a commitmentwhen Reactwas refined to Cleave in Lab-

Step-7.)

If MOLGEN had a moredetailedmodel of genetics(i.e., including thelogic
of genepromoters)evenmoreconstraintswould havebeenformulated.

4. TheEffectivenessof ConstraintPosting

Thepowerof constraintpostingcomeslargely from two abilities: (1) theability
to plan hierarchicallyby introducingnewconstraintsand variables,and (2) the
ability to anticipateinterferencebetweensubproblems(using constraintpro-
pagation)and to eliminate the interfering solutions.The effectivenessof this
during the planningof the rat-insulin problemis illustrated in Table 2.

Eachrow in the table correspondsto the introductionof a constraintin the
plan; the first row shows the situation before any constraintshave been
introduced. The shadedsquaresin each row indicate which variables are
involved in the constraint. For example, the compatibility constraint in the
secondrow involves the variablesBacterium and Vector. The powerof con-
straint formulation is illustrated by the column labeled ‘Total Combinations’,
which shows how the number of solutions decreasesfrom 3456 to 4 as
constraintsare added. This column shows the number of acceptablecom-
binations of values for all of the variables.Thesenumbers understatethe
combinationsseen by MOLGEN becausethey reflect the use of genetics
knowledgeto reducethe combinatorics.For example,a plan actuallycontains
manyvariablesrepresentingbacteriaat different stagesof planning.MOLGEN
knows that thesebacteriarepresentan equivalenceclass for the purposesof
constraintsatisfaction,becauseno laboratoryoperatorwill changea bacterium
from one type to another.If the variableswere countedindependently,the
columnswould be powers of the numbersshown. In the first row, no corn-
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TABLE 2. Elimination of Solutions

CarriesResistance

Gene

Antibiotic

Bacterium

Enzyme

binationsareruled out and3456 is the productof the numberof solutionsfor
eachvariable.As planningcontinues,thepossiblesolutionsareonly a subsetof
this becausesomeof the combinationsareruled out.

BecauseMOLGEN doesnot considersolutions for variablesuntil they are
introduced, it works with a substantiallyreducednumberof combinationsas
shown in the column labeled ‘ConsideredCombinations’. MOLGEN intro-
duces new variables as it plans hierarchically. For example, the variable
Enzymeis not really consideredin the problem until it first appearsin a
constraint for sites on a vector. Thus, hierarchical planning greatly reduces
MOLGEN’s bookkeepingrequirementsduring constraint satisfaction. The
largest number of combinationsthat MOLGEN neededto simultaneously
recordduring planningwas 21, when the Enzymevariablewas introduced.

The global control of interactionsis illustrated in the declining numbersof
solutions for each variable. A decreasein the number of solutions for a
variable usually happensonly when an additional constraint involving that
variableis introduced.For example,the numberof solutionsfor the Bacterium
variable is reducedfrom 3 to I by the first constraint. In the last row of the

Constraint

Combinations

Total Considered

Linker

Vector

3456

-

oJ 9

-

3 32 1 4

Compatible 1152 4 9
.~
~l1

~.

32 1 4

160 5 1

“,;

HasSites

Doesn’tcut
Resistance
Gene

21

10

21

10

( 3

~
~ 2
~

1

1

HasSites 4 4 2 1

1

32 1 4

I!



132 M STEFIK

chart, the numberofsolutionsfor the Vector variabledecreasesfrom 4 to 3,
even though it is not involved directly in the new constraint.This is because
constraintsatisfactionimplicitly includesall of the previousconstraints.All of
the solutions involving the eliminated vector (a subsetof the 10 solutions
satisfying the previous constraints)also involved a particularsolution for the
Enzymevariable. When the last constraint reducedthe numberof possible
enzymesfrom 6 to 1, it eliminated all of the solutions that permitted the
deletedvalue for the Vector variable. This shows how the bookkeepingof
constraint satisfactionautomatically coordinatesrequirementsfrom different
partsof the problem.

5. Relationships to Other Work

The constraint posting approachbuilds on previous researchin hierarchical
planning, subgoalinteractions,and constraintsatisfaction.Severalrecentand
detailed reviews of this researchare available with extensivebibliographies
[13, 15,20]. In the interestof brevity, the following discussionwill be limited to
themain ideas.

5.1. Hierarchicalplanning

Many Al programshavehadthe ability to break a probleminto subproblems,
that is, to find a solutionby a divide and conquerstrategy.However,a program
usesa hierarchical approachonly if it hasthe additional capability to defer
considerationof the details of a problem. Non-hierarchical programssuffer
from the tyrannyof detail. If in the courseof solving a problemthereis some-
thing theyneedto know, theymust determineit immediately.This fault is ex-
pressedin thecommonwisdom as‘not beingableto seetheforestfor thetrees’.
Abstraction,as the basis for hierarchicalplanning, is a way of suppressing
detail. It wasusedin the GeneralProblemSolver (GPS) reportedby Newell,
Shaw, and Simon, for finding proofs in propositionallogic. Hierarchical ap-
proacheshavebeenintegral to most recentplanningprograms.

Whenhierarchicalandnon-hierarchicalapproacheshavebeensystematically
compared,the former have usually dominated.For example, the ABSTRIPS
program(Sacerdoti[17]) was a version of the non-hierarchicalSTRIPSplan-
ning program,retro-fittedwith a schemefor abstractreasoning.In this com-
parativestudy of the two programson a sequenceof blocks world problems,
Sacerdoti reported that ABSTRIPS was substantially more efficient than
STRIPS,and that the effect increaseddramaticallyas longerplans were tried.
Hierarchicaland non-hierarchicalmethodshavealso beencomparedin special
purposeapplications,such as Paxton’s study [14] of approachesto speech
recognition. Paxton’s measurementsindicated that a hierarchical‘island-driv-
ing’ approachdoesnot necessarilydominatea simpler left-to-right processing
approach.When planning islands are formed by an abstractionprocess,the
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abstractionprocessmust beappropriate.In theterminologyof this article, the
abstractionprocessmustdivide theplanningdecisionsintonearlyindependent(or
loosely-coupled)subproblems.As a practical matter, the more loosely the
subproblemsarecoupled,thebetterthehierarchicalapproacheshaveperformed
becausethemethodsfor handlinginteractionsbetweensubproblemshavebeen
weak.

MOLGEN differs from theseearlier hierarchicalplanning programsin its
ability to add details to a plan by adding constraints.This approachto
hierarchicalplanning avoidsthe issueof trying to assignglobal criticality levels
to the domainvocabulary(as in ABSTRIPS), and reflects the perspectivethat
commitmentsin planning can be characterizedasnew constraints.This facili-
tatesknowledge-basedapproachesto backtrackingthat examinethe reasons
for makingcommitmentsin planning.

5.2. Interactionsbetweensubproblems

When subproblemsin a problem do not interact, they can be solved in-
dependently.However, the experiencewith problem-solvingprogramsin the
past few years has shown that this ideal situation is unusual in real world
problems.Interactionsappearevenin highly simplified Al domainssuchasthe
blocks world. Recognitionof this hasled researchersto focuson the natureof
interactionsto determine how they should be taken into account during
planning.

The first of the recentprogramsto focuson the interactionsbetweensteps
was the HACKER program reported by Sussman[221. HACKER solved
problems in the blocks world by making some simplifying assumptionsto
createan initial plan, and thendebuggingthe plan. HACKER’s main assump-
tion (termedthe linearity assumption)was that to solve a conjunctionof goals,
eachone may be solved in sequence.In manysimple blocks world problems,
the effectsof satisfyingone goal interfere with solving anotherone. Sussman
created procedurescalled critics that could recognize such interference.
HACKER was often able to repair the plan by rearrangingthe steps in the
plan.

Other approachesto satisfyingconjunctivegoalshavebeenexploredby Tate
and Waldinger.In his INTERPLAN program,Tate’sapproachwasto abstract
the original goals and to determineholding periodsover which they could be
assumedto be true. INTERPLAN analyzedtheseperiodswith a view toward
moving goals aroundto easeconflict situations.Waldinger [25] developedan
approach called goal regression for problems from program synthesis and
blocksworld. It involved creatinga plan to solveoneof severalgoals followed
by constructive modifications to achieve the other goals. It differed from
HACKER in that it usednotationaboutprotectionof goalsto guidethe linear
placementof actionsin the plan.Thus, ratherthanbuilding incorrectplansand
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thendebuggingthem, it built partial linear plans in non-sequentialorder.The
term goal regressionis suggestiveof theway the programworked,movinggoals
backwardsthroughthe plannedactionsto wheretheydid not interfere.

A novel approachto planningwith interfering conjunctivegoalswasrepor-
ted by Sacerdoti [16] for his NOAH program. NOAH avoidedHACKER’s
linearity assumptionby consideringthe plan stepsasparallel (that is, partially
ordered)as long as possible.NOAH had constructivecritics which sequenced
thestepsaccordingto theinteractionsthat wereuncovered.If an action for one
goal deletedan expressionthat wasa preconditionof a conjunctivegoal, then
the action with the endangeredpreconditionwasmoved so that it would be
performedfirst. In 1977 Tate [23] extendedthesetechniquessomewhatin his
planning program,NONLIN, which he applied to blocks world problemsand
to generatormaintenancein powerstations.

MOLGEN is like NOAH in its use of a leastcommitment strategyfor
handling interactions.NOAH usedthis ideafor resolving the order of opera-
tors; MOLGEN used it mostly for object selection. (See Stefik [21] for a
discussionof MOLGEN’s recourseto heuristic reasoningwhen leastcommit-
ment fails.) Constraint propagation in MOLGEN is like Waldinger’s goal
regression,exceptthat MOLGEN is a hierarchicalplanner.Section6 discusses
someweaknessesin MOLGEN’s representationof time which bearon the use
of constraintpropagationacrossplanning situations.

5.3. Reasoningwith constraints

This sectiondiscussesseveralAl programsthat useconstraints.It beginswith
search,a model for problem solving in Al in which solutionsare found by
traversinga spaceof possibilities for candidatesthat satisfy someconstraints.

DENDRAL andits descendantCONGEN(BuchananandFeignenbaum[3])
areexamplesof programsthat useconstraint-satisfaction.CONGENacceptsas
input a set of constraintsaboutchemicalstructures— anatomicformula, lists of
requiredanddisallowedsubstructures,andpartialspecificationsof inter-atomic
connections.It searchesfor solutions using a hierarchical generate-and-test
approach.An exhaustivedepth-first generatorof chemical structuresdelivers
partial solutionsfor testingagainsttheconstraints.CONGEN’sapplicability to
practicalproblemsdependson (1) theavailability anduseof powerful problem-
specific constraintsfor limiting the generationof candidates,and on (2) the
applicationof theseconstraintsearly in the generationprocess.

When constraintscan be applied early in the solution processon partial
solutions, thetime to solutioncanusuallybe reduced.This leadsto theideaof
processingtheconstraintsin waysthat facilitatetheirearlyapplication.In 1970,
Fikes [5] reporteda problem-specificationlanguageand problemsolver, REF-
ARF, that wasable to representand solve a numberof discretenumericand
symbolic constraint satisfaction problems. REF-ARF combinedbacktracking
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with constraint manipulation routines. Given a partial instantiation of the
variables, theseroutines attemptedto simplify the remaining constraintsby
reducingchoicesfor the other variables or by deriving a contradiction.For
example, an unbound variable could be expressedas a function of bound
variablesto yield an immediatesolution. By alternatingconstraintmanipula-
tion and variable instantiation,REF-ARF demonstratedan impressiveper-
formance that was much superior to backtrackingmethods,which require
completevariable instantiationbefore acceptancetestscan be applied.Mack-
worth [9] and Freuder[6] haverecentlyreviewedsomesourcesof redundancy
in backtrackingand havesuggestedways to improveefficiency.

For severalyears, severalresearchersas MIT have been working on pro-
grams for electronic circuit analysis and design. In 1977, McDermott [10]
reportedan ambitiously conceivedprogram (NASL) for designingelectrical
circuits. NASL designedcircuits hierarchicallyby combiningand instantiating
schematarepresentingfunctionalsubcircuits;it wascapableof propagatingand
manipulatingvarious kinds of algebraicconstraintsabout circuits. Although
NASL wasneverfully implementedand relied on humaninterventionfor the
moredifficult aspectsof constraintmanipulation,thisresearchestablishedsome
of the ideasfor later design programs.In 1978, Sussmanand de Kleer [4]
reportedthe SYN programfor the synthesisphaseof circuit design,that is, for
determining the parametersof a circuit given desideratafor its behavior.
Solution of the parametersby algebraicmeans (i.e., solving equations)is
infeasible. SYN introducesconstraintsby making engineering assumptions
aboutthe operationof variouscomponents(e.g., by assumingthat a transistor
is in its linear operatingregion) and thenpropagatesthem throughthe circuit
using electrical laws. The constraintsare composedof algebraicexpressions
with variables. In some cases, SYN introducesvariables for unknowns. It
combinesand reducesthe resulting algebraicexpressionsusing an adaptation
of a rationalsimplifier from MACSYMA.

MOLGEN differs from constraint satisfactionprograms like DENDRAL
and REF-ARF in that it is not limited to the initial set of constraints.
MOLGEN formulatesconstraintsdynamicallyasit runs.NASL and SYN both
augmentedthe constraint satisfactionidea with the use of constraintpro-
pagationbetweensubproblems.Many of the ideas that were important for
MOLGEN were anticipated in NASL, although they were not imple-
mented.

6. Limitations andFurtherResearch

Researchoften raisesmorequestionsthan it answers.While this paperoffers
somesuggestionsfor understandingthe processof designin termsof constraint
posting, it leaves open severalfundamentalquestionsabout the constraints
themselves.The following sectionsraisesomeissuesabout constraintsand the
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representationof time, thegeneralityof MOLGEN’s ability to useconstraints,
andsomepractical limitationsof MOLGEN.

6.1. Constraints and meta-constraints

The generality of MOLGEN’s ability to reasonwith constraintsstemsfrom
the simple requirementsof constraint satisfaction. Constraint satisfaction
requiresonly the ability to evaluate constraints.As long as MOLGEN can
generatepotentialsolutions, it caneasily test whetherarbitraryconstraintsare
satisfied.This useof constraintsfor testing ignoresthe morepowerful idea of
using them to guidegeneration,by applying them early to partial solutions.

MOLGEN’s ability to applyconstraintsearly dependson its implementation
of constraint propagation,which hassome seriousweaknesses.MOLGEN’s
constraintpropagationoperatorsarebasedstrictly on syntacticmatchesof the
constraints.Unfortunately, MOLGEN has no capability for recognizingthe
equivalenceof logical predicatesin constraints.Although MOLGEN is ableto
propagateconstraintsthat it was generated,it has no ability to propagate
logically equivalent variations of these constraintsor arbitrary constraints
outside of its limited vocabulary. This results in a practical limitation on
MOLGEN’s ability to useconstraints;while it may eventuallygeneratea plan
that satisfiesanew constraint,it maypracticallytaketoo long for MOLGEN to
proposea satisfactoryplan if it can only apply the constraint late in the
planningprocess.

A secondlimitation is that MOLGEN’s doesnot useconstraintsto describe
processes;all of the examplesin this paperdeal only with object specification.
The simplestexampleof this would be to constrainthe selectionof laboratory
operators.The difficulty is that MOLGEN lacks powerful ways to describe
processes.No constraintson partial processdescriptionshavebeendeveloped
within the representationalframework usedin MOLGEN.

A third limitation is that MOLGEN’s doesnot usemeta-constraints.First-
orderconstraintsareabouttheobjectsin theplans;meta-constraintswould be
about the plan or the planning process.For example, there could be a
constraintthat the plan have no more thantwelve steps,or constraintson its
overall yield or time of execution.In the companionpaper,we will see that
MOLGEN’s interpreteris organizedin layers. Within this layeredstructure,
theknowledgeaboutmanipulatingconstraintssimply appearsat too low a level
to supportconstraintreasoningaboutthe designprocess.

6.2. The knowledgeacquisitionbottleneck

Although ideaslike meta-constraintshavesome exotic appeal,it is difficult to
assesstheir impacton makinga practicalsystem.To keepthingsin perspective,
it is worth remarkingon a seriouspractical limitation to the useof computers
in problemsolving: the difficulty of getting the relevantknowledge into the
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computer. This difficulty is compoundedin a rapidly expandingfield like
moleculargeneticsbecausethe knowledgecan quickly becomeout of date.
Most knowledge-basedsystems(including MOLGEN) fail to use what they
know to makethe transferof expertiseless painful. They don’t takean active
part in trying to understandwhat they are told and don’t improvetheir ability
to acquirenewknowledge.

Constraint posting is a knowledge intensive style of problem solving; it
requiressubstantialknowledgeaboutwhento formulateconstraintsandhow to
propagatethem. Missing knowledgeabout constraintformulation hasa more
seriouseffect than missing knowledge about constraint propagation.When
MOLGEN fails to formulatesomenecessaryconstraintin planning, it fails to
model thegeneticsaccuratelyand may proposeexperimentsthat will not work
in the laboratory.WhenMOLGEN fails to propagateconstraints,interference
betweenplanning decisionswill not be discovereduntil much extra work is
done. This resultsin only a soft failure in planning;MOLGEN may still plan
successfully,but only after much extra backtracking.In practical terms, the
amountof extracomputationcan sometimesmeanthat MOLGEN will never
finish. The difficulty of incorporatingsuchknowledgeeasily into a knowledge
baseillustratesthe needfor moreresearchin knowledgeacquisition.

6.3. Representingtime

MOLGEN usesan inadequaterepresentationof time. To dealwith thechanges
in objectsover time, MOLGEN changesthenamesof the objects.At different
pointsin a plan,a bacteriummay beknown asBacterium-i,or Bacterium-3, or
some other name. These different names refer to the same bacterium in
different ‘states’. The determinationof the times during which various con-
straintsaresatisfiedis indicatedindirectly by the namesof the objectsthat are
referenced.While this approachis good enough to indicatewhen constraints
are satisfied (in terms of states),it doesnot provide a satisfactoryrepresen-
tation of time for furtherplanningwork. For example,it doesnot facilitate (1)
reasoningexplicitly about the periods of satisfaction of constraintsor (2)
maintainingrecordsof distinct possibleworlds.

Reasoningaboutpossiblefuturesis tricky becausewhat will happendepends
on what we do and on things that we do not know about. For example,we
want to reasonasfar into the future asknowledgeandcommitmentspermit. I
know of no planning programswhich can realisticallyreasonaboutthe future
or constructuseful scenarios.To do this, they would needto understandthe
limits of their knowledgeand the sourcesof uncertaintyaboutthe future.

7. Summary

This paper presentsan approachto hierarchicalplanning which focusseson the
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useandinterpretationof constraints.Constraintsareviewed (1) aselimination
rules for ruling out solutions, (2) as commitmentsmade by the planner to
partially describesolutions,and(3) asa communicationmediumfor expressing
interactions between subproblems.Constraint posting is an approach to
hierarchicalplanning which exploits the different interpretationsof constraints
to plan effectively. It formulatesconstraintsduringhierarchicalplanning to add
newcommitmentsandpropagatesthem so that they canbe utilized earlyin the
designprocessto eliminateinterferingsolutions.

A computerprogramhasbeenimplementedwith a geneticsknowledgebase
to test.theidea of constraintposting. It modelsthe experimentdesignprocess
in terms of operationson constraints: formulation, propagation,and satis-
faction. Constraint formulation addsdetails to parts of the plan. Constraint
propagationspreadsinformationbetweenthenearlyindependentsubproblems.
Constraintsatisfactionfinds valuesfor the variablessubjectto constraintsfrom
the subproblems.

Constraintpostingis a knowledgeintensiveapproachto problemsolving.An
impediment to the routine application of such approachesis the lack of
effectivemeansfor transferringsuchinformation into a computer.This work
doesnot addressthe knowledgeacquisition issue but has identified several
kinds of inferential knowledgefor handlingconstraints.
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