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ABSTRACF

The selectionof what to do next is often the hardestpart of resource-limitedproblem solving. In
planningproblems,there are typicallymanygoals to be achievedin sOmeorder. The goals interact
with each other in ways which dependboth on the order in which theyare achievedand on the
particular operatorswhich are usedto achievethem.A planningprogram needsto keepits options
openbecausedecisionsaboutonepart of a plan are likely to haveconsequencesfor anotherpart.

Thispaperdescribesan approachto planning which integratesandextendstwo strategiestermedthe
least-commitmentandthe heuristicstrategies.By integrating these,the approachmakessenseof the
needfor guessing;it resorts to plausible reasoningto compensatefor the limitations of its knowledge
base. The decision-makingknowledgeis organized in a layeredcontrol structure which separates
decisionsabout theplanning problem from decisionsabout the planning process. The approach,
termed mew-planning, exposesand organizes a variety of decisions, which are usually made
implicitly andsub-optimallyin planningprogramswith rigid control structures.This is part of a course
of researchwhich seeksto enhancethepower of a problemsolversby enablingthem to reason about
their own reasoningprocesses.

Meta-planning has been implementedand exercisedin a knowledge-basedprogram (named
MOLGEN) that plansgenecloning experimentsin moleculargenetics.

1. Introduction

Method consistsentirely in properly ordering and arranging the things to
which we shouldpayattention.Descartes,OEuvres,vol. X, p. 379; “Rules
for the Direction of the Mind,” from Polya [17].

Verily, as much knowledgeis neededto effectivelyusea fact as there is in
thefact, de Kleer et at. [5].

Problemsolversrepeatedlydecidewhat do do. A problemsolver hasgoalsand
a repetoireof possibleactions.It decideswhenthe actionscan be appliedand
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142 M. STEFIK

how theyshould be combined.In computationalsystems,such decisionsabout
actions are called control and a framework for organizing these decisionsis
calleda control structure.

A sophisticated control structure should provide flexibility for decision-
making—so that a problem solver can take advantageof new information,
makeguesses,and correctmistakes. It should be able to recognizewhen an
approachis succeeding(even by serendipity), and also recognizewhen it is
failing. In substantialplanningproblems,thereare too manypossibilitiesto try
everything,soaplannermust exercisecontrol by decidingwhat to try. To plan
effectively, a planner must know when to make commitmentsand when to
wait. Thesecapabilitiesplace apremiumon flexibility andraisechallengesfor
finding waysto useinformation effectively.

This paperconsidersthe control of decisionmaking in planning.A computer
program, namedMOLGEN, has beenimplementedandusedas a vehicle for
studyingplanning.This is the secondof two papersaboutMOLGEN. The first
paper [23] considersexperimentdesignas a hierarchicalprocessand charac-
terizes planning decisionsin terms of operationson constraints.This paper
focusseson the control of thoseplanningdecisions.

Experimentationwith flexible control structuresis of increasingsignificance
in knowledge-basedproblem solversfor which we have an apparentwealth of
information in knowledge bases and increased ambitions for intelligent
behavior. Almost 20 years ago, Newell [15] surveyedseveralorganizational
alternativesfor problemsolvers.Only a few substantialexperimentshavebeen
done in the intervening years.The elaboration of the principles for creating
effective control structuresis hinderedby the substantialeffort involved in
building systemsthat use them. Most experimentsconsideronly one control
structureandasmall setof control issues.

This paper describesa control structure, termed meta-planning,which
enablesaplannerto reason(to some degree)about its own reasoningprocess.
Meta-planningprovidesa framework for partitioning control knowledgeinto
layers so that flexibility is achievedwithout the complexity of a large monoli-
thic system.The rationalefor this is discussedin Section2. The implementation
of MOLGEN’s layered control structureis presentedin Section 3. The final
sectionsconsiderthe conceptualties of this work to otherresearchon layered
control andshow how additional capabilitiesnot implementedin MOLGEN
increasethe needfor flexible control.

2. The Rationalefor Layers

This section presentsthe rationalefor organizingproblemsolving knowledgeas
a control hierarchy. It beginswith a discussionof the shortcomingsof monoli-
thic agendasystems.
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2.1. The troublewith agendas

The idea of organizinga problem solver around an agenda,that is, arounda
queue of competing processes,is currently popular as a flexible control
structure [2, 8, 13]. The agenda control structure is a generalizationof the
fetch-executecycle that is used in the hardwareof most digital computers(see
Fig. 1). In the fetch-executecycle, instructionsareretrievedby a processorand
executed. Execution of the instructions causeschanges in memory and
(presumably)brings the system closer to the completion of a problem. In
agendasystems(see Fig. 2), the tasks are similar to instructionsexcept that
they are usuallymore complicatedthan machineinstructionsandthe retrieval
andselectioncriteria arericher. Still, the basicorganizationis the sameandthe
potential for programming the system by altering the tasks and selection
criteria is appealing.

Instructions
Processor Loop Instruction.1

1. Fetch Instruction Instruction-2

2. Execute Instruction lnstruction-3
***

Memory

Data

Intermediate Computations

Results

FIG. 1. The Fetch-ExecuteCycle. Instructionsareretrievedby a processorandexecuted.Execu-
tion of theinstructionscauseschangesin memory and(presumably)brings thesystemcloserto the
completionof a problem.

In the basic agendaorganization the knowledge for selecting tasks is con-
tainedin the interpreter.Hayes[11] hasarguedthat this approachis a return to
the ‘uniform black-boxproblemsolver’:

We have now comefull circle, to a classicalproblem-solving
situation. How can the interpreterdecide what order to run
the processesin? It doesn’t know anything about any parti-
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cular domain,so it can’t decide.So we have to be able to tell
it.... This is exactly the situation which . . . the proceduralists
attacked. In removing the decision to actually run from the
code and placing it in the interpreter, advocatesof [agenda
systems]. . . have re-createdthe uniform black-box problem-
solver.

Interpreter

1. Select Task

2. Execute Task

Agen d a

Task-i

Task-2

Task-3

Memory (Semantic Network)

FIG. 2. The agendacontrolstructure.This controlstructurehasessentiallythesamearchitectureas
adigital computertasksexceptthat tasksareusually more complicatedthanmachineinstructions,
and the retrieval and selection criteria are richer. The memory in agenda systems is often
structuredasasemanticnetwork.

Severalmodifications in this schemehave been proposedto simplify the
interpreterby removing the taskselectioncriteria. One approachis to provide
an initial set of tasksandarrangethat new tasksare createdby earlier tasksas
they are run. Tasksarerun in astandardorder,such asthe order in which they
werecreated.This approachlimits the amountof schedulinginformation in the
interpreterby the drastic expedientof eliminating it altogether.The priority
queue approach (see Fig. 3), which recognizes that some tasks are more
important than others,is to assignpriorities to tasksandselect thosewith the
highestpriorities.

Severalembellishmentsare possible on the priority queue approach.One
embellishmentis to raiseor lower priorities to reflect changingconditions.For
example, the reasonsfor running a task may lose validity if other taskshave
been executedbetweenthe time that a task is createdand the time that it

Data

Intermediate Computations

Results
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Interpreter

1. Select Task

2. Execute Task

Agenda

Task-i 99

Task-2 85

Task-3 78

Memory (Semantic Network)

FIG. 3. Priority Queue.The task descriptionin agendacontrol structurescan be augmentedto
include priority information to representthe ideathat sometasksaremore important thanothers.
This begsthequestionof whereto put theknowledgefor setting thepriorities.

reachesthe top of the agenda.Someprogramsdistinguishbetweenactivation-
conditionsandpre-conditionsto handlethis case.In programslike Lenat’sAM
ataskmay increasein importanceasreasonsfor running it accumulate.

Task-centeredschedulingis an augmentationof the priority queueidea that
associatespriority-estimating functions with each of the tasks, instead of
numeric priorities (see Fig. 4). However, the treatmentof complexity is not
necessarilymuch improved. If the problem solver has multiple goals, each
priority-estimating function must potentially know about all of them. In the
worst case,the priority-estimating functionsfor each task need to take into
accountall of the other possible tasks.Unfortunately,the numberof possible
interactionsgrowsrapidly with the numberof tasks.Even if we consideronly
pairwiseinteractions,their numberis proportional to the squareof the number
of tasks; if we count interactions betweengroups of tasks, the number of
possibleinteractionsgrowsexponentiallywith the numberof tasks.

While the worst casedoes not usually hold in practice, this showshow the
control knowledgecan become unmanageablycomplicatedin a monolithic
organization. The fix for the complexity problem is not simply a choice
betweena centralizedor decentralizedorganization. In the absenseof some
other kind of simplifying organization,we have only a choice between(1)
maintainingan arbitrarily complexcentralfunction, or (2) maintaininga set of
interactingtask-centeredfunctions.

Data

Intermediate Computations

Results



146 M. STEFIK

Interpreter

Select Task

2. Execute Task

Agend a

Memory (Semantic Network)

FIG. 4. Task-centeredcomputationof priorities. In sometasks,priorities (or evenapplicabilities)
changeas conditions change.To accountfor this, somesystemsassociatefunctionswith tasksto
computethe current priority on demand.Unfortunately, if thereare many possiblegoals, each
function mustbe ableto takeall of them into account.

2.2. Recognizingthe meta-problem

Continuingwith Hayes’sargument:

A somewhatmore sophisticatedideais to allow descriptorsfor
subqueuesand allow processesto accessthesedescriptors....
But none of theseideasseemvery convincing. And we have
now moved down another level, to the interpreter of the
interpreter-writinglanguageof the representationlanguage.

The only way out of this descendingspiral is upwards.We
needto be able to describeprocessingstrategiesin a language
at least as rich as that in which we describethe external
domains, and for good engineering, it should be the same
language.

This argumentis supportedby the observationthat many of the important
actions,goals,andconstraintscan be characterizedas being on a meta-level.
For example, in the classical Missionaries andCannibalspuzzle, a first-level
action would be a trip acrossthe river specifyingvariousoccupantsof theboat.
The first-level goal is to get the peopleacrossthe river safely andthe first-level
const’raintsrelate to the eating habits of the people. Introspectionwhile trying

Task-i Scheduler-i

Task-2 Scheduler-2

Task-3 Scheduler-3

Data Goals

Intermediate Computations

Resu Its
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to solve the puzzle suggeststhat much of the thoughtprocessis actually on a
meta-leyel,that is, it is aboutthe processof solving the puzzle. For example,
higher level actionswould include (1) generatingplausible sequencesof first-
level actionsto find a solution,or (2) describingpossibleintermediatestatesin
the boatingplan, or (3) changingthe representationof the first-level problem.
The meta-levelgoal is to find a solution to the puzzle; limitations on the
availability of computationalresourcesareexamplesof meta-levelconstraints.
In general,any choicesor evaluationcriteria which relate to the processof
problemsolving can be characterizedas meta-levelconsiderations.

That many planning decisions are about the meta-problemexplains the
source of the combinatorially explosive number interactionsin monolithic
organizations.If the tasksin the agendarefer only to first-level actions,then
the schedulingfunctions must take into account not only the applicability

I nte rp~j~ ________________________________

Interpj~ter - Agenda Agenda

1. Select Meta-Task Meta-Task-1 Task-i

Meta.Task.2 Task-2
2. Execute Meta-task

______________________ Meta-Task-3 Task-3

***

Memory

Memory (Semantic Network)

Data Goals

Intermediate Computations

Results

FIG. 5. LayeredAgendaStructures.The original interpretercanbe replacedby anotheragenda-
basedproblem solver dedicatedto the schedulingproblem. The higher problem solver should
representthe control conceptsnecessaryfor solving the original problem. Tasksin the higher
problemsolverselectandexecutetasksin theoriginal problem.
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considerationsof the first-order problem, but also the problem-solvingcon-
siderationsof the meta-problem.If the meta-leveltasks are not represented
explicitly andare not hiddenin a ‘black box interpreter’,thenthe higher-level
considerationswill surfacein a confusingway astask interactionson the first
level. The basicdifficulty with all of the monolithic agendaapproachesis that
they provideno hierarchicalframeworkfor complexcontrol.They provide no
meta-levelconceptsor global perspectivesto bearon schedulingand arbitra-
tion.

How then might this knowledgebe organized?One approachis to extend
the agendaideato a multiple-layeredstructurewith a separateproblemsolver
for the meta-problem.We can replacethe complexinterpreterin the original
agendastructurewith a secondagenda-basedproblemsolver dedicatedto the
meta-problem(see Fig. 5). In this multiple-layeredsystem,the interpreterof
eachagendais essentiallyanotheragenda-basedsystem.Tasksin the second
layeract collectivelyasthe interpreterof the lower agendasystemby creating,.
ordering,andrunningthe lower tasks.

The layering ideais not limited to two layers;it canbe appliedrecursively.
To reducethe apparentcomplexityof a system,layerscanbecreateduntil the
knowledgeremainingin the uppermostinterpreteris trivial.

The useof layershasbeenessentialto thecreationof computersystemsfor
many years.Most computerprogramsare built on a successionof layers (or
virtual machines)—throughhardware,firmware, operatingsystem calls, pro-
gramming languages,and application software. This practice reduces the
amountof expertisethat is neededto programa systemby providing layersof
conceptsappropriatefor the application.This paperarguesfor the useof such
layersfor organizingthe controlknowledgein a problemsolver.

2.3. Advice andcontrol

Manybooksaboutproblemsolvingcontainadvice.For example,the following
advicewasofferedby Polya [18]:

(1) Think on the end before you begin.~ Let us inquire from what
antecedentthe desiredresultcould be derived.

(2) Examine your guess.~. . Don’t let your suspicion, or guess,or con-
jecturegrow without examinationtill it becomesineradicable.

(3) A wisemanchangeshis mind, a fool neverdoes.
(4) Look aroundwhenyou havegot your first mushroomor madeyour first

discovery;they grow in clusters.
It is generally concededby researchersin Al (artificial intelligence) that

there is a considerablegap betweenadvicesuchas this and its realizationin
problem solving programs.As Mostow and Hayes-Roth[14] haveobserved,
considerableknowledge is sometimesrequired in order to interpret such
advice.Anotherpartof the difficulty is that thereis often no apparentplaceto
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put advice in a problem solver. Heuristics like thesedeal essentiallywith
control concepts,so the absenceof an explicit vocabularyof control concepts
necessarilyimpedesthe representationof such advice. This researchtakes
somefirst stepstowardsdefining a vocabularyof controlconceptsandsuggests
that layersof control can provide a useful framework for representingthem.

3. A Model for Planning

This sectionpresentsthe layers of control (termedplanning spaces)that are
usedto model hierarchicalplanning in MOLGEN. The main featuresof the
implementationare

(1) a trivial finite-statemachineasthe top-level interpreter,
(2) the factoring of the knowledgefor using plausibleand logical reasoning

from theplanningoperations,and
(3) the developmentof a vocabularyof operatorsand conceptsfor hierar-

chical planningwith constraints.
MOLGEN usesthreelayersand an interpreterasshownin Fig. 6. The three

spaceshaveparallelstructure:eachspacehasoperatorsandobjectsand steps.
Each layer controls the creationand schedulingof stepsin the layer below it.
The spacesaredescribedherestartingwith the bottom or domain space:

Inter~reter

__________________________ Strategy_Space
Focus

\ Resume
\ Guess Strategy Steps

\Undo _____________________

Meta-Planning

_________________________ Design_Space
‘\ Refine-Operator Difference
\ Propose-Goal Design Steps Constraint
\ Propagate-Constraint Refinement

__________________ Tuple

Planning

_________________________ Laboratory_Space
Sort Gene

\ Screen L b s~ Bacterium
\ Merge a eps Enzyme
\ Transform Antibiotic

FiG. 6. MOLGEN’s planningspaces.The designspaceplans by selectingandexecutinglaboratory
steps;thestrategyspacemeta-plans by selectingandexecutingdesign steps.
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(1) Laboratory space (or domain space)—knowledgeaboutthe objectsand
operationsof a genetics laboratory. The operatorsin this spacerepresent
actionsthat can be performedby a laboratorytechnician;the objectsare the
things that can be manipulatedin the geneticslaboratory. (Laboratory space
also containsabstractionsof theseobjectsand operators.)Steps(i.e., tasks)in
laboratoryspaceareexecutedin order to simulatea real geneticsexperiment.
This bottom spaceis not a control level at all; it representsknowledgeabout
genetics.Laboratoryspacedescribeswhatcanbedonein thelaboratory,but not
whento do it in an experiment.

(2) Designspace—knowledgeaboutdesigningplans.This spacedefinesa set
of operatorsfor sketchingplans abstractly and for propagatingconstraints
aroundin a laboratoryplan asit is refined.Theseoperatorsmodel the actions
of an experimentdesigner.Stepsareexecutedin designspacein orderto create
andrefine the laboratoryplan.

(3) Strategyspace—knowledgeabout strategy.This spacehastwo problem-
solving approaches:heuristic and least-commitment.Steps are executedin
strategyspacein order to createandexecutethe stepsin the designspace.

(4) The Interpreter—this programis MOLGEN’s outermostcontrol loop. It
createsandexecutesstepsin the strategyspace.

The design operatorsplan by creatingand schedulinglaboratorysteps;the
strategyoperators‘meta-plan’ by creatingand schedulingdesignsteps.

3.1. Control messages

The stratification of control knowledge introduces some organizational
requirements:

(1) The operatorsin a meta-levelneed to be able to createand schedule
first-level tasks.

(2) Meta-leveloperatorsshouldbe ableto referenceand describefirst-level
entities.

(3) For conveniencein a changingknowledgebase,an interfacebetweenthe
spacesshould isolatethe meta-leveloperatorsfrom trivial namechangesin the
first-level space.

In MOLGEN, the translationof domain-levelinformation into design-level
conceptswasimplementedusing anobject-centeredapproach(seeBobrowand
Winograd [2]). MOLGEN’s operatorswere representedas ‘objects’ (called
units) that communicatedby passing standardizedmessages.This enabled
operatorsin a meta-spaceto look up information in a lower spaceand to
communicateuniformly with the operators in the lower space.A message
passingprotocolwas implementedusing facilities providedby the Units Pack-
age representationlanguage[25]. No claim is made that a message-passing
protocol is essentialfor implementingalayeredcontrolstructure.Indeed,more
sophisticatedmethodsfor insulating problem solving layers and translating
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betweenvocabulariesare possible,but were not implementedin MOLGEN.
The following sectionsdiscussthe vocabularyand rationalefor eachof the

planningspaces.For concreteness,the operatorsin eachplanningspacewill be
describedin terms of the message-passingprotocols that were used. The
specific messageswill be introducedasneeded.

3.2. Laboratoryspace

Laboratory spaceis MOLGEN’s model of the objectsand actionsrelevantto
genecloning experiments.It wasdescribedin thecompanionpaperandwill be
summarizedherebriefly. Laboratory spacedefinesthe set of possiblelabora-
tory experimentsby describingthe allowablelaboratoryobjectsandoperators.

The objects in laboratory space representphysical objects that can be
manipulatedin thegeneticslaboratory.Theyinclude suchthings asantibiotics,
DNA structures, genes, plasmids, enzymes, and organisms. Seventy-four
different genericobjectsarerepresentedin total. The knowledgebaseincludes
annotationswhich indicatewhich of theseobjectsareavailable ‘off the shelf’.

The operatorsin laboratoryspacerepresentphysicalprocessesthat can be
carried out in the geneticslaboratory. They are organizedinto four groups
dependingon whetherthey

(1) combineobjectstogether(Merge),
(2) increasethe amountof something(Amplify),
(3) changethepropertiesof something(React),or
(4) separatesomethinginto its components(Sort).
Collectively, these abstract(or generic) operatorsare called the ‘MARS’

operators.Thirteen specific operatorsare representedas specializationsof
these.For example,Cleave is a React operatorwhich cuts a DNA molecule
with a restriction enzyme;Screenis a Sort operatorwhich removesunwanted
bacteriafrom a culture by killing themwith an antibiotic.

Steps in laboratory spacedescribethe application of (possibly abstract)
geneticsoperatorsto geneticsobjects.WhenMOLGEN runs (i.e., executes)a
stepin a higherlevel space,thestepis saidto havebeendoneandcorrespond-
ing changesin theplanstructurearemade.MOLGEN cannot actuallyrun the
laboratory steps in the senseof doing them in the laboratory; executingthe
codeis interpretedassimulating the laboratorystep.

Laboratoryspacedoesnot contain the knowledgeabout how to effectively
plan experiments,that is, how to arrangelaboratorystepsto achieveexperi-
mentalgoals. This knowledgeis organizedin the design and strategyspaces.

3.3. Designspace

Design space is MOLGEN’s first control space. It contains operatorsfor
planning, that is, for creatingand arrangingsteps in laboratory space.This
sectiondiscussestheconceptsandoperationsof meta-planningin enoughdetail
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to give a senseof how MOLGEN worked. No claim is advancedthat the
particular operatorsdescribed here are universally applicable in problem
solving, or that the partitioning of functionality is ideally chosen.Rather,this
description is offered as an exampleof the kinds of operationsthat can be
treatedexplicitly in problem solving, and it is hoped that the examplewill
provoke the kind of careful thinking that will lead to defining and organizing
control information in othersystems.

The main ideain organizingMOLGEN’s designspaceis thatplanning canbe
viewed as operationson constraints.Three operationson constraintsare
important: formulation,propagation,and satisfaction.Constraintformulation is
the dynamiccreationof constraintsthat set limits on the acceptablesolutions.
Constraintscorrespond to commitmentsin planning. By formulating con-
straints about abstractobjects(variables), MOLGEN createspartial descrip-
tionsof theobjectsandpostponescompleteinstantiationuntil later. Constraint
propagation performs communicationby passing informationbetweennearly
independentsubproblems.Constraint satisfactionrefines abstractentities into
specific ones.It pools theconstraintsfrom the nearlyindependentproblemsto
work out solutions. The operationson constraintsarean important subsetof
MOLGEN’s designoperators.Theseoperatorsprovidea repertoireof possible
actionsthat MOLGEN canuseto planhierarchically.Fig. 7 gives an outlineof
theobjectsandoperatorsin MOLGEN’s designspace.

PLbjpç!
Constraint
Difference
Refinement
Tuple

Design-Operator
Comparison

Find-Unusual-Features
Check- Prediction

Temporal-Extension
Propose-Operator
Propose-Goal
Predict-Results

Specialization
Refine-Operator
Propagate-Constraint
Refine-Object

FIG. 7. Outline of theobjectsandoperatorsin design space.

3.3.1. Designoperators

MOLGEN hasthreecategoriesof designoperators:
(1) Comparisonoperators that comparegoals andcomputedifferences,
(2) Temporal-extensionoperators that extenda plan forwards or backwards

in time, and
(3) Specializationoperatorsthat makean abstractplan morespecific.
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3.3.1.1. Comparisonoperators
Comparisonis a fundamentaloperationin planning.Theresultsof comparison
are representedas differences. Differences are representedas objects in
MOLGEN’s design space. Other design objects include constraints,
refinements,and tuples. Examplesof theseobjectsare given in the planning
tracein the previouspaper.Thus, unlike theobjectsin laboratoryspacewhich
representphysical objects, the objects in designspacerepresentconceptual
objects.

Typically, MOLGEN chooseslaboratoryoperatorsthat can reducespecific
differences.This basic formulationgoesback to the Logic Theorist program
and hasappearedin manyplanningprograms.MOLGEN hastwo comparison
operators:Find-Unusual-Featuresand Check-Prediction.

Find-Unusual-Featuresis a designoperatorthat examineslaboratorygoals.
Sometimesa good way to select abstractoperatorsto synthesizeobjectsin
cloning experimentsis to find featuresin which the objectsare highly speci-
alized or atypical, and then find operatorsthat act on those features.Find-
Unusual-Featuresdoesthis by comparingobjects(e.g., Bacterium-i)with their
prototypes (e.g., Bacterium). Find-Unusual-Features searches recursively
throughunits representingthe partsof an object and stopswhenit hasfound
differencesat any depthof processing.

Check-Prediction is a design operatorthat comparesthe predictionsfrom
simulation of a laboratory step with the forward goal for the step. This
operator is useful for detectingcaseswhere a plan needsto be adjusted
becausethepredictedresultsof a laboratorystepdo not quite matchthe goals.
MOLGEN discoversthis mismatchafter simulatingthe laboratorystepwhen
the knowledgein its simulation model is more completethan the knowledge
that wasusedfor selectingthe laboratoryoperator.

3.3.1.2. Temporal-extensionoperators
A designoperatorthat extendsa plaQ forwardsor backwardsin time is called a
temporal-extensionoperator.MOLGEN has three such operators: Propose-
Operator, Propose-Goal, andPredict-results.

Propose-Operator proposes abstract laboratory operators to reduce
differences. It is activated when new differencesappear in the plan and it
createspartially instantiatedunits to representlaboratorysteps.It is respon-
sible for linking the new laboratorystepsto the neighboringlaboratorysteps
and goals.Propose-Operatormustdeterminewhich of the abstractlaboratory
operators(i.e., the MARS operators)are applicable.Propose-Operatortakes
advantageof the hierarchical organizationof the laboratory operatorsby
consideringonly the most abstractoperators.It sendsan apply? messageto
eachof the abstract laboratory operators.Each laboratory operatorhas a
procedurefor answeringthe messagethat determineswhetherthe operatoris
applicable (given a list of differences and constraints). If more than one
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laboratoryoperatoris applicable,Propose-Operatorputs the list of candidates
in a refinementunit andsuspendsits operationpendingmessagesfrom strategy
space.

ThePropose-Goaldesignoperatorcreatesgoalsfor laboratorysteps.It uses
messagesto accessspecialized information for laboratory operators.For
example,whenit sendsa make-goalsmessageto the Merge operator,a local
procedurecreatesgoalsfor eachof the partsbeingput together.

Predict-Resultsis thedesignoperatorfor simulatingtheresultsof a proposed
laboratorystep.It activatesa simulationmodel associatedwith eachlaboratory
operator.In thecasethat theinformationin thelaboratorystepis tooincomplete
for simulation at this stageof planning,Predict-Resultssuspendsits execution
pendingmessagesfrom strategyspace.

3.3.1.3. Specializationoperators
A hierarchicalplannerfirst makesplans at an abstractlevel and then adds
details to its plans. MOLGEN’s specializationoperatorsall add details to
partially specified plans. The design operatorsfor this are Refine-Operator,
Propagate-Constraint, andRefine-Object.

Refine-Operatoris the designoperatorthat replacesabstractdomainopera-
tors (i.e., the MARS operators)in laboratorystepswith specific ones.Refine-
Operator is invokedwhen thereare laboratorystepsthat havetheirgoalsand
inputs specifiedbut haveabstractspecificationsof the laboratory.operator(i.e.,
Merge). Theinputs to laboratorystepsareusuallyincompletelyspecifiedwhen
the operatoris chosen.For example,the input may be a ‘culture of bacteria’
without beingpreciseabout the type of bacteria.Becauselaboratoryoperators
often havespecific requirements,the processof refinementis accompaniedby
the introductionof specificconstraintson theinput.Theseconstraintsmakethe
requirementsof the laboratory operatorspecific, without requiring a full
specificationof the input at the sametime. Like otheroperatorsin the design
space,Refine-Operator usesseveralmessagesin the design space/laboratory
spaceinterfaceto retrieveinformation aboutspecific laboratoryoperators.

Propagate-Constraintcreatesnewconstraintsfrom existingconstraintsin the
plan. It is organized around the observationthat even long-distancepro-
pagationscan be decomposedinto a seriesof one-steppropagationsthrough
individual laboratorysteps.Propagate-Constraintis invokedwhen a new con-
straint appearsin theplan.While constraintscan,in principle,bepropagatedin
either a forward or backwarddirection in a plan, only the backwarddirection
(in time) is implementedin MOLGEN. Propagate-Constraint is activated
whenevernew constraintsappearin the plan. After trying to propagatea
constraint,the design task is suspendedfor possiblereactivationif somenew
laboratorystepsappearin the plan.Thesetasksarecancelledif a constraintis
markedasreplacedin theplan.

Refine-Objectis MOLGEN’s constraintsatisfactionoperator.It is activated
whennew constraintsappearin theplan. Constraintsatisfactioninvolvesa ‘buy
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or build’ decision in MOLGEN.’ MOLGEN first tries to find an available
object that satisfiesthe constraints.If this fails, the constraintis marked as
failed and the refinementtask is suspended.If the constraintis neverreplaced
by a different constraintand MOLGEN runsout of things to do, it may guess
that it shouldmakea subgoalout of building theobject—thusmakingthebuild
decision.

Refine-Objectevaluatesconstraints(Lambdaexpressions)using objectsfrom
the knowledgebaseasarguments.Thesolutionsarepooledwith thoseof other
constraintson the sameobjectsin designobjectscalled ‘tuples’ that keeptrack
of the setsof solutions.Sometimesa new constraintwill include objectsthat
are included in disjoint tuples; in such cases Refine-Object combines the
subproblemsby integrating the tuples into a new tuple with intersected
solutions.When enoughconstraintshavebeenfoundto makethe solution for
any abstractvariableunique,that variableis anchoredto the solution.

3.3.2. Interfaceto laboratory space

Fig. 8 summarizesthe messagesthat wereusedin MOLGEN. Eachlaboratory
operator includes a procedureto respond to each kind of message.This

Message Meaning

APPLY?
Asks a lab operator whether it is applicable to
reducing a list of differences given a set of
constraints.

REFINE
Instructs a lab operatorthat it has been chosenas a
relinement in the plan. Returns a list of new
constraints.

MAKEGOALS?
Asks a lab operatorwhetherit needsto modify the
goalsof a step.

MAKEGOALS
Instructs a lab operator to modify the goalsof a
laboratorystep as needed.

SIMULATE?
Asks a laboperatorwhetherthe input to a lab stepis
specified precisely enough to do a detailed
simulation of the lab step.

SIMULATE
Instructs a lab operator to provide a detailed
simulation of laboratory step.

BKWD-PROPAGATE
InstrucLs a laboratory operator to propagate a
constraintbackwards(in time) from its forward goals
to its input.

FWD-PROPAGATE
Instructs a laboratory operator to propagate a
constraint forwards (in time) from its input to its
forward goals. (This messagewas not implemented
in MOLGEN.)

FIG. 8. Message-protocolinterface to laboratoryspace.Thesemessagesare sentby designspace
operatorsto control andretrieve information from laboratoryspace.

Post-thesisexaminationof MOLGEN’s logic has revealed somegapsand confusionsin the

implementationof this ‘buy or build’ decision. Someaspectsof this arediscussedin Section5.
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approachredundantlyrepresentsthe knowledgeabout the laboratoryopera-
tors, since the queriescan be about redundantinformation and there is a
separateattachedprocedureprovidedfor eachkind of query from the design
space.A direction for future researchis to developanapproachfor statingthe
information declarativelyonce, and then possibly compiling it into the pro-
cedureslike these.

3.4. Strategyspaceandits interpreter

Thedistinctionbetweenleast-commitmentandheuristic approachesto problem
solving is the key to theorganizationof the knowledgein MOLGEN’s strategy
space.A least commitmentapproachrequiresthe ability to defer decisions
whenthey areunder-constrained.It relieson a synergisticrelationshipbetween
subproblems,so that constraintsfrom different parts of a problemcan be
combinedbefore decisionsare made.A heuristic approachutilizes plausible
reasoning, to make tentative decisions in situations where information is
incomplete.

MOLGEN’s strategyspaceis organizedasfour strategyoperators:Focus,
Resume,Guess,and Undo as describedin the next section.Fig. 9 shows how

Least-Commitment Cycle

I 1
Start

I I
I I
I I
L — I

Heuristic Cycle

Under-Constrained & Stuck Over-Constrained

I I
I I
I I
I I
L I

FiG. 9. Least-commitmentandheuristiccycles.This diagram showshow thestrategyoperatorsare
controlledby MOLGEN’s interpreter.The least-commitmentcyclemakesconservativechangesin
theplan,dependingon synergy betweensubproblems(andconstraintpropagation)to keepgoing.
When MOLGEN runs out of least-commitmentsteps,it resorts to guessingusing the heuristic
cycle.
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the strategyoperatorsare controlled by a simple finite statemachine, the
interpreter,which is composedof two main parts. Section 3.4.2 describesthe
message-passingprotocolthat interfacestheseoperatorswith the designspace.
The significanceof theseideasis discussedin Section3.4.3.

3.4.1. Strategyoperators

The fourstrategyoperatorspartition theknowledgeaboutlogical andplausible
reasoningout of the designoperatorsthat createthe experimentalplans.This
section describesMOLGEN’s strategyoperatorsand how their control of
designspaceis implemented.

3.4.1.1. Focus
The Focus strategyoperatoris usedto createand executenew design tasks.
Focus sendsa find-tasks messageto every designoperator.This causesthe
proceduresassociatedwith the design operatorsto searchfor work in the
currentplan and to report backwhere they can be applied.Theseprocedures
mark the placeswhere they havelooked in the plan, so that they can avoid
redundantchecking.The applicationpoints are recordedin designstepsand
the designstepsare put into an agenda.In the simplestcase,only onedesign
step is ready at any given time. When severaldesign stepsare ready simul-
taneously(usuallyfrom different partsof theplan), Focus hasto chooseoneof
them to go first. In MOLGEN, priorities wereassignedto thedesignoperators
as describedin the following paragraphs.Thesepriorities were usedby the
Focus and Resume operatorsto scheduledesign steps when several were
simultaneouslyready.

Focus executesa designtask by sendingit a simulate message.A task may
terminatein any of four possiblestates:done, failed, suspended,or cancelled.
Focus iteratesthrough its agenda.After eachexecution, it sendsout the
find-tasksmessageagain.As long asstepsaresuccessfulor aresuspendeddue
to beingunder-constrained,Focuscontinuesthroughtheagenda.However,if a
design-stepis over-constrained,Focus stops processingand returns to the
interpreterwith the statusover-constrained.(This causesthe Undo operatorto
be invoked.)

The priorities for schedulingcompetingdesign tasks are shownin Fig. 10.
They reflect a bias towardsperformingcomparisonbefore temporal-extension,
andtemporal-extensionbefore specialization.This was intendedto encourage
MOLGEN to look first for differences,then to use them to sketch out an
abstractplan, andfinally to refineto specific objectsandoperators.Given such
a controlscheme,it is interestingto askwhetherit waseffectiveor necessary.
While no comprehensiveset of measurementswasdone, an experimentwas
performedaccidentally.The original versionsof the Focusand Resumeopera-
tors had a bug which causedthem to use thepriorities preciselybackwards,so
that thedesignoperatorswith the lowest priority were tried first. Interestingly,
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OperatorClass Design Operator Priority

Cornpa rison
Check-Prediction 9

Find-Unusual-Features 9

Temporal-Extension
Propose-Goal 7
Propose-Operator 6
Predict-Results S

Specialization
Reline-Operator 4
Propagate-Constraints 3
Reline-Object 2

FiG. 10. Priorities of thedesign operators.When thestrategyoperatorshavemore thanonedesign
task that seemsapplicablein the least-commitmentcycle, thesepriorities are used to order the
tasks.They reflect a bias towardsextendinga plan in time beforeextendingit in depth.

MOLGEN was still able to plan correctly, except that it did a lot of un-
necessarywork. Design tasks were scheduled,and immediately suspended
becauseof insufficient information.Although this buggy versionof MOLGEN
nevercompleteda plan, it seemedto makethecorrectdecisions,butonly after
a greatdealof fuss; starting tasks,suspendingthem, andpicking themup later.

3.4.1.2. Resume
Resumeis the strategyoperatorthat restartssuspendeddesignsteps.A design
step may be suspendedbecauseit is under-constrained,or becausethere is
potentially additional work to be found later. Resumeworks very much like
Focus in that it createsan agendaand usespriorities to scheduledesigntasks
whenmore thanoneis ready.It differs from Focus in that it doesnot look for
newwork to do, only old work to startup again.It sendsa resume?messageto
every suspendeddesign-steptelling it to indicate if it is ready to run again.
Resumereactivatesthe designstepsthat areready to run by sendingthem a
resumemessage.

Fig. 11 shows an examplefrom a cloning experimentwhere the Resume
operatorwasusedto activatea designstep.The designstepin this caseis the
Propagate-Constraintstepshownin theright centerportionof the figure. This
stepwasactivatedwhenthe constraint(dark box)wasaddedto the plan. The
constraintrequiredthat the enzyme correspondingto the sticky-endsof the
vectorshouldnot cut thedesiredgene(rat-insulin) that it carries. At the time
of formulation, therewas no place to propagatethe constraint,becausethe
Cleave stepin theplanhadnot yet beenaddedto theplan. Later, otherdesign
stepsproposedandinstantiatedthe Cleavestep,andthesuspendedPropagate-
Constraintdesignstepcouldbe resumed.

3.4.1.3. Guess
Occasionallyduring planning, information is not adequatefor making any
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NEW

Goal

FIG. 11. Example of resuming. The Propagate-constraintsdesign step was createdwhen the
constraintwascreated,but was suspendeduntil enoughof theplan hadevolvedto createaplace
for propagatingtheconstraint.

irrevocable decision. When MOLGEN has run out of least-commitment
changesto a plan, it looks for a plausiblecommitmentthat will allow it to
continuewith the designprocess.This is recognizedby MOLGEN when the
FocusandResumestrategyoperatorshavenothing to do.

The Guess operator sendsa guess?messageto the operator of every
suspendeddesign step. These design steps representunder-constrained
decisionpointsin planning.Theguess?messagecauseseachsuspendedstepto
examine its options and to compute a numerical estimateof the utility of
commiting to one of its choices.Guessthen activatesthetask with the highest
rating by sendingit a guessmessage.After making a single guess,the Guess
operatorreturnsto theinterpreterandanotherFocusstepis started.

3.4.1.4. Undo
Undo is the strategy operator for backtracking when a plan has become

Propagate-
Constraint

(Suspended)[ Not

Cut

GeneiO
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over-constrained.It is the least developedof the strategyoperatorsin this
research.Other researchershavedevelopeda more comprehensiveapproach
to dependency-directedbacktrackingthanhasbeendonefor MOLGEN; most
of the effort in this researchhas gone towards avoiding backtracking. In
Section 3.4.3 it is argued that it is not always feasible to avoid revoking
decisionsmadein planning.

For the record, MOLGEN’s (primitive) Undo operatorworks as follows.
First it picks a candidatedesign step to undo. It begins by making a list of
designstepsthat were guessedand searchesthis list for a step whoseoutput
wasthe.input of the over-constraineddesign step.If Undo finds sucha step,it
sendsit an undo message.This tells the designstepto removethe effectsof its
executionfrom the plan. The designstep is then markedas undone.If Undo
finds no candidate,it printsout anapologyandquits. Undo, asimplementedin
MOLGEN, is not capableof tracking down all of the consequencesof a
decisionto be undoneand doesnot checkthat the undoingactuallyalleviates
theover-constrainedsituation.

3.4.2. Theinterface to designspace

The precedingaccount of the strategyoperatorshasdiscusseda number of
messagesthat are sent from the strategyspace to the design space.These
messagesprovidean interfaceto designspacethat is analogousto the message
interfacebetweendesignspaceand laboratoryspace.The interfaceprovides a
way for the strategyoperatorsto communicatewith the design operators
uniformly. Theyenablestrategyoperatorsto invokedesignprocedureswithout
knowing the namesof the procedures.The interfacemessagesin the current
implementationareshownin Fig. 12.

Message Meaning

FIND-TASKS
Instructs the design task to searchfor new work to do.
Returnsa list of tasks to do.

SIMULATE
Causesa design ta-k to be executed.

RESUME?
Asks a suspendeddesign taskwhetherit is ready to be re-
started.

RESUME
Instructs a suspendeddesign task to resume execution.

GUESS?
Asks a suspendeddesign task whether it can make a
plausible guess. Returnsa numeric rating of the guess.

GUESS
Instructsa suspendeddesigntask to make its bestguess.

UNDO
Instructsafinished(guessed)designtaskto undo theeffects
of its execution.

FIG. 12. Message-protocolinterfacefrom strategyspaceto designspace.
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3.4.3. Significanceof the strategyspace

The heuristic and leastcommitmentcyclesare reminiscentof two earlierAl
programs,HACKER (Sussman[26]) andNOAH (Sacerdoti[20]), respectively.
Theseprogramsepitomize two points on a spectrumof time of commitment.
HACKER epitomizesheuristicearly commitmentandNOAH epitomizeslate
(or least)commitment.HACKER guessesits way to a solutionusingdebugging
to fix thingswhen theassumptionsarebad;NOAH defersdecisionsandinvites
the possibility that information will becomeavailable later that narrows the
possibilities. After NOAH successfullyand optimally solved some of the
problemsthat were troublesomefor HACKER, Sacerdoti[20] observedthat

HACKER does a lot of wasted work. While the problem
solver will eventually produce a correct plan, it does so in
many casesby iteratingthrough a cycle of building a wrong
plan,thenapplying all knowncritics to suggestrevisionsof the
plan, thenbuilding a new (still potentially wrong)plan.

The bugs arose, in Sacerdoti’s view, from premature and inappropriate
decisionsby the problem-solver.By delaying judgment,a problem-solvercan
achievea considerablesavings in computationaleffort.2 Sussmanand later
Goldsteindisagreedon thepowerof the least-commitmentprinciple. Bugsin a
designareto be expected;theyresult from heuristicallyjustifiable but incorrect
inferencesin the designprocess.Goldstein[10] observedthat

Many bugs are just manifestationsof creativethinking—the
creationandremovalof bugsarenecessarystepsin the normal
processof solvinga complexproblem.

The formulation of strategyknowledgein MOLGEN integratesandextends
the two earlierapproachesto planning. By integratingthe leastcommitment
cycle with ~e heuristiccycle in strategyspace,MOLGEN makessenseof the
need for guessing: we can guess,but only when we have to. Bugs are
inevitable, but only when we guess.The amountof guessingis a measureof
missingknowledge;themoreweknow (and areableto usewhat weknow), the
less we need to guess. Guessing is used to compensatefor the limited
knowledgeof a problemsolver. With increasedexpertisewe expect reduced
guessingand backtracking.By increasingMOLGEN’s knowledgeaboutcon-
straint formulation and propagation,we decreaseits needto revokedecisions.
The least commitmentapproachis conservativereasoning;the heuristic ap-
proachis plausiblereasoning.

The appeal of the least commitment cycle is that it uses a monotonic
~tpproachtowards a solution; as long as MOLGEN stays in this cycle, it is

2 Barstow [11 illustrated this in an example of program refinement when abstraction trees are

skinny at the top, andbushyat the bottom.He cited a casewheredelayinga choicereducedthe
numberof rule applicationsin half.
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guaranteedto makeno wrong moves.The Focus operatorcallson new design
operatorsto makeinfallible (i.e., irrevocable)changesin the developingplan;
the Resume operator re-startsany suspendeddesign operatorswhich have
received additional information. The power of this cycle derives from the
ability of thevariousdesigntasksto reinforceeachotherin theirdecisions.The
operatorscan be suspendedwhen they have insufficient information and
restarted when it becomesavailable. Reinforcement is a consequenceof
constraintpropagation,which passespartial resultsbetweensubproblems.As
long as therearenew things to do in the plan or suspendedthings to restart,
MOLGEN staysin theleast-commitmentcycle. If MOLGEN runsout of things
to do (and theplan is incomplete),theplan is said to be under-constrainedand
it calls upon the Guess operatorto make some tentative decision that will
enableplanning to continue.The Guessoperatorcalls againupon the design
operatorsto makemovesthat areplausible,evenif theycannotbeguaranteed.
If MOLGEN discoversat anypoint that theplanis over-constrained,it callson
the Undo operatorto revokesomeof the designdecisions,typically undoinga
choicethat wasguessed.

4. Relationships to Other Work

This section considersother problem-solvingprogramswith layered control
structures.While the idea of layered control was reportedas early as 1963,
programs which substantiallyutilize this idea have appearedonly recently.
Severalresearchers(e.g., de Kleer et al. [5] and Georgeff [9]) have proposed
approachesfor controlling inference;this sectionwill consideronly approaches
that are layered.

4.1. GPS

The ideaof layersof controlwith problem-solvingoperatorswasanticipatedin
1963 by Simon [22] in his experimentswith the heuristiccompiler in the GPS
framework:

It should.. . be feasible,by modifying the top-level programs,
to bring the HeuristicCompilerinto a form which would allow
its problem-solvingprocessesto be governedby GPS
Thatis, GPSwould first be appliedto thetask environmentof
the GeneralCompiler; applying an operatorin this environ-
ment would consistin applying GPSto the task environment.

This suggestionanticipatesthe use of problem-solving operators that are
distinct from the domain operators.The ideafor the HeuristicCompiler was
recursivein that it usedan instantiatedversion of GPSas an operatorin the
differencetables of a higherversionof GPS.
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4.2. TEIRESIAS

TEIRESIAS (Davis [3, 4]) with its meta-rules also used a layered control
structure.TEIRESIAS was developedin the context of MYCIN (Shortliffe
[21]), a medical-consultationsystem.MYCIN performs an exhaustivegoal-
directed search through a diagnostic AND/OR tree. At each stageof the
diagnosis,MYCIN retrievesthesetof productionrules which concludeabouta
premiseof interest. In TEIRESIAS, the systemwasmodified so that object-
level production rules could be reorderedand pruned according to explicit
criteria in meta-rules.Thesecriteria were usedby TEIRESIAS to shortenor
re-orderthe list of potentially applicablerules considered.The ideaof higher
ordermeta-rules(e.g., meta-meta-rules)that would acton othermeta-ruleswas
also considered,but the medicaldomainofferedno examples.

4.3. HEARSAY-like systems

SeveralrecentAl programswith layeredcontrolstructureshavebeenbasedon
ideasfrom the unlayeredHEARSAYJI program[6] for speechunderstanding.
The architectureof HEARSAY-Il incorporatedthreemain ideaswhich have
influencedthe designof the later programs:

(1) Hierarchicalhypothesisstructure.Each level wasmore abstractthan the
level below-it. The hypotheseswere kept on aglobal datastructuretermedthe
blackboard.

(2) Knowledge Sources.Operators termed KSs (for Knowledge Sources)
madehypothesesat thedifferent abstractionlevels.

(3) Focus of altention. A centralizedcontrol mechanismwas usedto focus
attentionon partsof the hypothesisspaceand to coordinatethe KSs.

4.3.1. SU-Xand SU-P

In 1977,Nii andFeigenbaum[16] describedtwo computerprograms,SU-X and
SU-P, that did signal interpretationtasks.SU-X interpretedinstrumentsignals
in a military contextand SU-P (also known as CRYSALIS) interpretedX-ray
crystallographydatato determineprotein structure.Theseprogramsextended
the HEARSAY-Il architectureasfollows:

(1) HEARSAY-II’s single-layeredcontrol structure(the hypothesizeand
testparadigm)wasextendedto multiple layersand

(2) HEARSAY-II’s blackboardwaspartitionedinto distinct areas.
The controllayersin both programswerecalled hypothesis-formation,hypo-

thesis-activation,and strategy. KSs on the first layer formed hypothesesfrom
the incoming signal. The two operatorson the secondlayer, the hypothesis-
activation layer, were called the event-driverand the expectation-driver.They
correspondedto data-drivenand goal-drivenpolicies for activatingKSs on the
first layer. The KSs on the third or strategylayer decided(1) how close the
systemwas to a solution and (2) how well the KSs on the secondlevel were
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performingand (3) when and where to redirect the focus of attention in the
dataspace.

The control layersin MOLGEN are an adaptationof the controllayersused
in the SU-X and SU-P programs; the differencesreflect MOLGEN’s more
elaborateconcern about coordination of subproblems.MOLGEN’s explicit
managementof the communicationbetweennearly independentsubproblems
led to many more operatorson the secondlevel. Thus, the strategylevel in
SU-X had only to mediatebetweentwo analysisoperators:goal-drivenand
event-drivenanalysis; MOLGEN’s strategyoperatorsmediatebetweeneight
designoperators.Another sourceof complexity is MOLGEN’s ability to save
partial results of computations.Operatorsin SU-X merely succeedor fail
without savingpartial results;operatorsin MOLGEN can be suspendedwith
partial resultson under-constrainedproblemsand can be restartedwith in-
structionsto try again,guess,or undo thesesteps.

4.3.2. TheHayes-Rothplanningmodel

A cognitive model for an errand planning task has been developedby
Barbaraand FrederickHayes-Roth[12] that is intendedto model the mixture
of goal-driven and data-drivenbehaviorobserved in human planners.The
Hayes-Roths’ model proposespattern-directedinvocation and resourceal-
locationasthebasiccontrolconcepts.Planningknowledgeis factoredinto KSs
that suggestdecisionsabout how to approacha problem,what knowledgeto
use,and whatactionsto try.

MOLGEN researchhas paralleled the Hayes-Roths’work and there has
beena considerablesharingof ideas.The Hayes-Roths’model evolvedfrom
the analysisof human problem-solvingbehaviorin protocols taken from an
errand-runningtask. It characterizesplanning asfollows:

Our first assumptionis that peopleplan opportunistically
[This] implies that the decisions they make can occur at
non-adjacentpointsin the planningspace A decisionat a
given level of abstractionspecifyingaction to be taken at a
given point in time may precedeand influence decisions at
either higher or lower levels of abstraction. . . [or] at either
earlieror laterpoints in time.

This characterizationis consistent with the behavior of MOLGEN using
constraintposting.

Like SU-X and SU-P, the Hayes-Roths’model extendsthe HEARSAYJI
model by partitioning the blackboardinto separateplanes.In their model, an
executiveplanecorrespondsroughly to MOLGEN’s strategy plane; a meta-
plan planecorrespondsto the designplane, and the three remainingplanes
correspondto thedomainplanefactoredinto intermediatestatesof planningin
the errandrunning task. Resourceallocation is governedby proceduresin the



PLANNING AND META-PLANNING 165

executive plane. The separationof domain and control knowledge in the
Hayes-Roths’model, however, is not rigorously enforced.For example,both
domain-levelfacts and meta-leveloperationsfor settinggoals appearon the
Knowledge-Baseplane.

Although the authorsdescribeplanning behavioras the result of the ‘un-
coordinatedactions’ of KSs acting opportunistically, the KSs in their com-
putational model are far from uncoordinated.Specific KSs, such as middle-
managementand referee, perform critical control functions by determining
focus, setting priorities, and establishingpolicies. While there is no explicit
groupingof productionsto make layeredinterpreters,someproductionsserve
mainly ascontrolfunctions.Unlike MOLGEN, theoperators(productionrules)
in the model are organizedas a monolithic set invokedby patterninvocation.
Control is achievedby pattern-directedinvocationfrom recordsplacedin the
blackboardplanes.Somerecordsrepresentcontrolinformation, suchaspriori-
ties and schedulingpolicies. The shift in attention from the problem to the
meta-problemis controlled by the specification of flags in the planes;these
flags arementionedby the preconditionsof the productionsand testedby the
interpreter.This practice invites the mixing of meta-leveland first-level con-
siderationsin therules.

The Hayes-Rothsdescribetwo planning paradigms:hierarchical andoppor-
tunistic. The hierarchical model is characterizedas a systematictop-down
explorationof possibleplans.This differs from our useof theterm hierarchical
planning.For our purposes,the important featureof hierarchicalplanning is
the useof planning islands, that is, a simplified planning model. While the
direction of hierarchical planning is generally top-down, it need not be
exploredbreath-first.Any planning model which makesuseof abstractions
would be termedhierarchical.

Opportunistic planning in the Hayes-Roth model is describedas bi-direc-
tional (i.e., top-downandbottom-up)andheterarchical.This allowssubplansto
be developedindependently,possibly at different levels of abstraction,for
eventualincorporationinto a final plan.Theopportunisticideais manifestedin
theconstraintpostingbehaviorof MOLGEN. Both approachesmovethefocus
of planning activity betweenfruitful subproblems;both approacheswork with
constraintsandnearly-independentsubproblems.For example,theprotocolsin
the Hayes-Roth model reveal time constraints:groceriesperish, people get
hungryat lunch time, theautomechanicfinisheswith thecar late in theday. In
both cases,successdependson viewing plans asstructuredobjects rather than
action sequences.

The Hayes-Roths’cite examplesof how the bottom-up level observations
and decisionscan trigger changesin higher-levelactivity in planning. Thereis
an importantdistinctionto bemadehere— that hasbeenmuddledsomewhatin
their discussion: the distinction between (1) bottom-up processingand (2)
feedbackof information to themeta-level.Thebehaviorof a planningprogram
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without goalswould seem very erratic; similarly a planningprogramwith no
event-drivencomponentcanhave no feedbackandcanmakeno advantageof
observation. In both cases, it is the behavior of the planner that is under
scrutiny. This problem-solving behavior is controlled by the meta-level, so
information relevant to changingproblem-solvingbehaviormust be utilized
here.

In the Hayes-Roths’model, thereseemto be no explicit planningoperators
for dealing with constraints.Constraintsare simply mixed togetherwith other
recordsin the blackboardand somehowit all works. Therearealso no formal
hierarchical planningoperatorsand no differentiation of guessingor undoing,
as in MOLGEN’s heuristiccycle. Thesedifferencesreflect the different inter-
estsof theresearchers:theHayes-Rothswant to model humanproblem-solving
as observed in their protocol studies, and are less interestedin studying
organizationsof problem-solvingknowledge.

5. Limitations and Further Research

This paper has argued for the use of a multi-layered organizationas an
antedotefor the complexitiesof a monolithic control structure.Of course,this
researchhasbarely scratchedthe surfacein consideringthe capabilitiesand
organizationsof planning systems.Severalideasandissuesthat go beyondthe
presentwork are listed below. This sectionarguesthat they exposean even
greaterneedfor factoringthe knowledgeusedin a control structure.

(1) Guessingand Solution Density. When the solution spacecontainsmany
solutions,almostanyplan would probablywork. In suchsituations,it would be
reasonableto guessearly,beforeperformingall of thebookkeepingentailedin
least-commitmentapproaches.This is related to the allocation of effort to
thinking versusthinking aboutthinking in that cost/benefitestimatescould be
associatedwith thecost of computationand the risk of guessingincorrectly.

MOLGEN’s conservativeapproachis basedon a view of geneticsexperi-
mentplanning asa sparsesolutionspace.Randomexperimentsareunlikely to
work. In general, the density of solutions varies with the particularsof the
problem.It is possibleto createadditional layersof control to accountfor this.
For example, a second layer of strategy could allow more sophisticated
switching betweenthe least-commitmentand heuristiccycles.To speedup the
planningprocess,it could recommend,for example,(1) that MOLGEN should
play a sufficiently strong hunch insteadof waiting until it knows that the
problemis under-constrainedor (2) that MOLGEN should debug (partially
undo) some existing plan if its goals are sufficiently similar to those in the
currentproblem.

(2) Incorporating new information. Experimentsinvolving real-world feed-
back push the pJanning technology in several ways. For example, to do
execution-monitoringof experiments,MOLGEN would needto inquire about
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the successof laboratorysteps.It would needto makejudgmentsaboutwhat
to observe,and what to do when steps violate expectations.Potentially, it
would needto recognizewhen an unexpectedeventis a researchopportunity
and to decide(at a meta-level)whetherto pursueit (see Feitelsonand Stefik
[7]). This would providea setting to studythe balancebetweenplanning before
executionand planning during execution,that is, betweengoal-driven and
event-drivenplanning.Theability to defersomeof theplanninguntil execution
would reducethe burdenof planning for all possiblecontingencies.

(3) Reasoning about theories. MOLGEN has no sense of the scientific
method, which guides the creation of experimentsto test hypotheses.A
full-fledged experimentplannershouldbe ableto plan experimentsin orderto
disambiguateandextenda theory. This enterprisewould requirea systemto
balanceits efforts betweenproposing,modifying, and testing theories.

(4) Reasoningabout scenarios.Thereis currently a researchopportunity to
combine the ideas of ‘truth maintenance’and hierarchical reasoningabout
scenarios.Such a programmight reasonaboutafuture that dependsin part on
its own commitmentsandactivities. It would needto considereventscausedby
its own actionsas well as those causedby other actors.The considerationof
other actorsconsiderablyincreasesthe complexitiesof planning.

(5) Reasoningabout failures. A geneticist observingMOLGEN would dis-
tinguish betweenthe following reasonsfor not finding a planto an experiment:
(1) conflicting constraintsin the problem statement,(2) incompatible con-
straintsintroducedduring problemsolving, (3) incomplete knowledgeof the
objectsand materialsavailable in the laboratory, (4) incomplete knowledge
about how to plan an experiment.MOLGEN doesnot currently distinguish
betweenthesepossiblecausesfor failure. Knowledgeabout sourcesof failure
andaboutthecompletenessof its knowledgebasecouldbe usedby MOLGEN
to discriminatebetweenthesetypesof failure.

The needfor partitioning control knowledgeinto layersis evenmore acutein
resource-limitedproblem solvers which must balancetheseadditional issues
duringcomputation.

6. Summary

Many of the actions,goals,and constraintsthat are important in planningcan
be bestunderstoodasbelongingon meta-levels.That is, someof the decisions
andgoals refer to the processof problem solving, andnot to the particularsof
the problem at hand. This paper arguesthat the organizationof a problem
solvercan be simplified by partitioning problemsolving knowledgeinto layers.
Monolithic organizationsprovide no distinction for meta-levelconsiderations.
By factoring out the meta-level considerations,we can reducethe apparent
complexity of the interactionsbetweenfirst-level tasks.

MOLGEN is organized into laboratory, design, and strategyspaces.The
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laboratory space representsMOLGEN’s knowledge about objects in the
laboratory and operatorsthat can be used to manipulatethem to achieve
laboratorygoals.The designspaceprovidesan explicit repertoireof operators
for hierarchicalplanning. The organizational idea behind this spaceis that
hierarchicalplanning canbe understoodasoperationson constraints.Tasksin
the design spacearecreatedandexecutedby the strategyspace.The organiza-
tional ideabehindthe strategyspaceis the distinctionbetweenleast-commit-
ment and heuristic modesof reasoning.MOLGEN’s strategyspacerelieson
the synergybetweensubproblems(via constraintpropagation)to stay in the
leastcommitmentcycle as long asit can,and to resortto guessingonly whenit
hasto. The designoperatorsplan by creatingand schedulinglaboratorysteps;
the strategyoperatorsmeta-planby creatingand schedulingdesignsteps.
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