
STEFIK et al. 43

TIlE PARTITIONING OFCONCERNS
iN DIGITAL SYSTEM DESIGN

Mark Stefik, Daniel G. Bobrow, Alan Bell,
Harold Brown, Lynn Conway,andChristopherTong

VLSI SystemDesignArea,XeroxPARC and
HeuristicProgrammingProject,Stanford University*

Abstract

This paperproposesthe useof explicit abstractionlevels
to organize decision making in digital design. These
levelspartition the concernsthata designermustconsider
at any time. They provide terms and compositionrules
for the composition of structural descriptionswithin a
level. This allows multiple opportunitiesfor mapping
behaviorinto structure.

Introduction

The Mead and Conway textbook1 presents a
methodology for designing digital integrated systems
which exploits the propertiesof charge-storagedevices.
As in most texts concerningdesign, the methodologyis
communicatedvia examples. It is clear from these
examples that designerswork within multiple design
spacesrangingfrom abstractsystemdescriptionsto circuit
layouts. At the layout level, the methodology is
formalized in an explicit set of rules for composing
primitive terms, “colored rectangles” representing
material on a chip. If users follow these Lambda
composition rules, their designsare guaranteedto have
adequatephysical spacing on a chip. However, the
intermediatelevels in the design processare not usually
recordedin a formal notation and are only informally
sharedin the communityof designers.

This paper proposes a number of formalized
intermediatedescription levels, eachof which allows a
designer to deal with particular concerns. Each level
provides a vocabulary of terms and a set of simple

*rhe Stanftrd componentof this researchis funded by the Defense

Advanced Research Projects Agency contract MDA9O3-80-C007

1982CONFERENCEON ADVANCED
RESEARCH IN VLSI, M.I.T.

composition rules. This enables a designer to do
compositionwithin a description level. The rules make
possit~lea principled approach for creating composite
structures and ultimately digital systems. Designs
expressedat multiple descriptionlevels interact through
explicit constraints. We are developingtransformation
rules to take designsat one of theselevels and express
them atother levels.

To aid in testing theseideas, we are developingan
expertdesignsystem,Palladio,wl~ichwill assista userto
design with multiple levels of desdription. An active part
of the systemmay suggestalternativeimplementationsof
a higher level design as well as possible optimizations.
Palladio is being built in the knowledge engineering
paradigm. Knowledgeengineeringis a branchof research
in artificial intelligence that is concerned with the
creation of knowledge-basedexpert systems2’3. The
systems are called knowledge-basedbecause their
performanceis a consequenceof symbolic reasoningfrom
explicitly representedknowledge, that is, facts and
heuristicsaboutthetask domain. They are calledexpert
when they perform tasks that require substantial
expertise.

In this paperwe providean overview of our useof
multiple description levels in a proposeddesign system.
We discuss how our approach differs from silicon
compilers and from traditional register transfer (RT)
hardware description languages. We argue that our
approach provides more leverage for systematic
explorationof possil~ledesigns.

JANUARY 25, 4:00 P.M.

44 STEFIK et al.

~i’Lever~jro~!raction

The principle of divide and conquer is an essential
part of mastering otherwise overwhelming tasks. As
Simon andmany othershaveobserved:

To design . . . a complex structure,one powerful
technique is to discover viable ways of
decomposingit into semi-independentcomponents
correspondingto its many functional parts. The
designof each componentcan then be carriedout
with some degreeof independenceof the design
of others. . . [page148]~

That so many design systems have facilities for
supportingthis kind of hierarchicaldesign suggeststhat
the point is widely appreciated. Btit exploitation of a
componenthierarchy is only one of severalopportunities
for dividing up the design process. Design using
abstractionlevelsis a complementaryway to do it. The
metaphorin force hereis that design is search. Solutions
exist in a potentially large space of possible designs.
Design is a processof generatingalternativesand testing
them against requirements and constraints. Abstract
solutions are descriptionsthat stand for an equivalence
classof detailedsolutions.

The design process can be characterizedas a
dialectic between goals and possibilities. Designers
explore parts of the design space as driven by their
current goals and they sharpentheir goals as they learn
what is possible. They decidehow far the overall design
should be completed before designs for particular
subsystemsshould be developed. When designerswork
bottom-up on particular subsystems, they gain
information about what ispossiblein isolatedpartsof the
design space. When designerswork top-down, they
decomposedesigns to reflect subgoals. Sometimes a
reformulation of subgoals yields a simplification of
interfacesbetweensubsystems.

Abstraction levels provide leverage for top-down
processesby enabling a designerto deal with critical
issuesearly and acrossthe breadthof a design. This is a
step towards a principled approach for dealing with
critical considerationsearly in the design processand
deferingothers. For example,in theabstractionlevelsin
this paper computationalissuesare consideredcritical.
Using theselevels dcsigncrscanwork out certain storage
and communication decisions before worrying about
power considerations. At each level, designersmake
decisionsaboutstructuresfor implementingdeviceswith
the desiredbehavior.

Abstractdescriptionshave fewer specificationsthan
completesolutionsand are generatedmorequickly. We
can explore more territory becausewe travel faster.
Familiarity with useful kinds of tradeoffcan guide the
generation process. Following tradeoffs we can move
fi-om onepossibledescriptionto anotherhaving different
costs along some design dimension(e.g., communication
vs. redundantcomputation). We exploremoreeffectively
becausewe know where to look. Another benefit of
designing with abstra,ctionsis early pruning. For this
theremustbe a cost metric that can be appliedto prune
particular descriptions. Using the metric to eliminatea
description, we avoid pursuing the members of the
equivalenceclassof detailedsolutions.

Abstraction levels and constraintshave been used
before in expertsystems,althoughthis may be their first
application in an expertsystem for the design of digital
systems. Multiple levels of abstractionhave been used
for hypothesisgenerationand evaluationin severalexpert
signal interpretation programs5’6 and constraints have
been used to representsubproblem interactions in a
hierarchicalplanningprogram7.

~~ples of Description Levels

This dialectic reflects the absenceof a complete
synthetictheoryof design. Designersmustbegin without
knowing exactly what they want or what is possible. In
each designtask the information gainedin the searchfor
solutions yields an informal theory, which accumulates
with the experiencesof the designers.In our knowledge
engineeringparadigm,we hopeto providea languageby
which designerscan capture this emerging theory in
Palladio.

Figure 1 summarizesfour experimentaldescription
levels that we are developing. Each descriptionlevel has
a set of termsthat are composedto form systemsanda
set of compositionrules that definelegal combinationsof
the terms. The concernsof each level are characterized
by specific classesof bugsthat can be avoidedwhen the
composition rules are followed. Each level has a
behavioral meaningas well as a structural meaningso
that descriptionsare also runnable.

1982 CONFERENCEON ADVANCED
RESEARCH IN VLSI, M.I.T.JANUARY 25,4:00 P.M.

STEFIK et aI. 45

Linked
Module
Abstraction

LMA

Event
Sequencing

Modules
Forks
Joins
Buffers

Token
Conservation

Fan in/out
Rules

Deadlock

Datanot
Ready

Clocked
Registers
andLogic

CRL

Clocking

2 Phase

Stages

RegisterTransfer
TransferFunctions

Connection
of Stages

Mixed Clock
Bugs

linclockcd
Feedback

Clocked
Primitive
Switches

CPS

Digital
Behavior

Pull-Ups
Pull-downs

Pass
Transistors

Connection
of switch
networks

Ratio Rules

Charge
Sharing

Switching
Levels

The layout description level is used in many digital
designsystems. The termsat this level of descriptionare
regions (e.g., rectangles) of metal, polysilicon, and
diffusion in nMOS. The compositionrules at this level
are a set of Lambdarules governingthe sizesandspacing
of the regions. The rulesare intendedto guaranteethat
therewill be no spacingerrorsthat would preventcorrect
operationof a fabricatedsystem,

The following sections give simple examples of
structural descriptionsand rules at each of the more
abstractlevels that we are developing. The first level is
substantiallytechnologyindependent.The next two levels
are specialized for two-phase clocking systems
implementedin nMOS. These levels are intended to
cover importantdesignconcernsand to admitsomeearly
decision making in design that is not prematurely
constraining. Our purposein discussingtheselevels is to
provide concreteexamplesof multiple-level descriptions;
the examplesbelow provide a sampling of our current
thinking.

The Linked Module Abstraction (LMA) Level

The linked module abstraction (LMA) level8 is
concernedwith the sequencingof computationalevents
in a digital system. It describesthe paths along which
data can flow, the sequentialand parallel activation of
computations,and the distribution of registers. Our
formulation provides a simple closedcoveringof ideas
from many sourcesincluding Petri nets9 and the design
of speed-independentmodules10’11.

Ic~rn~.Thebasicelementsof this level are modules.
Modules are computational elements that perform
completeoperations. Oncea modulehasbeenstarted,it
completeswhat it is doing before it can be restarted.
Each module has a numberof directional paths: a Go
anda Done path for synchronizingcommunicationwith
other modules, optional Input and Output data paths,
and an optional Interrupt path. Eachmodulealso hasa

setof inputbuffers correspondingto the input datapaths.
A moduleis controlledby the absorptionandemissionof
tokens on the Go and Done paths. Besides modules
there areseveral kindsof forks and joins that determine
the flow andcontrol of informatioi~,calling buffers that
mediatethe useof sharedmodules,andsubsystemswhich
combinemodulesto form entities that are not modules
(e.g. pipelines).

1982 CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

l)escription Composition Bugs
I~eve1 Concerns Terms Rules Avoided

Layout
Physical
Dimensions

Colored
Rectangles

Lambda
Rules

Fig. I DescriptionLevels for Palladio

Spacing
Errors

InputDataPaths

OutputDataPaths

Fig. 2 A Module

JANUARY 25, 4:00 P.M.

46 STEFIK et al.

CompositionRules. Compositionrules at the LMA
level govern the use of shared structuresand provide
conventions for control of information flow. The
following areexamplesof compositionrules.

Fork Rule. If the output data paths of a module
connectto more than one other module, then its
Done path must be connectedthrough a Fork to
theGo pathsof all of theothermodules.

Join Rule. If the input datapathsof a moduleare
connectedto more than oneothermodule,then its
Go path mustbeconnectedthrougha Join to the
Donepathsof all of the othermodules.

Shared Module Rule. Calls to shared modules
mustbe buffered.

The compositionrulesof the LMA level preventthe use
of data before it is ready (e.g., has not settled) and
preventdeadlock from the use of sharedmodulesin the
digital system.

Examplesfrom the Design of a Stack. A major goal
of the LMA level is to providean expressivelanguagefor
describingdigital architecture.We believethatpracticing
designersdo not sharea common notation and that this
makes it unnecessarilydifficult to understanddesigns.
This section arguesthat the LMA languageis expressive
enough to admit meaningful comparisonsand abstract
enough to provide leverage for exploring design
alternatives.

Stacksare familiar devicesfor providing last-in-first-
out accessto storeddata. There is a pushcommandfor
addinga datumto thetop of a stack, anda pop command

for retrieving it. An error occurs for a push on a full
stack or a pop on an empty stack. There are several
fundamentally different architectures for implementing
this simple device. This section considersfive of them
briefly as architecturalexam~ples.

PointerStack. This versioncorrespondsto the usual
software implementation. Information is stored in an
array of registers. An index register(called the pointer)
containsthe addressof the top of the stack. The push
and pop instructions increment and decrement the
pointer. The following shows the abbreviatedgraphical
notationand linear notation for this versionof the stack:

ModulePointer5lack
inpuo [command:action,datain: iteml
outputs (data0ut: ilemi

--These specify typed input and output lines.
parameters (depth: Integer, item: Type)

--1hew arc construction parameters.
components (pointer: RegisterladdrcssWidth(dcpth)l

R: Se4i. depth. Register(item[]
--ibis specifics subcontponents ofmodules from a library.
- Set(i,n.type) createsa set of n indexablc items ortype type.

action (Case command
(push [Ll~pointer<depth

then lse/ec4key’-pointer I R(key(’-dataln[:
pointer’-pointer+ 111)

--Selectaenvates an indexed elementfrom a set
[pop (ifpoinler>1

interrupt [pointer’- 1}l
end Module PointerStack

then {pointcr~-poinier-1:
cselect k~y—pointer: dataOut’-RIkeyl j>}]]]

Roving Marker Stack.This version usesa mark bit
associatedwith eachstoragecell to indicatethe top of the
stack. In a push or pop instruction,all of thecells receive
the commandbut only the one with the mark bit set
performsthe operationandthen movesthe markerbit by
calling a neighboringcell.

1982 CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

Pointer

~rler~~

I

RlN~

Fig. 3 PointerStack

Fig.4 RovingMarkerStack

JANUARY 25, 4:00 P.M.

STEFIK et al. 47

GangedMarkerStack.This is similar to theprevious
stackexceptthat all of the markerbits are moved,instead
of just the top ones. Architecturally, this stack is a
mixture of the first two. It combinesan arrayof registers
for datastoragewith a shift registerfor markerstorage.

BufferedStagesStack. In the previousversions,the
cell containing the data at the top of the stack varied
according to the number of pushes and pops. An
indicator was used to keep track of which cell was the
currenttop of the stack. In this implementation,thetop
of the stackis alwaysthe leftmostcell and all the data in
the stack move simultaneously. Intermediatestages
buffer the dataas it movesbeencells.

Ripple Stack. Like the bufferedstagesarchitecture,
this versionhas a fixed cell for the top of the stack and
moves the data on push and pop instructions. In
contrast,the controllerfor this architectureneedsonly to
be connectedto the first and last stack cells. A push
command from the controller starts at one end of the
stack;the requiredmovementripples left to right through
the stack. It requires half as many registersas the
previous version of the stack, but requires time
proportionalto thecurrentdepthof thestack.

Module Ii ippleStaclt
inputs [command: Action. dataln: item)
outputs [datuOut: item]
peieame!erc (depth: Integer, item: Type]
constants (moseltight, startMovel oft, pop, store: Action]
components (DC: Se4i, depth.

DalaCcll(item: item
t,Nhr: when 01 then DC[i-t],
RNhr: when i<depth

then DC)i+ 1)]))
action (Case command

(push f l)C(t((moveftight): DC[lRstore, dataln)))
(pop {dataOut’- DCI (Ipop): DC(det,th((startMovel oft))]

inrrrrupt (<& Set(m, depth([DC(i[(store, O)’~ iX.’(m((pop)}) &>)]
end Module Ripple5tack

Module DataCell
inputs [command: action, daialn: item)
outputs (dataOut: mtemn[
parameters (item: Type, I,Nbr: DataCell[item(. RNbr: DataCell[item[l
components (Filted: ititl
action (Case command

[tnoveRight 0 ‘-0

end Module DataCeIl

Architectaral Con~parisons.The stack specifications
in the LMA notation are sufficiently descriptive to
provide a basis for answering questions like the
following:

How muchstorageis neededper elementof capacity?

All of the stacks require at least at least one
register per element. The roving marker stack,
gangedmarkerstack,and ripple stackeach require
one additional bit per element. The buffered
stagesstackrequirestwo registersperelement.

What fanoutof control logic is required?

The ripple stack requirescontrol connectionsonly
to the first and last stack elements. The other
versionsrequireconnectionsto every stackcell.

[Filled = 1
then itNbr(moveftight):
RNbr(store, daialn)})

[startMoveLeft 0 () {i[Ftlled=O
then I Nhr(startMoveLeft)
else {LNhr(moveLeft):Filled’-O)}]

[moveLeft 0 0 {tlFilled=1
times I .Nbr(moveLeft):
LNbm(store, datain))]

(store (datain) ‘- 0 1 - data stored in datalmm]
[pop 0’- (dataOut) (dataOut’-dataln: Filled’-O})J

1982 CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

Left End Ill lNl RightEnd

Fig. 7 Ripple Stack

Fig - S GangedMarkerStack

JANUARY 25,4:00 P.M.

48 STEFIK et al.

What determinesthe minimum delaybetweensuccessive
pushcommands?

The ripple stackhasa delaywhich increasesasthe
stackis filled. This is becausethe pushcommand
must ripple through to the last filled stack cell.
(We havenot worked out the detailsof a version
of a ripple stack in which the first few elements
would not have to wait for the ripple to finish; it
wotild allow successivepushandpop transactions
to cancel without extensiverippling.) The time
complexity of the pointer stack dependson the
time complexity of the adder and of the random
accessmemory.

1.MA notation for distributedcomputing(i.e., active
arcIt iteclures) is analogousto high level programming
languages for sequential and parallel algorithms.
Specification at the LMA level highlights critical
architectural tradeoffs such as communication versus
redundantcomputation,copied structuresversus shared
structures,serial versusparallelcomputation. We believe
that. LMA programsare amenableto a physical theory of
computation, perhaps along the lines of the entropy
model in Mead andConway1 pages365-370. 1’his would
provide an addedabstract framework for space-time-
energy complexity analysisbeyondthatnow emergingfor
VLSI circuits’2.

The Clocked Registers and Logic (CRL) Level

The clocked registers and logic (CRL) level is
concernedwith the composition of combinational and
register logic. We have considered only two-phase
clocking systems. In the future we will develop an
abstractionlevel basedon self-timedsystems.

To implementan LMA descriptionat theCRL level
requires making a number of design decisions. Event
sequencesneed to be mappedinfo event times in ways
that preservetheir partial orderings. Modulesneedto be
divided into stages and clocks need to be assigned.
Encodingsfor symbolsneedto be chosen. In doing this,
the performanceand implementationconstraintsfor the
ultimatedigital system needto be articulatedand taken
into account. We believe that this processis knowledge
intensive requiring expertise about tradeoffs and the
combination of constraints. This knowledgecould be
provided by either a human designeror by an expert
system. One of our goals is to representsubsetsof this
knowledge for Palladio. This paper, however, is
concernedonly with the descriptionlevels.

Terms. The terms at the CRL level are stages.
Stagesare logical deviceshaving both a storagecapacity
and a transferfunction.

CompositionRules. Common design practiceis to
use alternateclocks to load data into successivestages.
This practice is captured by the following two
compositionrules:

All of the data inputs to a stage must be valid
during thehigh intervalof the sameclock.

All of the outputsof a stagemustbe valid during
the high interval of theotherclock.

Figure 8 uses narrow lines to indicatethat data are
valid during the high interval of Phi1, andwide lines for
data valid during the high interval of Phi2. The
composition rules prevent the creation of stageswith
distinct input lines holding data valid on differentclocks
(mixed clock bugs) and also the creation of unclocked
feedbackloops.

Optimization Rules. The CRL composition rules
embody worst caseassumptions. For example, figure 9
shows two versions of a circuit for a memory cell.
Technically, the second version has an unclocked
feedbackviolation. Theoptimizationworks becausethe
~woinvertersreturn the original data. The optimization
requires extra-level information, which is suggestiveof
the idea that global optimizations require passing
informationamongabstractionlevels.

1982CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

Phil Phi2 Phil Phi2

Sequenceof Stages

ClockedFeedbackLoop

Fig. 8 ComposingCR1.Stages

JANUARY 25,4:00P.M.

STEF1K et al. 49

The Clocked Primitive ~

Theconceptsof theCPS level are closely related to
switch-level simulations’3. The CPS level is concerned
with the digital behaviorof a system. This requiresthat
circuits have two reliably distinct logical levels. For
example,near5 volts we havea bandwhich we interpret
as logical 1, and near 0 volts we have a band which we
interpret as logical 0. Intermediatevoltagesin a digital
system have an indeterminateinterpretationat sampling
times. Such intermediate voltages can be caused by
improper intel-connectionof circuit elements, improper
operating regions of devices, and leakage of stored
charge.

implementationof CRL descriptionsat the CPS
level requires choicesabout using steering logic versus
restoring logic, and choices about various regular
structuressuch as PLA’s and multiplexors. Power and
performanceconstraintsof the ultimatecircuit needto be
taken into account. Again, we believe that this process
requiressubstantialknowledgeand we plan to articulate
andrepresenta subsetof this knowledgein Palladio.

1982CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

Terms, The terms at the CPS level
logic, clocking logic, and restoring logic.
elementof steeringlogic is a passtransistor.
terminalsas follows:

We define a steering logic chain (SLC) as series-
connectedpass transistors and define a steered logic
network (St.N) as the parallelcompositionof SLCs. An
SLN canhaveseveraloutputs.

Clocking logic is a pass transistor controlled by a
qualifiedclock inputas shown.

are steering
The basic

We label its
Phi 1 *

Straight-forwardVersion

hi 1 * Ld

~~1~~
Phi2

Phi 1 * Ld

OptimknedVersion

hi 1 * Ld
Clocking
Gate
Omitted

Fig.9 Iwo Versionsof a MemoryCell

Control
Input

DataInput ______[~ ______ SteeredOutput

Fig. 10 PassTransistor

Qualified Clock Input

Data Clocked
Input ______F 1 Output

Clock Qualified
Qualifier [1)~ Clock

Output

Fig. 12 Clocking Logic

JANUARY 25,4:00P.M.

50 STEFIK et aI.

Thebasicelementof restoringlogic is a restoringelement.

A restoringelementis madeof a pull-up element(PUE)
anda pull-downnetwork (PDN). A PDN hasthreekinds
of inputs restored,steered, or clocked. The threekinds of
inputs name the type of logic to which they are
connected. The composition rules in the next section
exploit the typeinformation to help preventerrors.

cq~p~itioi~RriIes.The composition rules at the CPS
level specify how the terms can be connectedand take
into account requirementsfor voltage level restoration
andchargestorage. Forexample:

A control input can only be connectedto a
restoredoutput.

A qualifiedclock input canonly be connectedto a
clock output.

Every SLN outputmust haveexactlyoneon path
fi-om one SLN input during the periodof validity
of dataotltput.

Becauseof our rules,clocking logic mustalwaysseparate
switching logic from restoringlogic. The purposeof this
is to preventchargesharing. Chargesharingoccurswhen
charge is allowed to leak to or from a charge storage
point, as illustratedin figure 14. For example,if PT1 is
on, the charge can spread through PTI into the
capacitanceof points further back. Since the amountof
spreadingcan dependon the patternsof logical signalsto
the pass transistors, failures can seem intermittent
dependingon rarecombinationsof signalsto a circuit.

Another set of composition rules constrain the
layoutsof pull-downsin termsof their impedances:

Element i~pg~nceCq~sti-ajgt

Pull-up element ZPUE = L/W
RestoredPUE ZPUE = L/W
ClockedPDE ZPDE = 2L/W
Steel-edPDE ZPDE = 2L/W
RestoredPDE ZPDE L/W

The impedance of elements connected in series is
computedas the sum of the individual impedances;the
impedanceof elementsconnectedin parallelis computed
as the maximum of the individual impedances. For the
restoring logic to restore voltage levels correctly, the
impedanceratio ZpU/ZPDN mustbe approximatel~i4.

Qp~jmizationRules. According to the ratio rules above,
the impedance for the following network would be
computedas 8. In making this recommendation,the
composition rules implicitly make a worst case
assumption. If we had the information that signalson Al
and A2 were complementaryand BI and B2 were
complementary,then we could compute the impedance
of thenetworkas 6.

1982CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

RestoredInput

SteeredInput

Clockedlnpett

Restored

Output

GNI)

Fug. 13 RestortttgElement

PT
3

PT
2

P’l’
1

Steertng Clocking * Restoring
Logtc Logic Logic

Network I
ChargeStoragePoint

Fig. 14 ChargeSharing

A

A
2

Fig. IS ImpedanceCalculation

JANUARY 25, 4:00P.M.

STEFIK et al. 51

Comparisonwith Other Ap,p_roaches

The philosophy behind our approach differs
significantly from that used in the constructionof silicon
compilers, in a silicon compiler, the desiredbehaviorof
a systemis specified in a languageat a singlelevel. The
compiler converts this behavioral description into a
structural descriptionin a standardformat. This fails to
exploit many possibilitiesin the designspace. in our use
of multiple descriptions, each level specifies both
behavioral and structural intormation. User-chosen
transformationscan be made in the design at many
different levels all the way down. For example,in the
LMA level, one might find optimizationswhich yielded
substantiallydifferent structuresbefore deciding whether
to use two-phasedclocking or self-timedcircuits.

1982 CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

The use of multiple levels for describinghardware
has beentried many times. For example,thereare logic
descriptions and register transfer descriptions14. We
believethat the logic descriptionsare too isolatedandthe
RT descriptions are incomplete and insufficiently
formalized. For example,it is difficult even to find the
clocking specificationsin a typical RT description. The
compositionof partial RT descriptionsdoesnot yield a
test of correctness for clocking. In essence, those
descriptions were not designed for synthesis. They
provide no compositionrules, optimization rules, or bug
characterizations. Our goal is to understand and
formalize descriptive levels whose utility derives from
their coverageof critipal designconcerns.

Part of the culture of expertsystembuilding is the
explicit representationof entities from problem-solving,
such as goals, constraints, tradeoffs, and reasons.
Symbolic expressionsfor theseneed to refer to circuit
descriptions(e.g., modulesor pull-down networks)aspart
of the natural bookkeepingof the design process. Such
symbolic representationsare a prerequisiteto embodying
expertiseabout design in an expertsystem. Figure 17
provides a sketchof how our abstractionlevels will be
usedin Palladio.

q~jnI~e~~trks

The utility of theselevels of descriptionremainsto
be tested. Embeddingthem in Palladio and exercising
them will be our reality test. We expect libraries of
systemdescriptionsat the abstractlevels to be useful for
collabot-atingdesignersby allowing some ibsulationfrom
the inevitable technologychangesthat affect layout cell
descriptions. Our preliminary experimentswith hand
worked exampleshavebeen ~‘eryencouragting. Palladio
will be a forcing function for articulating, representing,
and sharingthe heuristicsandotherknowledgeaboutthe
designprocess.

We thank Chuck Seitz for pointing out to us the
behavior-structure cross connection property of our
multi-level description paradigm. Thanks also to Mary
Hausladen and Tern Doughty for preparing the
illustrations.

Multiple LevelSystem(e.g. I’alladio)

BehavioralSpecification

LMA

StructuralSpecification

CRL

CPS

Layout

Existing Silicon Compilers

Specification
Language

Layout I
Fig. 16 MappingBehaviorto Structure

JANUARY 25,4:00P.M.

52 STEFIK et aI.

References

1. Mead, C., and Conway, L. Introduction to VLSI

Systems.Addison-WesleyPublishingCompany,1980.

2. Feigenbaum,E. A. The art of artificial intelligence:
themes and case studies of knowledge engineering.
Proceedingsofthe NationalComputerConference,AFIPS
1978, pp. 227-240.

3. Stefik, M., Aikins, J., Balzer, R., Benoit, J., Birnbaum,
L., Hayes-Roth,F., Sacerdoti,E.. The organizationof
expertsystems:a tutorial. Artificial Intelligence(in press),
1982.

4. Simon, H. A. TheSciencesofthe Artificial. Cambridge,
Massachusetts:The MIT Press,(secondedition) 1981.

5. Erman,L. D., Hayes-Roth,F., Lesser,V. R., Reddy, D.
R. The Hearsay-Il speech-understandingsystem:
integrating knowledge to resolve uncertainty. ACM
ComputingSurveys12:2,June1980,pp. 213-253.

6. Nii, H. P. and Feigenbaum, E. A. Rule-based
understandingof signals.in Waterman,D.A. andHayes-
Roth, F., Eds., Pattern-Directed Inference Systems.
AcademicPress,New York, 1978,pp. 483-501.

7. Stefik, M. Planningwith constraints(Molgen: part 1).
Artificial Intelligence16:2, May 1981,pp. 111-140.

8. Stefik. M. & Bobrow, D. C. Linked module
abstraction: A methodology for designing the
architectures of digital systems. (working paper),
Knowledge-BasedVLSI Design Group KB-VLS1-81-9,
1981.

9. Peterson,J. L. Petri nets. Computing Surveys,9:3,
September1977, pp. 223-252.

10. Clark, W. A. Macromodular computer systems.
SpringJoint ComputerConference,1967.

11. Keller, R. M. Towardsa theory of universal speed-
independentmodules.IEEE Transactionson Computers,
&23:1, January 1974.

12. Thompson, C. D. Area-time complexity for VLSI.
11th AnnualACM Symposiumon Theory of Computing,
1979, pp. 81-88.

13. Bryant, R. F. A switch-level simulation modef for
integratedcircuits. PhDthesis,Laboratory for Computer
Science, Massachusetts Institute of Technology
MIT/LCS/TR-259 (March 1981).

14. vanCleemput,W. M. Computer-Aided
for Digital Systems. IEEE Catalog No.
(secondedition) 1979.

Design Tools
EHO 132-1

1982CONFERENCE ON ADVANCED
RESEARCH IN VLSI, M.I.T.

IMA

Multiple
Alternatives

Constraints
DesignTask

Agenda

Check
Composition
Rules

Estimate

Propagation
Delay

I’ropose

Design
Alternatives

Fig. 17 Snapshotofa DesignProcessin Palladio

JANUARY 25,4:00 P.M.

