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Although individual use of computers is fairly widespread, in meetings we 
tend to leave them behind. At Xerox PARC, an experimental meeting room 
called the Colab has been created to study computer support of collaborative 
problem solving in face-to-face meetings. The long-term goal is to 
understand how to build computer tools to make meetings more effective. 
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Meetings are used for virtuall:y any intellectual task 
that requires the coordination or agreement of sev- 
eral people. Statistical studies suggest that office 
workers spend as much as SO--TO percent of their 
time in meetings [26]. Paradoxically, even with the 
widespread distribution of computers, most com- 
puter systems in use aid the work of separate indi- 
viduals rather than their work in groups. In meet- 
ings, computers are typically left behind in favor 
of more passive media like chalkboards* and flip 
charts. 

Media influence the course of a meeting because 
they interact strongly with participants resources 
for communication and memory. Chalkboards, for 
example, provide a shared and focused memory for 
a meeting, allowing flexible placement of text and 
figures, which complements our human capabilities 
for manipulating spatial memories. However, space 
is limited and items disappear when that space is 
needed for something else, and rearranging items is 

’ The term cknlkboard in this article refers to any of the wall-mounted erasable 
writing surfaces commonly used in meeting rc~cxns, whether they are white, 
black, or some other color and whether the marks are made with chalk, 
crayon, or ink. We use this term to avoid misunderstandings about the word 
blnckboard, which, among other things, can mean a commercially available 
teleconferencing product, or B programming organization for artificial- 
intelligence systems. We also avoid the term whiteboard, which can mean a 
white metal writing surface on which colored pens are used, or a specific 
graphical database tool developed at Xerox PARC (91. 

0 1987 ACM OOOl-0782/87/0100-0032 75c 

inconvenient when they must be manually redrawn 
and then erased. Handwriting on a chalkboard can 
be illegible. Chalkboards are also unreliable for in- 
formation storage: They are used in rooms shared by 
many groups, and text and figures created in one 
meeting may be erased during the next. If an issue 
requires several meetings, some other means must 
be found to save information in the interim. 

Many of the functions that are awkward or impos- 
sible with chalkboards are implemented easily with 
computers. Window systems and drawing aids, for 
example, provide flexibility for rearranging text and 
figures, and text can be displayed in fonts that are 
crisp and reproducible. File systems make it possible 
to retrieve information generated from previous 
meetings, to revisit old arguments, to show the his- 
tory of a series of arguments, and to resume discus- 
sions. Independent workstations allow meeting 
participants to share views, point to objects under 
discussion, and work on different aspects of a prob- 
lem simultaneously, with the result that participa- 
tion can feel less like being a member of a commit- 
tee, and more like acting as a collaborator at a barn 
raising. 

To explore these ideas, an experimental meeting 
room known as the Colab has been set up at Xerox 
PARC. In the Colab, computers support collaborative 
processes in face-to-face meetings. The Colab is de- 
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signed for small working groups of two to six persons 
using personal computers connected over a local- 
area network (Figure 1). In our design, we have 
drawn on familiar elements from conventional meet- 
ing rooms. The focus of the Colab project is to make 
our own meetings among computer scientists more 
effective and to provide an opportunity for conduct- 
ing more general research on how computer tools 
affect meeting processes.’ 

Much prior research has focused on the use of 
computer and communication technology to support 
teleconferencing [18, 191 and what is known as com- 
puter conferencing [16, 171, which emphasizes the 
use of computers to support asynchronous commu- 
nication and discussion over a computer network. 
The Colab, on the other hand, focuses on problem 
solving in face-to-face meetings-the most common 
kind of meeting in our research group and our start- 
ing point. 

In this article, we describe the meeting tools we 
have built so far as well as the computational under- 
pinnings and language support we have developed 
for creating distributed software. Finally, we present 
some preliminary observations from our first Colab 
meetings and some of the research questions we are 
now pursuing. 

TOOLS FOR COLLABORATION 
An office worker using a computer will choose dif- 
ferent programs to achieve different purposes. Com- 
pleting a single project may involve the use of sev- 
eral different tools: a spreadsheet program, a text 
editor, and a sketching program. In a similar vein, 
activities arise in the course of a meeting that re- 
quire different supporting programs. In this article, 
we use the term meeting fools to refer to programs 
that support group interaction and problem solving 
in meetings, and the term Colab tools to refer to 
meeting tools developed specifically for use in the 
Colab. 

A fundamental requirement for meeting tools is 
that they provide a coordinated interface for all par- 
ticipants. Such a multiuser interface is intended to let 
meeting participants interact with each other easily 
and immediately through a computer medium. 

The term WYSIWYG (what you see is what you 
get) is generally used to describe text editors in 
which text appears the same during editing as it will 
during printing. To describe an important abstrac- 
tion for meeting tools, we have defined an analogous 
term: WYSIWIS (what you see is what I see-pro- 
nounced “whizzy whiz”), which refers to the presen- 

‘Lucy Suchman. the last author of the present article. is an anthropologist for 
whom the C&b represents part of a larger study of face-to-face collaboration 
and its technology. 

The Colab is an experimental meeting room designed for 
typical use by two to six persons. Each person has a work- 
station connected to a personal computer. The computers 
are linked together over a local-area network (ethernet) that 
supports a distributed database. Besides the workstations, 
the room is equipped with a large touch-sensitive screen and 
a stand-up keyboard. 

FIGURE 1. A View of the Colab 

tation of consistent images of shared information to 
all participants. A meeting tool is strictly WYSIWIS if 
all meeting participants see exactly the same thing 
and where the others are pointing. 

WYSIWIS creates the impression that members of 
a group are interacting with shared and tangible ob- 
jects. It extends to a group conversation the kind of 
shared access to information that is experienced by 
two people sitting together over a sketch. WYSIWIS 
is the critical idea that makes possible the sense of 
teamwork illustrated in the barn-raising metaphor. It 
recognizes the importance of being able to see what 
work the other members have done and what work 
is in progress: to “see where their hands are.” With 
meeting tools, this visual cue can be approximated 
by providing pointers to work in progress and by 
graying out objects that are being worked on. 

Although strict WYSIWIS would give everyone the 
same image on their displays, in practice we have 
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found this too limiting and instead use relaxed ver- 
sions of WYSIWIS [32]. For example, it can be useful 
to differentiate between public interactive windows 
that are accessible to the entire group, and private 
windows with limited access (e.g., for personal elec- 
tronic mail). Private windows violate the concept of 
strict WYSIWIS, as does relaxation of pointer dis- 
plays. Although pointing is an efficient way to refer 
to things in conversa.tion, displaying the cursors of 
all active participants is usually too distracting. Mak- 
ing pointers visible only on request becomes an 
effective compromise. Another WYSIWIS relaxation 
permits public windows to appear at different places 
on different screens so that public pointers can be 
translated into window-relative coordinates. This 
sacrifices some ability to refer lto things by screen 
position, but it does permit personalized screen 
layouts. 

Meetings, like other processes, can be more effi- 
cient when several things are done at once. Since 
Colab tools support simultaneous action, a key issue 
in tool design is recognizing and supporting those 
activities that can be decomposed for parallel action. 
For parallel action, a task must be broken up into 
appropriately sized operations that can be executed 
more or less independently by ‘different members of 
the group. If the operations are too small, they will 
be too interdependent, and interference will pre- 
clude any substantial. parallelism. For example, to 
create a shared text, interactions should not be at 
the level of individual keystrokes. On the other 
hand, if operations are needlessly large, opportu- 
nities for synergy are lost. 

The ability to act in parallel on shared objects also 
brings with it potential for conflict. Conflict resolu- 
tion strategies will become necessary in some cases, 
but often we can rely on social constraints. A con- 
flict detection system or “busy signal” graphically 
warns users that someone else is already editing or 
otherwise using an item; a busy item is grayed out 
on all screens. 

Our initial goal was to create tools to support the 
kinds of meetings that our group has, which range 
from the informal to the formal. One of the informal 
meeting tools we have developed, Boardnoter, 
closely imitates the functionality of a chalkboard 
(Figure 2). It is intended for informal meetings that 
rely heavily on inforrnal freestyle sketching. To 
draw with Boardnoter, one uses; the “chalk,” to erase 
one uses the “eraser,” to type one uses the miniature 
“typewriter,” and to point one uses the “pointer.” To 
sketch a square with Boardnoter, one simply “picks 
up the chalk” and makes four strokes. A subsequent 
version of Boardnoter will go beyond the chalkboard 
by adding capabilities for copying, moving, resizing, 

linking with rubber band lines, grouping, and 
smoothing (neatening), and for using and scaling se- 
lections from a set of predrawn images. 

Other Colab tools are based on much more formal 
models of the meeting process. In this article, we 
focus our attention on two such tools: Cognoter, a 
tool for organizing ideas to plan a presentation; and 
Argnoter, a tool for considering and evaluating alter- 
nate proposals. Although both tools are intended to 
bring appropriate computational support to struc- 
tured meeting processes, the contrast between the 
two processes will highlight the range of opportu- 
nities that exist for applying computer technology in 
this medium. 

ORGANIZING IDEAS FOR A PRESENTATION 
USING COGNOTER 
Cognoter3 is a Colab tool used to prepare presenta- 
tions collectively. Its output is an annotated outline 
of ideas and associated text. We have used Cognoter 
to prepare outlines for talks and papers, including 
this one. In some ways, it is similar to the Think- 
Tank, Freestyle [25], and NoteCards [34] programs. 
All are used to organize ideas, but Cognoter is 
unique in that it is intended for collective use by a 
group of people. 

The Cognoter process imitates a meeting style for 
collaborative writing that we have used at Xerox 
PARC without computational support for several 
years. Usually, we begin with a clear slate: The ideas 
are in our heads and nothing is written down. The 
problem at this point is how to get started: It is not 
very helpful to begin by asking, “Well, we need an 
outline. What should we put in I.A.l?” Rather, plan- 
ning a presentation requires that the group decide 
what the ideas are, which ideas go together, which 
ideas come first, the order of presentation, and, 
finally, which ideas warrant elimination. 

Cognoter organizes a meeting into three distinct 
phases-brainstorming, organizing, and evaluation- 
each of which emphasizes a different set of activi- 
ties. As the group advances through the respective 
phases, the set of possible actions is expanded: For 
instance, brainstorming, which is emphasized in the 
first phase, is still possible in the last phase. Groups 
that find the rigid enforcement of phases too pre- 
scriptive can skip immediately to the last phase 
where all the operations are possible. Our intention 
is to experiment with methods for encouraging par- 
ticular meeting processes and styles of behavior 
without making the tools too inflexible and 
prescriptive. 

‘The name Cognoter comet from both cog-noter [a cognition noter) or 
co-gno-ter (knowing together]. 
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Note: The actual screen colors for the current version of Colab are black on white; 
in Figures 2-6, the color green has been added for editorial emphasis-Ed. 

The Boardnoter meeting tool in the Colab is operational but clicking the mouse or pen over the chalk icon; to erase one 
still in the early stages of development. A key feature is that picks up the eraser; to point one picks up the pointer. Since 
it provides a large area for freestyle sketching. Below the more than one boardful of information may be needed in the 
writing area is a “chalk tray” containing several implements: course of a meeting, the “stampsheet” of shrunken stamp- 
a piece of chalk, an eraser, a miniature typewriter, and a sized boards at the bottom makes it possible to obtain a 
pointer. To draw on the board, one picks up the chalk by fresh board or to switch back to a board created earlier. 

FIGURE 2. Screen Image of Boardnoter 

Brainstorming 
Since the brainstorming phase involves the initial 
generation of ideas used in the presentation, it is 
important to encourage synergy in group interac- 
tions and to not interfere with or inhibit the flow of 
ideas [lo]. In Cognoter, therefore, ideas are not eval- 
uated or eliminated in this phase, and little attention 
is given to their organization (see Figure 3, next 
page). Instead, there is one basic operation: A partici- 
pant selects a free space in a public window and 
types in a catchword or catchphrase characterizing 
an idea. Participants may act simultaneously, adding 
idea items and supporting text at any time, but may 
not delete an item (even their own), although they 
can move them around. Supporting text is used to 
clarify the meaning of an item and to establish ter- 
minology for the presentation. Once entered, it can 
be publicly displayed or further edited by any par- 
ticipant. As the window fills up to encompass what 

appears to be a jumble of ideas on different levels, 
begging for organization, pressure to move on to the 
next phase begins to mount. 

Organizing 
In the organizing phase, the group attempts to estab- 
lish an order for the ideas generated in the brain- 
storming phase. With Cognoter, the order of ideas 
can be established incrementally by using two basic 
operations: linking ideas into presentation order and 
grouping ideas into subgroups. In addition, the item- 
moving operation allows these operations to be dis- 
cussed prior to actually executing them by moving 
items near each other before clustering or linking. 

The basic operation is to simply assert that one 
idea should come before another. Linking is usually 
accompanied by some verbal discussion: For exam- 
ple, a participant may say, “I’m putting Colab tools 
before open issues because you need to understand 
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In the brainstorming phase, participants may add ideas and 
supporting text. Criticism or deletion of ideas is discouraged. 
ideas are entered into the window by clicking the mouse in 
the background of the window and typing in a short title or 
phrase that stands for the idea. Text explaining the ideas in 
more detail is entered by selecting the item with a mouse 
and then using a text editor in a separate window. 

FIGURE 3. Brainstorming with Cognoter 

what we have done before you can understand what 
comes next.” The ordering is indicated visually by 
directed links between items as shown in Figure 4. 
The meaning of the links is transitive, meaning that, 
if X comes before Y, and Y comes before Z, then X 
must come before Z. The links are used collectively 
to determine a complete order of presentation. Items 
can also be clustered into groups and moved to their 
own windows as shown in Figure 5. When a group is 
formed, a bracketed item standing for the whole 
group is displayed in the window; the grouped items 
themselves are displayed in an associated window. 
Links are distributive across groups; a link to or from 
a bracketed item is treated like a link to or from the 
whole group. By these transitive and distributive op- 
erations, a small nurnber of explicit links can highly 
constrain the total order of ideas. 

Evaluation 
The third phase, evaluation, determines the final 
form of the presentation. Participants review the 

overall structure to reorganize ideas, fill in missing 
details, and eliminate peripheral and irrelevant 
ideas. 

In Cognoter, the various decision-making pro- 
cesses are separate and distinct operations. Delaying 
deletion until the last phase, for example, provides a 
more visible basis for argument in the sense that an 
argument for deleting an idea because it is not rele- 
vant may be more convincing when that idea is not 
visibly linked with any others; or arguing the unim- 
portance of an idea may be more convincing when 
the competing ideas are available for comparison. In 
the same sense, an argument that there is an excess 
of material may be more compelling when all the 
material can be seen, or a charge that an idea is 
vague may be more convincing in the presence of 
other ideas that are more fully substantiated. 

Delaying deletion also has some beneficial effects 
on group dynamics: Deleting an idea during the 
brainstorming phase could easily be interpreted as 
criticism and might either inhibit certain partici- 
pants or provoke tangential argument, whereas argu- 
ing that an idea does not fit or is insubstantial in the 

Chalkboards - 

In Cognoter, the order of ideas is established incrementally. 
The basic operation is determining that one idea should 
come before another, which is indicated visually by directed 
links between items. The meaning is transitive, meaning that, 
if X comes before Y, and Y comes before Z, then X must 
come before Z. Collectively, the links determine the order of 
idea presentation. Links are added or removed by clicking 
the mouse on the desired items. Items will usually have one 
or more links to other items. 

FIGURE 4. Establishing the Order of Ideas 
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Items can be clustered into groups representing ideas that 
will be worked on together. Each group has an associated 
window for displaying its items. A group is named when it is 

formed, and that name appears as 
original window. 

FIGURE 5. Grouping Items 

evaluation phase may have the beneficial effect of 
prodding other group members to clarify or extend 
the idea. 

Other operations besides deletion are also appro- 
priately delayed until the evaluation phase. For ex- 
ample, arguing that an idea is misplaced is more 
compelling when alternate places to put it are visi- 
ble; this is a good time to consider the reordering of 
ideas. Since the linking operation that takes place in 
the organizing phase is usually based on considera- 
tions local to two ideas, seeing the entire presenta- 
tion, with most of the links in place, allows the user 
to appraise the overall structure and consider more 
global concerns, such as balance. 

Cognoter provides a systematic process for an- 
swering the question, “What should we put in 
I.A.l?” Starting points for a presentation can be iden- 
tified systematically: These are the items with no 
incoming links. Cognoter then helps in the final 
ordering of ideas by preparing an outline and indi- 
cating which ideas are ordered arbitrarily. By tra- 
versing the item graph, an outline is generated, with 
or without the attached text. 

ThinkTank. Beyond the most obvious difference, 
which is that Cognoter is designed for simultaneous 
use by multiple participants (although the process it 
embodies is also useful for single users), Cognoter 
also divides the thinking process into smaller and 
different kinds of steps that are incremental and effi- 
cient. In ThinkTank, ideas are always organized in 
an outline-there is no other place to put them- 
whereas Cognoter separates the tasks of idea genera- 
tion and ordering. Cognoter also provides for incre- 
mental ordering through a link-forming operation 
whereby a partial ordering of ideas is refined step- 
wise toward a complete ordering. Transitivity and 
grouping operations make it possible to organize the 
ideas efficiently with a small number of links. 

Some important parts of the presentation planning 
process are not explicit in Cognoter: For example, 
Cognoter does not inquire as to the audience, the 
appropriate technical level, the goals of the paper, or 
arguments for deleting or ordering ideas. Modifica- 
tions to Cognoter could make such questions ex- 
plicit, but they are now outside the scope of the 
current tool. 

In many respects, Cognoter supports a process that Cognoter is the first useful Colab tool developed 
is quite different from that underlying tools like and is still evolving. We are now experimenting 

a bracketed item in the 
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with various relaxations of the WYSIWIS concept. In 
the current version of Cognoter, for example, win- 
dows showing links and items are public, but outline 
and item editing windows are private. The absence 
of visual cues indicating whic:h are public and 
which private can be confusing for the first-time 
users. With several months experience using Cogno- 
ter’s multiuser interface, we are actively exploring 
trade-offs in the design of the next generation of the 
tool [32]. 

AN ARGUMENTATION SPR.EADSHEET 
FOR PROPOSALS [ARGNOTER) 
Argnoter,4 the Colab tool being developed for pre- 
senting and evaluating proposals, is now in the early 
stages of design and implementation and is pre- 
sented here chiefly as a contrast to Cognoter. Imple- 
menting and experimenting with Argnoter are 
now major focuses of the Colab project. As with 
Cognoter, the basic meeting process supported by 
Argnoter has been used by our group without com- 
putational aid for several years. 

Proposal meetings start when one or more mem- 
bers of the group have a proposal for something to be 
done, typically a design for a -program or a plan for a 
course of research. The goal of the meeting then 
becomes to pick the best proposal. The proposals are 
at least partially worked out before the meeting, as 
opposed to Cognoter meetings, which begin with a 
blank slate. Since Argnoter participants have already 
invested some energy in the crreation of these pro- 
posals, the meetings have a greater potential for dis- 
pute and disagreement. Discovering, understanding, 
and evaluating disagreement are therefore essential 
parts of informed decision making in these meetings. 

In developing a design-which is essentially a 
dialectic between goals and possibilities-designers 
usually begin without knowing exactly what is 
wanted or what is possible. They explore parts of the 
design space as driven by their current goals, and 
sharpen their goals as they learn what is possible. In 
collaborative design tasks, this interaction and ten- 
sion between goals and alternatives must play itself 
out in the communications arnong collaborators. At 
the beginning, design goals are not necessarily 
shared; the elaboration of a common set of goals is 
part of the collaborative process and includes the 
incremental development and selection of design 
alternatives. 

The intuition guiding the A.rgnoter process is the 
recognition that much of the Idispute and misunder- 
standing that arise in meetings about design propos- 
als are due to three major causes: owned positions, 
that is, personal attachment to certain positions; un- 

‘The name Arpokv is intended to suggest quntenf rmfer, that is. a tool IO 
help organize and evaluate arguments. 

stated assumptions; and unstated criteria. Hence, a ma- 
jor theme of Argnoter design is that alternatives be 
made explicit: Proposals themselves are explicit, as 
are assumptions and evaluation criteria. 

In essence, the Argnoter meeting comprises three 
distinct phases-proposing, arguing, and evaluating- 
which in some respects are similar to the respec- 
tive phases in Cognoter, but different enough to 
warrant description. 

Proposing 
In the proposal phase, the proposals are stated ex- 
plicitly: Each proposal is given a short text descrip- 
tion, and perhaps a sketch, and is named according 
to its features or functions. In Argnoter, a proposal 
will be created in, and displayed by, a set of con- 
nected windows called proposal “forms,” which can 
be either private or public. Public proposal forms are 
WYSIWIS, whereas a private form appears only on 
the machine of the participant who controls it. Pri- 
vate forms ensure that every participant can view or 
create a new proposal without having to share its 
use. Other windows will allow viewing any of the 
proposals under consideration in the meeting. New 
proposals are created by modifying an existing one 
or combining features from two or more different 
ones. A new proposal automatically inherits text, 
sketches, and statements from its parent proposals. 

Even with the high-resolution, wide-format dis- 
plays used in the Colab, space for windows is lim- 
ited: A proposal displayed with its text, sketch, and 
arguments occupies about one-fourth of the screen. 
The default configuration allows enough viewing 
space for two public proposal forms, one private 
form, and a variety of other forms. However, displays 
of the kind available on most personal computers 
would be inadequate for viewing even a single pro- 
posal and would not work well for most Colab tools. 

Arguing 
The next phase consists of presenting reasons for 
choosing or not choosing individual proposals. Rea- 
sons must be written down. On the chalkboard, the 
reasons are written as statements underneath the 
respective proposals. Each statement is identified as 
either pro or con and consists of a short text descrip- 
tion like “very expensive” or “can’t be done in less 
than six months.” The structure of Argnoter encour- 
ages participants to write pro and con statements 
about all proposals, not just pro statements for the 
ones they are in favor of and con statements for the 
rest. Since the pro and con statements are there for 
all to see and contemplate, participants tend to take 
the time to formulate them carefully. Insubstantial 
statements like “I just don’t like proposal X” will 
carry less weight than ones that are specific and 
focused. 
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This shared use of a chalkboard to present propos- 
als and arguments has been used habitually and suc- 
cessfully by other groups that we know about. The 
following anecdote about another laboratory illus- 
trates this: 

On any given morning at the Laboratory of Molecular 
Biology in Cambridge, England, the blackboard of 
Francis Crick or Sidney Brenner will commonly be 
found covered with logical trees. On the top line will be 
the hot new result just up from the laboratory or just in 
by letter or rumor. On the next line will be two or three 
alternative explanations, or a little list of “what he did 
wrong”. Underneath will be a series of suggested experi- 
ments or controls that can reduce the number of possi- 
bilities. And so on. The tree grows during the day as one 
man or another comes in and argues about why one of 
the experiments wouldn’t work, or how it should be 
changed. [27] 

For comparative purposes, it is possible in the ar- 
gument phase to categorize pro or con statements 
across proposals in terms of categories like compati- 
bility, cost, development time, efficiency, feasibility, 
simplicity, and utility. With computational support, 
it is possible to automatically create auxiliary tables 
that compare proposals on the basis of these cate- 
gories. 

In the argument stage, participants can add state- 
ments or modify existing proposals. This tends to 
foster a synergy among ideas, joint contributions to 
proposals and reasons, and the systematic develop- 
ment of parallel reasoning across proposals. Accord- 
ing to Platt 1271, this kind of group participation in 
the articulation of multiple proposals and arguments 
often leads to a very productive decision-making 
process: 

The conflict and exclusion of alternatives that is neces- 
sary for sharp inductive inference has been all too often 
a conflict between men, each with his single Ruling The- 
ory. But whenever each man begins to have multiple 
working hypotheses, it becomes purely a conflict be- 
tween ideas. . . . In fact, when there are multiple hy- 
potheses which are not anyone’s “personal property” and 
when there are crucial experiments to test them, the 
daily life in the laboratory takes on an interest and ex- 
citement it never had, and the students can hardly wait 
to get to work to see how the detective story will come 
out. 

The articulation of multiple proposals and their ar- 
guments leads naturally into the next phase-evalu- 
ation-in the sense that proposals are being evalu- 
ated indirectly by analyzing the reasons behind them. 
Moreover, this articulation encourages a style of de- 
cision making that separates arguments about evalu- 
ation criteria from arguments about the proposals 
themselves. 

Evaluating 
First, the evaluation considers the assumptions be- 
hind individual arguments. Assumptions in Argnoter 
are expressed as statements about statements: For 
example, the statement “this assumes that labor 
costs can be ignored” could refer to the statement 
“this proposal is inexpensive.” Whereas historically 
we might have written such assumptions on the 
chalkboard next to the corresponding arguments, 
with Argnoter, we will ultimately provide facilities 
for viewing the structure of arguments in terms of 
the connections between these statements. 

Meeting participants often disagree about the va- 
lidity of statements: One person might believe that 
“sixteen million bit memory chips will be readily 
available in six months” and another may not. In 
Argnoter, we will try to model these differences 
with explicit “belief sets,” a belief set being a map- 
ping of a set of statements into valid (believed) or 
invalid (not believed) categories. This kind of model- 
ing is something that cannot effectively be done on 
chalkboards. 

The act of making belief sets explicit enables 
Argnoter to act as a kind of argumentation spreadsheet 
where a proposal is viewed and evaluated in rela- 
tion to a specified set of beliefs. The proposal display 
is generated by stepping through the arguments 
about the proposal, looking up the assumptions, 
and then displaying those arguments that are sup- 
ported in the specified belief set. Multiple belief sets 
may coexist, and any participant is able to create 
(or specialize) belief sets. The belief sets are intended 
to characterize different generic points of view 
(e.g., liberal versus conservative, marketing versus 
development). 

Just as a numerical spreadsheet program provides 
a way of exploring entailments of hypothetical nu- 
merical relationships, an argumentation spreadsheet 
like Argnoter provides a way of exploring belief en- 
tailments. A numerical spreadsheet program pro- 
vides no in-depth understanding of the meanings of 
interest rate, tax rate, or monthly income, but it 
does compute the necessary sums and display 
changes in the derived values when the input values 
are changed. In the same way, Argnoter need not 
understand the meanings of design proposals: It need 
only differentiate between proposals, arguments, as- 
sumptions, and belief sets, and compute the relevant 
logical support relationships. One should be able to 
change a belief assignment and then immediately 
see the relevant changes in the proposal display. Dif- 
ferences in point of view can also be highlighted 
(e.g., by displaying a proposal under different belief 
sets). Other evaluations, like sensitivity analyses, 
can be done using the same information. 

Next, evaluation criteria are selected and ranked. 
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stamp describing the author and time of the change. 
Every request to change data broadcasts several 
things: the new data, its stamp, and the stamp of the 
previous version of the data on the originating ma- 
chine. When a machine receives a message request- 
ing a change, it first checks whether the previous 
stamp in the request is the same as the stamp in its 
database. If they are different, a “dependency con- 
flict” is signaled. The conflict is then resolved by a 
process that involves human intervention (at least to 
temporarily suspend activity), followed by propaga- 
tion of the resolved values for data or the creation of 
multiple versions of the data. 

The advantage of the dependency-detection ap- 
proach is responsiveness. Changes to data do not 
first require serialization or the delay of obtaining a 
lock. The system assumes thLat a change can always 
be made, but it may have to fix things later if a 
conflict is detected. 

Like the cooperative model, the dependency- 
detection model contains inherent race conditions, 
but it is able to detect them after the fact. If two 
participants change data at the same time, at least 
one of the machines will detect a dependency con- 
flict as described above. However, it is possible to get 
“false alarms” if messages about changes to data 
from different sources arrive out of order; a depen- 
dency conflict would then be incorrectly signaled. 
Similarly, if two participants made a series of nearly 
simultaneous changes to a datum, multiple false 
alarms might be signaled. The ability to distinguish 
false alarms can be enhanced by keeping a longer 
history of changes. We do not yet have enough expe- 
rience to decide whether the dependency-detection 
model (which is closely related to an approach 
called certification [2]) is necessary or practical. 

Roving-Locks Model. The roving-locks model tries to 
reduce the delay in obtaining locks that is incurred 
with the centralized-lock model by distributing the 
lock-granting processes along with lock ownership. 
This is different than simply locating locks with the 
data; the intention. here is to distribute control over 
specific data items to their last user, leading to a sort 
of “working set” [8] for locks. In this scenario, a 
participant’s machine would tend to acquire the set 
of locks for that subset of the database on which it is 
actively working. Most lock requests would require 
no communication with other machines. After the 
first access, delay in getting a lock would be signifi- 
cant only in those cases where the lock is on a re- 
mote machine, that is, when two or more partici- 
pants are actually competing for the same parts of 
the database. 

Even if the working-set model is valid for locks, 
we suspect that the success of this model may de- 

pend on its having a preemptive scheduler to bound 
the delays in obtaining remote locks. More experi- 
ence with the model is needed to determine 
whether roving locks is a practical solution. 

Language Support 
Colab software is built on Xerox Lisp Machines con- 
nected by an Ethernet [23]. The software is written 
in Loops 143, an object-oriented extension of Lisp 
[28] that resembles Smalltalk- [l4] in that pro- 
grams are organized in terms of objects that can hold 
data. Computation proceeds as objects send mes- 
sages to each other. Loops supports the notion of 
permanent objects whose identity is specified by a 
unique identifier that is guaranteed to be unique 
across machines. Versions of these permanent ob- 
jects can exist on several machines simultaneously. 
An association is a set of representations on multiple 
machines that stand for the same object; the individ- 
ual representations are called associates and have the 
same unique identifier. 

In the Colab, we use the term conversation to refer 
to the combination of a set of machines, Colab tools, 
and participants working together to solve a prob- 
lem. When a new participant is added to a conversa- 
tion, all participants find out about the newcomer, 
and the newcomer finds out about the other partici- 
pants; the newcomer’s machine gets copies of the 
object that represent the database. 

In a conversation, communication is implemented 
by a combination of system facilities and program- 
ming abstractions and is supported over the Ethernet 
by several layers of protocols. Our implementation 
rests on a protocol for remote procedure calls [3]. On 
top of this, we have added a mechanism for sending 
messages to an object on a remote machine, and 
another for sending messages to all the associates of 
an object in a conversation. 

Colab tools communicate via a programming ab- 
straction that we call broadcast methods. Broadcast 
methods extend the object-oriented notion of meth- 
ods from a single machine to multiple machines in a 
conversation. When a method is annotated as being 
a broadcast method, invoking it on one machine 
means that it will be run on all machines in the 
conversation, For example, if Move is a broadcast 
method in a Cognoter window for moving an item in 
the window, and item37 receives a Move message on 
one of the machines, then item37’s associates on all 
the other machines will also receive the same mes- 
sage. All the details of queueing and transmitting the 
message to the relevant machines are handled auto- 
matically without further specification by the pro- 
grammer. 

Broadcast methods provide a simple abstraction 
for organizing communication, and a mechanism for 
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efficient communication about changes to the data- messages between machines. The viewer shows 
base. Colab tools assume that the software is loaded when messages are queued, sent, and received, as 
on the machines of all participants. In most cases, well as the identity of the other machines. Using the 
the bandwidth of network communication can be viewer, we can often detect cases of unnecessary or 
reduced by sending instructions rather than data. incorrect message sending. 

Ideally, one should be able to take a program writ- 
ten for a single machine and change it into a distrib- 
uted program by annotating some of the methods so 
that they will broadcast. In practice, this has worked 
out rather well. To support this facility, we have 
found it useful to establish a discipline for deciding 
which methods should be broadcast. 

Methods are categorized roughly into three differ- 

We have also developed tools for propagating pro- 
gram changes between machines. In debugging ses- 
sions, we have found it useful to make program 
changes on one machine and then to broadcast the 
changes to the other machines. 

ent sets that are treated differently with respect to 
conversion to broadcast methods: user input, semantic 
actions, and display actions. User-input methods con- 
trol user interaction that specifies a change to be 
made to the database; they are run at the user’s 
request (e.g., caused by mouse action) and are used 
to determine the nature and scope of a change. User- 
input methods are not made into broadcast methods 
because only the user initiating the change wants to 
engage in the interaction. The actual changes to the 
database are made by the semantic-action methods, 
which are broadcast so that the changes to the data- 
base will propagate to all machines containing the 
meeting database. Display-action methods update 
the displays and are not broadcast because the dis- 
play is updated as a side effect of changing the data- 
base. If the image in more than one window depends 
on the value of a datum, then multiple display- 
action methods should be triggered by a single 
semantic-action method. 

PRELIMINARY OBSERVATIONS 
AND RESEARCH QUESTIONS 
If computers are to provide more effective meeting 
tools, we need a commensurately more adequate un- 
derstanding of meeting processes. Although meetings 
are something that most of us know well, they come 
under the heading of those everyday activities that, 
because we know them so well, remain largely 
unexamined. Designing the Colab has required that 
we look again at the organization of meetings and 
meeting technology; at the same time, the Colab cur- 
rently in place provides an experimental setting for 
pursuing these lines of research. In this section we 
present our preliminary observations about the 
Colab and describe the research issues that have 
been raised by these observations. 

In some cases, the appropriate partitioning of 
methods into these categories can be subtle. For ex- 
ample, windows for displaying data can be parame- 
terized (as in the case of proposal forms for Argno- 
ter), thereby altering their display according to dis- 
play parameters that specify belief sets or rankings 
of evaluation criteria. Maintaining WYSIWIS for 
these windows requires that changes to these pa- 
rameters be considered part of the database and be 
broadcast as semantic actions; the subtlety arises to 
the extent that “display parameters” might be con- 
fused with display-action methods, which are not 
broadcast. Furthermore, when semantic actions can 
be derived from more primitive ones, only the prim- 
itive ones need be broadcast. 

In their current form, Colab tools reflect our expe- 
rience of, and ideas about, our own work processes, 
in particular those aimed at collaborative writing 
and argumentation. Our research strategy is to draw 
upon familiar practices first, and then to locate those 
practices within a wider range of face-to-face meet- 
ings in different settings and with different partici- 
pants. The Colab was used early on to produce the 
present article, and even though the Colab was not 
yet fitted with audiovisual recording equipment or 
documenting software, these early sessions did pro- 
vide a set of preliminary observations about the rela- 
tionship between Cognoter tools and the writing 
process, and their relation to the process of collabo- 
rative writing. 

The Structure of the Writing Process 
The current Cognoter design reflects a set of conjec- 
tures regarding the writing process, from the early 
stage of idea generation and development through 
the generation of a path or outline for a final presen- 
tation. The actual use of Cognoter revealed not only 
the points of fit between design and process, but 
some subtle disjunctures as well. 

Support for Debugging 
To make the debugging process more manageable, 
we have created tools for tracing and intercepting 
messages on the network. To monitor message trans- 
mission between machines, we use a conversation 
viewer. It works for all Colab tools, letting us moni- 
tor the broadcast queues and processes used to send 

For example, the design premise for Cognoter was 
that the brainstorming window be an unstructured 
repository for ideas. The availability of a public win- 
dow, into which people could easily and sponta- 
neously enter new text, would allow the group to 
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put a large number of ideas “Ionto the table” with- 
out a great deal of discussion or negotiation. Ideally, 
this initial brainstorming phase is followed by an 
organizing phase, in which group members elaborate 
the relationships between ideas and debate their co- 
gency. However, in early sessions with Cognoter, we 
found that even before moving on to the organizing 
phase, members began using spatial grouping in the 
brainstorming window to display relationships be- 
tween ideas. Even after items were explicitly linked, 
the spatial cues helped to display the relationships 
between items; these spatial cues, in turn, were 
important to the elaboration of meaning. 

The process of organizing and evaluation made it 
easier to see whether or not the set of ideas gener- 
ated during brainstorming was complete. Although 
our initial design assumption was that use of the 
outlining tool would follow completion of the evalu- 
ation phase, in practice, participants found the out- 
lining tool useful for displaying intermediate states 
of the emerging structure as well. These observa- 
tions suggest slightly different “joints” in the process 
than we had originally assumed. In future sessions, 
we will look carefully at the natural organization of 
the group writing process, the way people use the 
available tools to see the developing structure of 
their collective argument, and the relationship be- 
tween the initial design assumptions and the actual 
uses people make of the tools. 

Maintaining the Collaboration 
The Colab’s starting premise was that serial access to 
problem-solving technology obstructs the kind of 
equal participation that ideally characterizes collab- 
oration, particularly for an activity like writing, 
where collaboration seems ideally not to involve any 
predetermined or fixed division of labor among par- 
ticipants. The multiuser interface was designed to 
overcome this obstacle by letting participants act 
simultaneously, write independently, and enter new 
text into a shared database-virtually at the same 
time. By equalizing access of all participants to dis- 
plays and shared data, the Colab’s interface en- 
hances flexibility as to roles and discourages control 
over the activity by any one participant. 

However, our early sessions demonstrated that the 
constraints imposed by current technologies are not 
just a limitation on collaboration but in some ways a 
resource as well. In particular, the fact that a writing 
technology allows only one person to enter text at a 
time enforces a kind of shared. focus (i.e., a focus on 
that person’s actions) that maintains a common con- 
text for the group. Where only one person at a time 
has access to the writing technology, roles are in a 
very real sense visible at a glance; moreover, what is 
being done to the text is transparent in the actions of 

whomever controls the writing technology. Many of 
the accompanying practices-rising to go to the 
chalkboard, taking over the keyboard-can also be 
viewed as resources for the participants in the sense 
of seeing what is going on and providing a basis for 
the smooth exchange of roles. The possibility of in- 
dependent writing activity and simultaneous entry 
of new text brings new demands on participants to 
stay informed about what others are doing. Relaxing 
the requirements on turn taking by allowing parallel 
actions necessitates alternative ways of accomplish- 
ing what the turn-taking system accomplishes: 
namely, an orderly transition from one participant to 
the next, and an incremental, sequentially coherent 
development of the joint activity. 

In early Cognoter meetings, the work of maintain- 
ing a shared focus was evident in the ebb and flow 
of meeting activity. During the ordering phase par- 
ticularly, where ideas are elaborated, participants 
tended to interact verbally for a few minutes, ex- 
plaining immediate goals and making short-term 
plans of action, after which the group settled into 
their “assignments,” typing intently for a while. 
After a few minutes of parallel editing, people would 
lose track of what the others were doing and, there- 
fore, of what to do next. The group would then stop 
interacting with the system and again discuss where 
they were and what they should do. These transi- 
tions between parallel and convergent activity some- 
times required negotiation. In particular, individuals 
engaged in different activities might not arrive at 
transition places simultaneously and might not be 
equally interruptable at any given time. The early 
Cognoter sessions encompassed several such cycles 
of regrouping, summarization, joint planning, and 
then parallel action. 

Along with personal interaction, shared focus is 
achieved by means of reference to common objects. 
Cognoter’s goal, as with a chalkboard, is to enable 
participants to refer to common objects through var- 
ious kinds of efficient reference such as deixisS and 
pointing. Although the WYSIWIS idealization recog- 
nizes that efficient reference depends on a common 
view of the work at hand, a distinctive problem 
arises in computer-based environments in that the 
boundary between logical and physical objects is 
blurred. This represents a tremendous advantage, on 
one level, in that relaxations of WYSIWIS allow par- 
ticipants to tailor their individual display of the 
shared view to their own specifications. However, it 
also means that, although people may be referring to 
the “same” piece of text, the text may be in an en- 
tirely different location on their respective displays. 
With the use of windows that can be moved, re- 

5Deixis means referring to something either verbally (e.g., “the gray house 
across the street”) or by pointing. 
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shaped, and scrolled, conventions are required to 
avoid situations in which one person tries to see 
some text at the top of a long passage while another 
tries to see text at the bottom, or one member of the 
group puts up a very large public window, obscuring 
everyone else’s view (situations that we have infor- 
mally dubbed “Scroll Wars” and “Window Wars”). 

As well as confirming the usefulness of a single 
view of the public record, our early experience with 
Cognoter identified a more subtle element of shared 
focus. With a single display device (e.g., a chalk- 
board or workstation), it is common for one person 
to be assigned the task of actually entering new text 
into the record; typically, not only the new text, but 
the writing activity itself, is visible to the other par- 
ticipants. In the current design of Cognoter, how- 
ever, the actual editing is done in private windows, 
with only the finished text broadcast to copartici- 
pants. This design decision, while encouraging paral- 
lel activity, poses some interesting new problems for 
the collaborative process. In particular, participants 
in the early sessions expressed frustration at not 
being able to see what the others were doing; specifi- 
cally, at not being able to watch when others were 
engaged in writing. To an important degree, it seems 
that participants need access not only to the product 
of each others’ writing, but to the writing process 
itself. The unanticipated usefulness of the video 
switch, which allows one to switch between dis- 
plays6 underscores the importance of a shared view 
for maintaining the joint focus. User frustrations in 
this regard reopen the question as to the ideal grain 
size at which individual and group transactions take 
place, and the relationship between private and 
public views. 

In general, these early observations were con- 
firmed by a small set of controlled experiments run 
at UC Berkeley. In the trials, several pairs of student 
collaborators unfamiliar with the Colab used either 
Cognoter or a chalkboard to plan article outlines. 
The outcomes showed that the interface of Cognoter 
is complicated enough to require practice to be used 
effectively [13]. More extensive trials with larger 
groups will await the completion of video recording 
and meeting analysis tools that are now being 
created. 

Research Questions 
Our guiding question has been, What are the pro- 
cesses of collaboration for which the computer is an 
appropriate tool, and what particular Colab tools 
could be designed to support these processes? As a 
first approximation, Cognoter and Argnoter have as- 

‘The Colab video switch allows the content of any screen to be directed to 
another screen: it was originally designed to aid in debugging across multiple 
machines. 

sumed two contrasting processes of collaborative 
writing and argumentation, both drawn from our 
own experience. Cognoter takes a joint presentation 
as its object and encourages consensus by supporting 
a single viewpoint, whereas Argnoter encourages 
competing proposals and delayed consensus by al- 
lowing the display and comparison of multiple 
views. 

Having identified the collaborative processes and 
refined the associated tools, we need next to ques- 
tion the generality of our assumptions. To what ex- 
tent do our work practices compare and contrast 
with other settings and other participants? Does a 
tool, by reifying a process and making it explicit, 
thereby also make it portable across groups? Or do 
we need a set of tools that can be customized to 
different users in different settings? Under what 
circumstances are explicit structures desirable, and 
under what circumstances do we want to minimize 
the amount of structure we build into our tools? 
These questions and others will be explored as we 
extend the design and experiment with its use. 

RELATED WORK 
The possibility that computers might be used to sup- 
port group problem solving was appreciated by early 
visionaries long before it was practically feasible. In 
1946, Bush presented a hypothetical system called a 
“Memex” that included an interactive database [6] 
by which associative “trails” of exploration could be 
saved to be recalled and retraced at a later time. 
Bush believed that a common encyclopedic database 
of information integrated from many areas of human 
activity would enhance the quality of societal prob- 
lem solving. 

In the 196Os, experimental systems like the 
NLS/AUGMENT [ll, 121 began to use computers to 
support collaboration. The NLS/AUGMENT sup- 
ported terminal linking, electronic mail, sharing of 
files, and “televiewing”-the ability to “pass the 
gavel” among several people working together at 
separate terminals. Englebart saw machines as pro- 
viding an important medium for communication and 
was known for his development of novel user inter- 
faces like the mouse. Englebart was also an early 
worker in hypertext, systems that organize frag- 
ments of text in annotated networks. This work has 
been pursued in several other systems including 
TEXTNET [33], Xanadu [24], NoteCards [34], and 
Annoland. 

At a time when time-shared systems like TENEX 
[6] popularized electronic mail and shared files, 
some observers (e.g., Lederberg [Zl]) reported a qual- 
itative difference in the ways they were interacting 
with colleagues. In the mid 1976.s, researchers at the 
Stanford AI Lab built a video, audio, and keyboard 
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crossbar switch to allow uselrs at multiple worksta- 
tions to collaborate from sep,arate workstations. At 
the same time, another line of work pursued the use 
of communications facilities to tie together people 
working at different locations. Known as teleconfer- 
encing [18, 191, this work eschewed much use of 
computers and has developed slowly, due largely to 
high communication costs fos video images. Mean- 
while, others have developed systems for remote 
conferencing that rely mostly on computers rather 
than video: Known as computer conferencing, these 
systems include electronic mail, editors, voting 
mechanisms, shared files, and archiving, but do not 
provide structure for the conferences based on any 
models of group problem-solving processes. In [16], 
Hiltz and Turoff review some of these systems and 
provide an extensive bibliography; prime examples 
are EIES [Ii’] and some parts of NLS/AUGMENT [ll]. 

Although computers have been used experimen- 
tally in meetings to support specialized problem- 
solving processes since at least 1972 [35], the impact 
has been much less dramatic: than with other com- 
puter applications (see [20]). Most of these systems 
are organized around formal and mathematical 
models of decision making like multiattribute utility 
models and cost-benefit anal.yses. The Delphi 
method [22] and the Nominal Group method [20], 
for example, are techniques for structuring group 
problem solving that have been used with and with- 
out computer support. The Delphi model considered 
by Turoff [35] is designed for technological forecast- 
ing by a geographically dispersed group, while the 
Nominal Group represents a consensus-forming 
process for face-to-face meetings; both have been 
characterized as “rational but naive” [20]. Since we 
have little experience with them, we offer no inde- 
pendent assessment; however, we note that the 
meeting processes used in the Colab are similar to 
the meeting methods commonly taught in corporate 
training programs. 

RTCAL/IOLC, a somewhat analogous system to 
the Colab that was developed at MIT by Sunil Sarin 
[SO], allows a group of users to synchronously ex- 
change information from personal calendar data- 
bases to schedule a future meeting. It differs from 
the Colab in particular trade-offs of computer com- 
munication (e.g., RTCAL has a centralized database 
management scheme) and the absence of process 
models for problem solving, but is similar in that it 
uses personal computers, works in real time, and 
maintains consistent views by message passing over 
a local network [29]. Another research project re- 
ported by Applegate, Konsynski, and Nunamaker [l] 
also resembles the Colab in that it provides personal 
computers to meeting participants around a confer- 
ence table and uses a video projector to provide 

large public views; it also provides tools for brain- 
storming and analysis. However, unlike the Colab, it 
is oriented around decision support models for plan- 
ning and quantitative analysis. Also, since it is built 
using microcomputers with very limited display 
space, there has been little opportunity to experi- 
ment with private and public windows or multiuser 
interfaces. 

Kraemer and King [20] observe that there are very 
few successful computer conference rooms, if any, 
and that even these systems have been plagued by 
hardware difficulties. As the primary obstacles to 
success, they cite inaccessibility of computing re- 
sources, unreliable video projectors, and limited 
graphics capabilities. However, they quite rightly 
note that in recent years computing and projection 
technology have become much more reliable and 
also less expensive. We agree with them that most of 
the activity with computer-supported conferences 
over the next three to four years will center on re- 
search and development. 

In terms of technology, there have been several 
advances that will enable this work to proceed at a 
much more rapid pace: among them, more powerful 
personal workstations, local-area networks, ad- 
vanced programming environments [31], distributed 
programming, and interface technology. These ad- 
vances will make it possible to develop prototype 
systems quite rapidly and thus to experiment readily 
with new tools. 

CONCLUSIONS 
Focusing on developing and understanding “team 
computers” (i.e., collaborative systems for group 
meetings), the Colab project has produced a usable 
meeting room and several operational tools. The 
liveboard is operational but not fully integrated with 
our software. As we begin to use the Colab on a 
regular basis, it will afford a laboratory for studying 
the effects of the tools on collaborative meetings. 
The Colab meeting room is now being fitted with the 
video equipment necessary to record working Colab 
sessions. We will use the Colab to try to understand 
why collaborative problem solving is organized as it 
is, the relationship of that organization to existing 
technology, and the trade-offs involved in displacing 
old practices with new technology. 

Upon hearing about the Colab, a manager from a 
large American corporation whose job it is to intro- 
duce appropriate computing technology at the exec- 
utive staff level told us an interesting story. After 
working diligently for several months to bring things 
up-to-date and to revitalize operations with tools 
like electronic mail, document processing, databases, 
and automatic spreadsheets, he remained unsure 
about the degree of success he had achieved. One 
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day, in a burst of frank evaluation, one of his 
charges told him that, despite the best intentions, he 
felt the computer was not making a difference and 
did not expect it to save him more than 30 minutes a 
day, even if he did learn how to use it. The reason 
was that this individual was not in his office for 
more than 30 minutes; he spent almost his entire 
day in meetings! Morul: Office automation simply does 
not reach people who are away from their offices, which 
brings us back to the premise of the Colab project: 
Meetings are important. They are at the core of the 
way most organizations do business. As such, tools 
like the Colab touch fundamentally the ways we 
meet and make decisions collectively. 
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