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ABSTRACT

Making sense of a body of data is a common activity in any
kind of analysis. Sensemaking is the process of
searching for a representation and encoding data in that
representation to answer task-specific questions. Different
operations during sensemaking require different cognitive
and external resources. Representations are chosen and
changed to reduce the cost of operations in an information
processing task. The power of these representational shifts
is generally under-appreciated as is the relation between
sensemaking and information retrieval.

We analyze sensemaking tasks and develop a model of the
cost structure of sensemaking. We discuss implications for
the integrated design of user interfaces, representational
tools, and information retrieval systems.

KEYWORDS: sensemaking, cost structure, representation
search, representation shift, learning loop, information
access.

lNIRODUCltON

When confronted with problems that have large amounts of
information, an often proposed solution is to improve
information retrieval (IR). However, even in tasks that
require much retrieval of information, speeding retrieval by
itself may help very little. IR subtasks are best understood
in their embedding in a larger overall task structure. The
larger task often involves sensemaking, the process of

encoding retrieved information to answer task-specific
questions.

A person performing an information-rich task has an array
of resources -- both internal cognitive resources and
external resources for information storage and computation.
Methods for carrying out a task can be described in terms of
operations, where each operation requires particular
resources. The benefit of each approach depends on how it
changes the relative costs and utilities of various operations,
and thereby, the time versus quality tradeoffs in the method.
Collectively, these factors and tradeoffs form a cost structure
guiding choices made during sensemaking. In this paper we
consider the cost structures of sensemaking tasks,
quantifying some of tie effects of external representations
and automation.
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CASE STUDY: Making sense of laserprfnteIs

We present a case study to lay the groundwork both for our
description of sensemaking tasks and our approach to
determining their cost structures. For these purposes, this
example case is representative of many others we have
studied the last year.

In the summer of 1989, a team from the Xerox education
division designed a new generic training course on laser
printing for Xerox technicians. Frior versions of the laser
printer course were pedagogical tours of kinds of printers
organized around market categories such as high, low and
medium copy volumes. A major goal of the new course
was to decrease overall training time by unifying
terminology and shifting common material from courses on
specific printers to the general introductory course. The
course needed to cover a wide range of laser printers
including new ones manufactured by Xerox and other

companies. The group decided to use IDE (the Instructional
Design Environment) [6] a hypermedia knowledge-
structuring tool to capture and organize information for the
course. To use IDE for analysis, users create and link
hypermedia nodes that are instances of a larger
representation schema, as shown in Figure 1.

Part name: Developer housing
Part no: G6531 -X3

Function: [ DH Function > [

Training treatment: I DH training > [

Failure modes: I Leaks >[

Subcomponent

Required
Tonei > [

AltemWw Tcmr Contahment > [

Ftgure L An instantiated IDE schema describing a printer (an
encodon). Boxed values indicate tinks to other encodons.

In the fwst part of the process, the lead group identified 21
different kinds of laser printers and several different kinds of
scanners to be used as source material for the course.
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They quickly discovered that the schemas for their old
course did not adequately charxterize the information needed
for the new one and modified their domain analyses for the
new course. Ultimately, this led to a decomposition of
printer descriptions in terms of subcomponents, functions,
failure modes, and even techniques for training. The
evolution of the IDE schemas they developed is charted in
Figure 2. Figure 3 shows the process they used to produce
the schemas in Figure 2 and ultimately their course design.

The final version of the schemas set the stage for the two
main subtask understanding the similarities and differences
between the various printers or their subsystems, and
developing a course outline of the identified concepts. The
work was divided among three work groups. During the
next five months, the groups collected and entered
information about their assigned printers, using the schemas
from the lead group.

The next phase used computers to compare the different
printers and to identify recurring concepts. An automatic
clustering program took as input the schema descriptions,
synonym dictionaries, and clustering parameters. It created
as output clusters of closely related elements, such as
clusters of related subsystems, clusters of related functions,
and so on. The clustering algorithm selected an element in
the database and measured a “distance” between it and other
objects. The distance metric used information from the
schemas such as slot names, type information, and
relations, and from the text descriptions in the slots. These
clusters were the basis of the concepts for the training
course.

The last phase was to create an outline by organizing the
concepts found in the analysis. An outline was represented
by education concepts sequenced by relational links.

Learning Loops in Sensemaldng

Figure 3 reveals that the team’s attempt to make sense of
information about laser printers consisted of cyclic
processes of searching for representations and then encoding
information in them to reduce the cost of operations. We
call this recurring pattern in sensemaking a “learning loop
complex” as illustrated in Figure 4.

The learning loop complex has three main processes

1. Search for representations. The sensemaker creates
representations to capture salient features of the data in a
way that supports the use of the instantiated representation.
This search cycle is the generation loop. Both
~presentations and procedures for using them are created.

2. Instantiate representatwns. The sensemaker repeatedly

identifies information of interest and encodes it in a

representation that emerged from the generation loop.

Instantiated schemas are called encodons and are created in
the data coverage loop.

3. Shift representations. Representation shifts during
sensemaking are intended to reduce the cost of task
operations. Forcing a change to the representation in this
way is a bottom-up or data-driven process. Residue is ill-
fitting or missing data and unused representations. The
representational shift loop is guided by the discovery
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of residue. When there are relevant data without a place in
the representation, the schemas can be expanded. When data

do not fit the established categories, the original schema
categories may need to be merged, split, or new categories
may be added. Thus, sensemaking iterates between the top-
down representation instantiation and bottom-up
representation search processes.

4. Consume encoffons. The sensemaker then uses the
encodons in some task-specific information processing step.
In sensemaking, schemas provide top-down or goal-directed
guidance. They prescribe what to look for in the data, what
questions to ask, and how the answers are to be organized.
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data describing twenty-one difftmmt laser printers.

But representation search is not simply top-down. If there
were no surprises in creating encodons, sensemaking would
be trivial; merely define the schemas and then instantiate
them. Sensemaking seldom works this way. Schemas

must be revised when there are surprises creating encodons,

or as new task requirements come k light. -
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Ubiquily of Learning Loops

Is this learning loop pattern peculiar to the case at hand or
is it widespread in information-rich tasks? Over the past
year we have carried out several studies including four
retrospective studies of information systems for
sensemaking [6] and several field studies of information
workers at Xerox and other companies in the Bay Area.

Figure 5 shows process sensemaking process flow diagrams
for four of these studies. The first of these is the laser
printer case from Figure 3. The second flow diagram maps

the activities of a study group over a ten week period
creating a report about the research potential for a new
technology. The third diagram maps the activity of a group
of students over eight weeks in art instructional design class
developing detailed plans for teaching high school algebra.
And the fourth flow diagram describes the activity of a
business analyst who writes monthly newsletters analyzing
high technology areas.

In each case, the same basic operations and cyclic processes
describe the activities used to make sense of the
information. For these four cases (and for all other studies
we have made) we find that each is an expansion of the
learning loop complex. Despite differences in domain,

approaches or individual styles, making sense of a complex
body of information always appears to follow a common
pattern.
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ANALYZING PRINTER SENSEMAKiNG

Even when different representations are equivalent from an
information-content point of view, they can differ radically

in the cost of carrying out particular operations. It is well
known that the form of a representation profoundly affects
the effectiveness of seareh during problem-solving. [4,9]

It is not surprising then, that in a sensemaking task of any
significant complexity, external representations are used to
support the cognitive demands made on the user. However,
creating a representation is a significant problem. The f~st
representation created is rarely the best or correct one. In
the following analysis, we show that sensemakers change
representations either to reduce the time of the overall task,
or to improve a cost versus quality tradeoff. In this
analysis of the cost-effects of different representations, we
consider two subtasks from our printer case -- (1) finding
the central course concepts through cluster analysis (the
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middle boxes labeled”4 days” in Figure 3) and (2) ordering
them under pedagogical sequencing constraints (the
organize outline box at the bottom of Figure 3).

Example 1: Lowering the Cost of Clustering

The analysts in the printer case used an IDE operator to
cluster data about printers in order to discover a central set
of key concepts in a large body of data. However, finding
the central concepts in a large corpus is a non-trivial task.
Clustering methods always define a distance computation
like the following

dij = ~ W&jk

In other words, for each kind of object being compared,
there is a set of properties, PP Each property has a value.

(For example, the properties for document handlers would
include the set of acceptable paper sizes, the capacity, a
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category such as “recirculating,” and a description of the
mechanism.) Given two objects we assume that it is
possible to compare their property values. This distance
equation indicates that the overall distance between two
objects is a weighted sum of the differences between their
property values, where the weights reflect the relative
importances of the considered properties. To account for
interactions among properties, more sophisticated distance
metrics are often employed. However, the phenomena of
interest to sensemaking arise even in the use of this simple
distance metric.

There are different ways to compute clusters, but most
methods include the following steps: (1) assign values to
the weights, (2) compute distances between the objects and
the cluster centers, extracting property data from the
documents as needed, (3) add objects to a cluster if they are
near enough and form new clusters otherwise, and (4)
evaluate the cluster pattern. If the cluster pattern is
unsatisfactory, such as if most of the objects fall in one
cluster, then the weights are adjusted and the process
repeats. In typical educational analyses, this process is
informally carried out, primarily because the cost of careful
computation (and re-computation!) is exorbitant.

The Main Cost: Data Extractbn

Extracting data from documents is a key subtask in
clustering and encoding. Extraction requires finding the
relevant documents containing the information, selecting
the document parts containing the information, and then
transforming the information into a canonical form. The
document parts may be particular paragraphs, table entries,
or graphical elements from figures. In the cases we have
examined, data extraction is often the most time-consuming
task in sensemaking.

In this case study, the analysts extracted data to perform
their encodings from a variety of source documents
including training manuals, service documentation,
engineering documents and customer support manuals.
Each printer was documented by 10-20 documents, ranging
in size from 30-300 pages. Virtually none of them were
indexed for such access. Thus, each printer was documented
with 300-6,000 pages. The lead group spent two months
designing the IDE schemas, instantiating them to evaluate
their usefulness. Then the three analyst groups spent five
months extracting data and encoding it using the schemas.
They created 21 computer &tabases, one per printer, each
containing between 300-1000 entries each. In approximate
numbers, each group processed about 190 pages pcr day,
encoding on the average of 30 individual schemas each
working day.

For this task, data extraction and encoding required over
75% of the total time from beginning the project to final
course outline.

The Main Gain: Automated Cluetefing

When sensemakers make an investment of this magnitude,
they are betting that there will be a payoff either as a
reduction in the overall task time or in the improved quality
of their results.

Consider the sequence of representation shifts of Figure 2 in
light of this representational investment. These shifts took
place in the representation shift loop labeled 1 in Figure 3.
In version 1 of the representation in Figure 2, differences in
principles of operation did not show up as discrete
differences in properties. Since the schemas had no
substructure and no specification of domain concepts such
as components, mechanisms or failure modes, it was not
likely that the properties would be encoded uniformly even
if they were encoded at all. For this version the extraction
processes for each property would require sophistication
beyond the reach of automation. Version 2 made more of
the relevant properties explicit, but still lacked a recursive
mechanism for representing component substructure.
Version 3 had provisions for recursive structure, but
permitted representational ambiguities between subsystems
and components. Two different encoders could reasonably
choose quite different representations for a printer -- thus
complicating the canonicalization phase of property
extraction. Version 4 remedied this problem and provided a
robust and computationaliy tractable representation for both
human use during encoding and algorithmic clustering.

In summary, this illustrates how shifts in representation
made large changes in the cost structure of the clustering
task.

Anythw Aigotithms

An important observation about many sensemaking
methods is that they are anytime algorithms. Anytime
methods provide the best solution that they can find in
given limited time. Given more resources, they continue to
search for better solutions. We call the common use of
such tradeoffs in information processing tasks the anytime
principle.

A key parameter governing the complexity of clustering is
the number of iterations for altering property weights and

searching for appropriate cluster patterns. In this case
study, automating the clustering process drastically reduced
the cost per iteration, enabling the course designers to fine
tune the parameters over many iterations and to search more
thoroughly and systematically for the printer concepts to be
included in the general course.

Another key parameter is the number of properties
considered per object. The more properties considered, the
more costly the encoding and comparison processes, but

also, the more accurate the characterization of concepts.
For the new course, the designers were able to consider
many more (2 -3 times) properties than before, using time
gains from automation to extend the comprehensiveness of
search.

Example 2: Lowering the Cost of Ordering

Another important task in course design is organizing the
concepts into a teachable sequence -- the last box in Figure

3. This task is governed by pedagogical rules. For
example, presentation of the prerequisites for a topic should
precede presentation of the topic and the structure of the

course should help students identify the main points
through progressive disclosure.
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Figure 6 shows a boxes-and-arrows representation of a
partial ordering of topics for a course. This is a variation on
the representation observed in similar cases. A box around
a set of topics (shown simply as letters in the figure)
indicates a set, and an arrow starting from a topic or set to
another represents an order constraint. In the figure, topics
a and d are candidate starting nodes. Since topic a comes
before the set t,it comes before the elements of that sec
topics c, r, and u. By transitivity, it rdso comes before the

elements of the v set and they set.
h 6

Figure 6. A graph showing partial ordering of constraints for
presentation, In h-is example, 5 explicit ordering constraints and 4
grouping constraints suffice to order 16 nodes.

A direct manipulation interface provides an active
representation for rapidly exploring alternative outlines.
With computational support for the constraint reasoning,
many alternative orderings of topics can be explored in a
few minutes [7]. In the final phase of course development,
a sequence exploration @ol of this type was used, allowing
a much larger space of possible sequences to be explored.
The analysts estimated that they explored approximately 10
times more topic sequences than in earlier courses without
such a tool, and a perceptible gain in the quality of the final
course design. Again, a shift in external representation of
the information resulted in a shift in the cost structure of
the task.

THE COST STRUCTURE OF SENSEMAKING

From the strtndpoint of systems designed for sensemaking,
we are concerned with evaluating different approaches to
sensemrtking, particularly when the introduction of
alternative technologies can dramatically change the
efficiency or effectiveness of the overall process. That is,
we are concerned with an analysis of the steps as defined in
the learning loop complex. As a way to analyze these

costs, we begirt by defiiing the following cost terms:

FR: finding a representation schema to support
the requited operators in the target task,

IE: instantiating the encodons,

FD: finding data to create the encodons,
including both finding the documents and
selecting the information,

TP the target task.

The costs of sensemaking are the combined costs of the

steps in the learning loop complex. The total cost, CT, is

the cost of sense making, C~~, plus the cost of the target

task, c~,

cT=cm+cm (1)

Whete

~~ = CFR+ C,E+CFDc (2)

In the following, we define gain as the increase in quality
or quantity of work performed by using a particular method.
Optimizing a sensemaking system is searching through the
space of combinations of methods to maximize the expected
gain to cost ratio.

The task of sensemaking or its corresponding target task
may be either recurring or happen once-only (one-off tasks).
The laser printer case is one-off sense-making with a one-off
target task of producing a course outline. The business
intelligence example has one-off sensemaking (the
production of schemas) with the continuous target task of
encoding new intelligence items and writing newsletters.
Each type of sensemaking task has different optimization
characteristics.

One-off Tasks

In one-off tasks the sensemaker chooses methods to
maximize the expected gain within a cost or time limit.

Typically, the one-off optimization problem can be greatly
simplified. In the laser printer case, the gain is the number
of common instructional elements placed into the general
course. We compare two methods by associating a gain
function gm with the manual method of producing the

course and gc with the computer-based method for finding

concept clusters and ordering concepts. For small

investments in sensemaking (especially tFR, tIE and tFD)

the manual method is more cost-effective than the
computer-based one, but for large investments in
sensemaking the computer-based method is more profitable.
Figure 7 shows that the computer-based strategy should
only be chosen if the deadline is after tc,the crossover

point.

9C

9m

Gain

11 I I

Time spent on task

Figure 7. Tradeoffs in the gain achieved by a manual method (gin) or
computer-based method (gc) . The best solution is determined by

maximizing gain while minimizing total cost within the deadline time.

Recurring Tasks

For recurring sensemaking subtasks the optimization

problem is to maximize long-term rate of gain over many

task cycles. This occurs in the jobs of business and
financial analysts who scan, select, and integrate
information from new reports to produce their own highly
standardized periodic newsletters.
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We can think of knowledge workers as organisms in an
information ecology, roaming among information sources.
Their problem is to choose their information sources to

obtaitt the best gain for time spent. This metaphor leads to
modeling recurring sensemaking with concepts from
foraging theory. The following assumptions are often used
in such analyses:

. The sensemaking subtasks are encountered and
processed exclusive of one another, For instance, tasks
are often structured such that one cannot search for data
at the same time one is instantiating encodons, and one
usually cannot create multiple encodons
simultaneously.

● The subtasks come in k subtypes. Such task typing
can often be performed on the basis of the kinds of data
being processed. For instance, a business intelligence
analyst may find certain periodicals or sections of

periodicals (e.g., research news) more profitable than
others. Often it is assumed that each subtype is
encountered over a given unit of time as a Poisson
process with parameter Ii, O c i Sk, That is, different

types of periodicals arrive at the sensemaker’s desk at
varying rates. As the periodicals arrive, they demand
different subtasks for processing.

. Associated with each subtype i of the sensemaking
subtasks is a gain function g,<ti), which indicates the

expected gain as a function of the time ti spent on that

subtask. The gain function eventually show
diminishing returns over time.

When these conditions hold, then can we maximize the
long-term rate of gain, R, by determining the amount of
time ti to spend in each subtask. To do this, one ranks the

subtask types by their expected profitabilities. The rate of
gain for subtask i is:

gi(t~)
[1

—=~= l?i(ti)

t; ti ti
(3)

The sensemaker keeps a list of the subtasks in order of
descending profitability by computing each subtask’s long-
term rate of gain.

(4)

The ~j are the rate-maximizing times for the ith task when

the subtasks to perform (pursuit list) includes items through
rank j. Choosing which subtasks to discard from this list
Cill’1 be calculated according to a marginal vatue theorem
formulated by Charnov [3], Stephens and Krebs [8] discuss
the implications of Equations 3 and 4, which model an
agent foraging through an open ecology, and discuss on the
underlying constraints and assumptions.

If variations the model of Equations 3 and 4 hold, then
uniform improvements in access costs to the types of data
on the pursuit list mean that selection should become even
more restrictive (assuming no additional constraints on

which data to process). For instance, suppose that a new
information access technology increases the rate of delivery
of both high- and low-quality periodicals arriving at an
analyst’s desktop. The optimal strategy in the face of
uniform increases in the rate of encounter with data is to
exclude more low-quality periodicals, rather than processing
all newly available periodicals.

The assumptions of the foraging model do not hold for all
cases we have considered. For example, the first
assumption that only one task can be processed at a time
breaks down when there is more than one sensemaker. This
is especially important in the case where some of the
sensemaking agents are computational and therefore operate
on a different cost basis.

In addition, there are interaction effects in sensemaking not
covered by this model. For example, in sensemaking tasks
requiring several kinds of data, the evaluation of gain for
different subtasks can vary as some data requirements
become satisfied. This is a simple example of a more
general phenomena in which part of the job of sensemaking
is to establish the goals of the task.

TECHNOLOGY AND SENSEMAKING

There are many possible ways that technology can affect
sensemaking, and we can only consider a few here. By the
anytime principle, a reduction of cost (or increase in gain)
associated with a step frees time to invest in other steps.
For instance, if a representation is supplied at the beginning
of a task, then CFR is zero, and more effort may be placed

into other areas (e.g., increasing the amount of
information).

In the laser printer case and several others that we have
observed, most of the time in sensemaking is in data
extraction. This focuses attention on reducing costs of the
three steps of data extraction -- finding the relevant
documents, selecting the information, and transforming the
information into canonical form. In one of our case studies,
the sensemaker looks up &ta about laptop computers in a
collection of magazines and product sheets. His goal is to
make a purchasing recommendation meeting given
constraints. The data representation created by sensemakers
carrying out this task invariably includes tables giving
properties of competing laptops. Representation shifts are
changes to the table structure as the sensemaker decides
which properties are most relevant and retrievable and
ultimately are able to help solve the problem of determining
the best choice.

The laptop case lends itself both to proposing technology
for the sensemaker and to estimating the benefits of using
it. Consider the moment when the sensemaker has fiilcd in

the name of the laptop for which he is seeking information,
and needs &ta for the memory size column, It is clear that
the next data sought is the memory size of that laptop and
that the sensemaker’s next activity will be to extract that
from the document.
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For online documents, automatic specialized methods could
use encodons to generate queries for retrieving document
fragments likely to contain the needed information,
displaying the relevant parts, and canonicalizing the data to
the form needed. For paper documents, a handheld scanner
might be coupled with specialized extraction methods to
reduce encoding time. In both cases, the savings make time
for other activities, such as using visualization tools to
survey the effects of different choice criteria.

CONCLUSIONS

This paper presents preliminary steps in understanding the
cost structure of sensemaking and the role of sensemaking
in various information processing tasks. The goal is to
provide widely applicable predictive models of task
performance and prescriptive models for recommending
system features.

The ideas that information retrieval is part of a larger
process of information use, that computer systems should
amplify information-based work processes, and that
information has costs associated with search and access have
been reported earlier [e.g., 1,2]. What is new in our current
analysis is the emphasis on representation use and shifts in
analyzing task performance, the identification of the
learning loop, the anytime principle and the characterization
of sensemaking.

Representation design is central to the sensemaking
enterprise. The learning loop complex crystallizes the
pattern of activity in which representations are changed to
reduce the cost of task operations, changing the
sensemaking cost and gain structures.

By characterizing sensemaking as an interlocking set of
different types of subtasks, we show how tradeoffs can be
made in one place for gains in another (the anytime
principle). The relative sensitivity of different parameters in
the sensemaking prncess suggests places where changing
methods or representations can produce payoffs. Our studies
in information visualization methods indicate the extreme
effects -- both positive and negative -- that different
visualizations can have on users. In order to design
information systems, we need to understand the most
important factors that determine a user’s ability to interact-
with and perceive information. The studies presented here
show that focussing on a single aspect of the problem while
ignoring the entire process may be shortsighted.

This picture is still incomplete with many interaction
effects stitl unaccounted. Nevertheless, this model provides
a beginning of a comprehensive approach to the integrated
design of user interfaces, information retrieval and
representation using systems.
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