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ABSTRACT

The analysisof DNA structurefrom restriction enzymesegmentationdata has been viewedby
molecular geneticistsas one of their simpler analysisproblems. This paper treats segmentation
problemsas a casestudyin theselectionbetweendata-drivenand model-drivenhypothesisformation.
The main purposeof this paperis to setforth someuseful considerationsfor selecting a problem
solving approach according to the characteristicsof a domain. The casestudyillustrates why an
exhaustivemodel-drivenapproach, which operatesprimarily by ruling out all the wrong answers, is
a goodapproachfor this domain. A program calledGAl solvessegmentationproblemsusingtech-
niquessimilar to thoseusedin the DENDRAL program.
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1. Introduction

A commontask in moleculargeneticslaboratoriesis theanalysisof DNA structure
from restriction enzyme segmentationdata. This task is one of the simplest,
althoughtime-consuming,analysistasks in moleculargenetics.It is describedin
Section2.

Thethrustof thispaperis to examinethe import of selectingdifferent problem
solving approaches.This papercharacterizesthe segmentationproblem domain
and comparesa data-driven strategy to a model-driven strategy for forming
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hypotheses.The model-drivenapproachhas beenusedin severalArtificial Intelli-
gence applications including chemical analysis [2], machinelearning of mass
spectroscopyrules [8], andmachinevision [9]. Thispaperseeks:

(1) to quantifysomeadvantagesof this approachfor this domain,

(2) to identify some general characteristicsof problem domainson which the
selectionof this approachis basedand

(3) to discusssome representationand programmingideas which are useful
for implementingit.

It will be shown that the best way to determinethe answersin segmentation
problemsis to usean exhaustivemodel-drivenapproachwhich operatesprimarily
by ruling out the wrong answers.This researchhasled to the developmentof an
applicationprogramnamedGAl’ which usuallysolvesproblemsin a few seconds
andrequiresless laboratorywork than is customarilydone.

A secondarybenefitfrom the explication of the problem-solvingknowledgeis
that somenew laboratorytechniqueshavebeenproposed.They are describedin
Appendix I,

2. SegmentationProblems

One of the hurdles in understandingArtificial Intelligence applicationsis the
terminologyof task domains.An attempt hasbeenmadeto minimize the amount
of technicalterminology in the following exampleso that it will be easyto read.
A few geneticstermswill be introducedas needed.

2.1. A sample problem
To describeasegmentationproblem,it is easiestto beginwith the answer.Fig. 1
illustrates a circular DNA structure. Each of the numbersrepresentsthe size
(in arbitrary units) of a segmentin a DNA structure.The labels (e.g. Eco RI)
representenzymerecognitionsites. Whenanenzymeis used to cut or “digest”2 a
DNA structure, it will cut at specific recognitionsites.3 The problem solution
describesa sequenceof segmentsseparatedby recognitionsiteswhich bestexplains
the laboratorydata.Thesedataare producedby cutting the wholeDNA structure
with enzymesandmeasuringthe possiblyoverlappingsegments.

An analogymight makethe problemeasierto visualize. The segmentlengths
may be likened to lengthsof chain and the recognitionsites may be likened to
locks with keys. The solution to the sampleproblem is analogousto a circular

1 Thename“GAl” waschosento indicate that this programis the first in a seriesof “Geneti-

cist’sAssistants.”
2 Digestion refers to the action of breakingapartthe DNA molecules.The terminology “en-

zyme digestion”is a carry over from thefirst enzymesthat were studied—thoseinvolved in the
digestivesystem.

This recognitionof sites correspondsto a physical templatematchingprocess.Eachenzyme
Cuts when it recognizesa specific sequenceof nucleotidesin the DNA molecule.
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chaincomposedof smallerchainslockedtogetherin a particularorder(Fig. 2). In
theseterms the solution to the sampleproblem has six locks and threedifferent
keys(B, H, E). At thebeginningof the experimentwe are givena box of identical
circular chains. We are not permitted to seethe chains, but may dispatchan
assistantwith one or more keys (andpossiblya time limit) to go to the box and
unlock the correspondinglocks. The assistantmay reportbackthe lengthsof the
chain piecesthat are left after the unlocking operations.The goal is to infer the

~95

FIG. 1. Solution to the sampleproblem. The numbersindicate massesof the DNA segments
(measuredin megadaltons)and the labels(Bam, Hind III, Eco RI) show the recognition and
cutting sites for the enzymes.

FIG. 2. Locks and chains analogy. The locks sites can be opened with appropriatekeys and
correspondto enzymerecognition sites. The chains correspondto linear segmentsof DNA
moleculeswhich can be observedwhen the locks have been opened.The goal is to infer the
configurationof thechainfrom therecordof segmentsobservedafterdifferentkindsof unlocking
operations.

.75
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original configurationof thechainsfrom the piecesthat areobservedafterdifferent
unlocking operations.

Returning to geneticsterminology, the enzymesmay be used singly (called
1-enzymedigests)or in combination(n-enzymedigests)to cut an unknownDNA
structure.Table 1 shows the segmentsizes that were measuredafter enzyme
digestionin the sampleproblem.Theseare the input datafor the segmentation
problem.The goal is to infer plausibleDNA structuresfrom the digestdata.

TABLE I. Input Data for the SampleProblem’

Enzyme(s) Segmentsobservedafter
enzymedigestion

Hind III 3.82 .18
Barn 2.35 1.65
EcoRl 31

Hind III & Bam 2.35 1.2 .27 .18
Hind III & Eco RI 1.87 1.0 .95 .18
Barn& Eco RI 1.6 1.4 .75 .25

‘Segmentsizesare expressedin megadaltons—aunit of massapproximatelyequalto 1.66 10— IS

grams. The resolution of measurementfor this experimentwas one percent.Thesedata were
provided by JerryFeitelson.

Becauseof combinatorics,thesampleproblemwasconsideredto be too difficult
to solve from the availabledata.An additionaldigestinvolving all threeenzymes
was subsequentlyperformedand ananswerwas determinedafteran hour’swork.
The manualsolution did not include testing the answerfor uniqueness.GAl
subsequentlysolvedthis problemin aboutonesecondandverified that the answer
wasunique.The programwas alsoableto solve theproblemwithout theadditional
digestdatain approximatelythreeseconds.

2.2. Geneticsbackground
Much of therecentprogressin moleculargeneticsrelieson techniquesforstructural
analysisof DNA. Severalanalyticaltechniquesare availablefor determininggross
or fine structuralinformation. The techniquesdescribedin this paperare useful
for determiningstructureat a level that is coarserthan nucleotidestructurebut
finer thangenestructure.Studyof structureon this level is a commonstepin many
experimentsinvolving recombinantDNA [1]. Theseexperimentsinvolve careful
splicing togetherof DNA from different sourcesto study gene expressionin
microorganisms.Most of theseexperimentsinvolve splicing the genesinto small
linear and circular DNA molecules termed “vectors.” Structural analysis is
performedboth beforeandafter the splicingoperations.

Different kinds of enzymedigestionsare used for the analyses.An enzyme
digestionmay be eithercompleteor incomplete.In a completedigestion,all sites
in the DNA moleculeswhich are recognizedby the enzymeare cut. “Incomplete
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digestion” meansa limited applicationof anenzyme.After anincompletedigestion,
the samplewill containa mixtureof segmentsresultingfrom the randomcleavage
of the DNA moleculesat the recognitionsites. Under ideal conditions,segments
resultingfrom everypossiblecombinationof cuts at the recognitionsitescan be
observed.

Completedigestsare useful in determiningthe composition of a structurein
termsof enzymesitesandsegments.The numberof sitescanbe determinedfrom
the numberof segmentsof a completedigestcombined with the knowledgeof
whether the structureis linear or circular. Although a completedigest by one
enzymedeterminesthe sizesof the segmentsand the total molecular weight, it
doesnot determinethe orderof the segments.An incompletedigestcanbehelpful
in determiningthe orderof segmentssince segmentscorrespondingto the sumof
neighboringsegmentswill appearin the digest. This is explainedfurther in Section
3.2.1.

Digests may also be describedas 1-enzymeor n-enzymedigestsdependingon
the numberof enzymesinvolved. In an n-enzymecompletedigest, the DNA will
be cleavedat all of the sitesrecognizedby any of the restrictionenzymesused in
the digest. Enzymesare chosenso that particulargenesare cut or not cut. When
segmentsizesaresimilar in size,digestiondatamay notdeterminesegmentorienta-
tion and placementunambiguously.In such cases,additional enzymesaresome-
times introducedwhich may cleavethe segmentsasymmetrically.The 3-enzyme
digestsconstrainthe problemby indicating which of the segmentsin the 2-enzyme
digestshaveuncut sites. Most experimentsinvolve only four or five restriction
enzymesandmostdigestionsinvolve no morethan threeenzymes.

After the digestionshavebeencarriedout, the lengthsor massesof the segments
are measured.There is always a limiting resolution in this measurement—given
as onepercentin the sampleproblem.Thismay be as highas ten percentin some
experiments.Becauseof the ubiquitousrequirementto specifythe resolutionof
measurement,it gets rather tiresometo repeatthesequalifications.For the sake
of brevity, we will say that two measurementsare “equal” when they are “equal
within tolerance.”Similarly we will refer to the “sum of segments”to meanthe
sumof their massesor lengths.

2.3. Combinatoricsof thesampleproblem
The numberof possibleanswersin segmentationproblemsdependson the number
of segmentsin the digestsandon the resolutionof measurementin the experiment.
GAl has beenapplied to problems having several billion potential solutions in
the solution space.It will be seenthat the sampleproblem,which is muchsimpler
than most of the segmentationproblems to which GAl has beenapplied,has a
solution spaceof over two million possibleanswers.

The description of the solution space for the sample problem is given in
three steps. First, the I-enzyme digest results are used to develop a template
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(Fig. 3) for the possibleanswers.Then an argumentis given that only segments
from the 2-enzymedigestsneedbe usedin filling in thetemplate.Finally, it will be
shownthat someof the segmentsin the2-enzymedigestscan be ignored.

The I-enzyme digests in the sample problem each yield two segmentsafter
digestion.For circular structures,this meansthat eachenzymecuts the molecule
exactly twice. Since the recognition sites were known to be unique, the sample
problem must havesix recognitionsites—twofor eachof the threeenzymes.(if
it hadnot beenknown beforethe experimentthat the siteswereunique,this could
be inferred from the fact that the segmentsin 1-enzymedigestsare different for
the different enzymes).For a circular structure,the numberof sites mustequal
the numberof segments.This meansthat the solutionto the sampleproblemmust
havesix sitesandsix segmentsas shownin the templatein Fig. 3. This template
definesthe solution space.

Seg
1

Seg
2

Seg
3

Seg
4

Seg
5

Seg
6

site
1

site
2

site
3

site
4

site
5

site
6

FIG. 3. Templatefor hypothesesin thesampleproblem.Thespaceof possiblehypothesesmay be
generatedby assigningsites and segmentsto this template.

Eachsegmentin a solution is boundedby two recognitionsites—oneat each
end. Thus, every completelydigestedsegmentwill be severedfrom the structure
whenthesetwo enzymesare appliedandmustappearin some2-enzymecomplete
digest—nomatterhow manyenzymesareusedin the experiment.In thedatafrom
the sampleproblem, twelve segmentsappearin the 2-enzymedigests.Thus, every
solution correspondsto an arrangementof six of the twelve segmentsin the six
positionsof the template.

Finally, it is possibleto showthat no hypothesisneedbe consideredwhich uses
any of the segmentsin the sampleproblemmorethan once.Reasoningaboutthe
uniquenessof segmentsgenerally involves the measurementtolerance. In this
problem, the only segmentwhich is repeatedin the 2-enzymedigestsis the 0.18
segment.This segmentappearsin all of the digestsinvolving the enzymeHind III.
Since this segmentappearsin the Hind III completedigest, it hasa Hind III site
at each end. If this segmenthad an uncut site for some other enzyme,then a
smallersegmentwould appearin oneof the 2-enzymedigests.The absenceof any
smaller segmentallows us to trim down the numberof possiblesegmentsto
eleven.

The orderof the sitesandsegmentson thetemplateis not known.Thisyields

11! 6! 1
x 6! x x — = 2 494 800 structures.

6!5! 2!x2!x2! 12

The first term is the numberof waysto selectsix of the eleven unique segments;
the secondterm counts the permutationsof assigningthese segmentsto Seg 1
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throughSeg6; the third termcountspermutationsof the six sitesto Site 1 through
Site 6 (allowing for the fact that eachenzymemusthavetwo recognition sites).
The division by 12 accountsfor circular symmetry since each structureis re-
presentedtwelvetimes—allowingfor six startingplaces(Seg 1 throughSeg6) and
two possibleorientations.A similar analysiscanbe given for problemswhere the
hypothesizedmoleculeis linear.4

If an additional laboratory step is performed in the sample problem—the
simultaneousdigestion by all threeenzymes—thenumberof potential segments
to be placed is reducedfrom elevento six. This extralaboratorystepreducesthe
numberof possiblestructuresto 5400. Themanualsolutionto the sampleproblem
used the extra laboratory step to reducethe combinatorics. The existenceof
programslike GAl meansthat the trade-offcan be madein the otherorder to
savelaboratorytime.

3. The Data-driven Approach
Laboratorygeneticiststypically do not use a formalized algorithmic approach
to solving structuralproblems.Often they examinethe datato seewhat structures
are suggested.The first (and, as it turns out, inadequate)approach,termedthe
“data-driven”approach,attemptsto capturethis idea.This approachis described
here becauseits faults helpclarify the requirementsfor a bettermethod.

3.1. Data~drivenapproachesin general
Theterm data-drivenwill be used to describea strategyfor inferring hypotheses
from data.This approachis alsocalledbottom-upandit will be contrastedwith a
model-drivenapproachwhich usesa generator(basedon a model of the solution
space)to proposehypotheses.

3.2. Specificsof the data-driven approach
There are two main methodsfor inferring structurefrom data in this domain.
The first uses the information from incomplete digeststo proposethat specific
segmentsare contiguousin the solution. The secondmethod uses2-enzymeand
3-enzymedigestinformation for this purpose.

3.2.1. Reasoningfrom incomplete-digestdata
Sincean incompletedigestemploysonlya limited applicationof an enzyme,many
structuresin the samplewill havesomeof their recognitionsitesstill intact. When
the resulting segmentsfrom an incompletedigestare comparedto thosefrom a
completedigest by the same enzyme, many segmentscan be observedin the

~ For linear molecules,the ends of the molecule provide uniqueorigins. In such casesthe
analysismay be simplified by decomposingit into separateanalysesfor eachpair of enzymes.
Theseparatesolutionsmay thenbe merged.This strategyis seldomuseful for circular molecules
becausesuchuniqueorigins are not usually available.
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incompletedigestwhich are equalto the sum of varioussegmentsfrom the com-
pletedigest.This suggeststhe incompletedigestrule:

If a segmentfrom the incompletedigest for enzymeEl is equal to a sum of a set M of
segmentsfrom thecompletedigestby thesameenzyme,thenthesegmentsin M are probably
contiguousin the structureand are separatedby sites for enzymeEl.

For example, supposethat the complete digest by an enzyme includes the
segments3, 4, and6, amongothers,andthe incompletedigestby the sameenzyme
has a segmentof size 13. The incompletedigestrulecould beusedto proposethat
the segments3, 4, and6 are contiguous.

3.2.2. Reasoningfrom n-enzymedigestdata
The incompletedigest rule doesnot tell how to combinedigestionresults when
severalenzymesare involved. Completedigestsby differentenzymesyield different
decompositionsof the starting structure.When a structureis digestedto com-
pletion by several restriction enzymes,the segmentsproducedafter digestionby
the first enzymeare cut at the sitesrecognizedby eachsubsequentenzyme.

The simplestcase of the n-enzymerule is the 2-enzymerule.
If asegmentfrom the1-enzymedigest for enzymeEl is equalto a sum of a setM of seg-

mentsfrom the2-enzymedigestby enzymesEl and E2, then thesegmentsin M are probably
contiguousandare separatedby sites for E2.

This rulemay be explainedby an example.Supposethereis a segmentof size12
in the completedigestby enzymeA andsegmentsof sizes2, 3, and7 in the com-
pletedigestby enzymesA and B. The n-enzymerule saysthat we may take this
asevidencethat the small segmentsarecontiguousin the structureandseparated
by sitesfor enzymeB. The n-enzymerule doesnot tell us the order in which the
threesegmentsappear.

4. The Model-driven Approach
This sectiondescribesthemodel-drivenapproachusedby GAl as well as manyof
the techniquesusedin implementingit. A comparisonof data-drivenandmodel-
driven approachesanda discussionaboutdeterminingtheir suitability for different
domainsis given in Section5.

4.1. Model-driven approachesin general
Feigenbaum[5] usesthe term “model-driven”5 to describean approachwhich
usesa generatorbasedon a model of the solution spaceto proposehypotheses.A
generatoris a procedurefor enumeratingthe elements of the solution space.
It is calledexhaustiveor completewhen it exhaustivelyenumeratesthe solution
space.Whenthe solution spaceis very large,anexhaustivemodel-basedapproach
dependson the useof effectivemethodsfor eliminating most of the hypotheses
proposedby the generator.This approachis also called the Generate-and-Test
paradigm.Whena generatorenumeratesthe spaceby refininggeneralhypotheses,
the approachmay be calledtop-down.

The term model-drivenshould not be confusedwith “model-based”,which refers to the use
of a model for variouspurposesin problem solving.
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4.2. Specificsof the model-driven approach
The following sectionsdiscussseveral aspectsof the GAl program. In addition
to the generator,which is central to the model-drivenapproach,datacorrection,
hypothesiselimination, and candidateevaluationwill be described.Severalof
thesetopicswill be consideredagainin Section5.

The main steps in GAl are shown in Fig. 4. Thefirst threestepsacquireand
correctthedataandset up constraintsfor the exhaustivegenerationof hypotheses.
The recursivegenerationcycle is where mostof the computationalwork is done.
All possiblehypothesesare systematicallyproposedandmostof themare elimin-
ated. At each iteration through the loop, a site or segmentis placed and the
relevantpruning rulesare applied.If the classis not pruned, the cycle is repeated
for the next site or segmentrecursively. Backtracking commenceswhenevera
hypothesisis acceptedor the current classof candidatescanbe ruled out. Thus,
the algorithmdoesnot proposecompletecandidatesandthen rule them out; the
rulesare appliedwithin the generatorto eliminatebranchesof the solution space
so that hypotheticalstructuresare usuallydiscardedbefore they are completely
specified.

I. Acquire input data.
(Digest data topology, tolerance, and other constraints.)

2. Check and correct input data.
(Data checking rules.)

3. Determine generator constraints.
(Potential sites and segments.)

4. t~enera)ionCycle: Alternately place a site and then
a segment. (This assures that
every hypothesis is considered,)

5. Apply canonical form rules.
(This assures that each hypothesis
is considered at most once. I

6. Apply prun ing rules.
(Eliminates contradictory classes
of candidates.)

7. Evaluation ofremaining hypotheses.

FIG. 4. Computationalstepsin GAl. Thegenerationcycle in steps4 through6 recursivelyassigns
sites and segmentsto a template (see Fig. 3) to specify hypotheses.Backtrackingfor alternate
assignmentsoccurswhenevera hypothesisis acceptedor a classof hypothesesis rejected.

In the sectionswhich follow, severalideaswill be discussedwhich are important
for model-drivenapproaches.Among these are the use of canonicalforms, the
useof pruningrulesbasedon datato limit the generationprocess,andthe useof
rules to check and sometimescorrect the input data. Many of the ideas and
techniquesare similar to ideasusedin the DENDRAL program[2], which gener-
ateschemicalstructuressatisfyingchemicalconstraints.

7
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4.2.1. Data-checkingrules
Threefactorscomplicatethe use of segmentationdatafrom the laboratory.

1. MISSINGDATA. Therearesometimessegmentsmissingfrom the laboratory
data. When an insufficient quantity of a segmentis present,it will not be
observed.Without a strongmodel,missingdatacanbe mistakenfor negative
data.

2. INSUFFICIENTRESOLUTION.Segmentsof nearlyidentical size may blur
togetherandbe observedas a single segment.This is causedby the limited
resolution of measurement.This may causesegmentsto be missing which
would appearin an “ideal” digest.

3. EXTRANEOUSDATA. These are extra segmentswhich appear in the
digestof a structurewhich would not appearunderideal digestconditions.
Thereare severalsourcesof extrasegmentsin the digest. For example,there
may be impurities, theremay be a mixture of structures,or a supposedly
complete digest may actually be incomplete. Without a strong model,
extraneousdatacanbe mistakenfor positivedata.

Thissectiondescribessomeof theruleswhich GAl usesto checkandsometimes
correctdatain segmentationproblems.

If a segmentwhich appearsin the completedigest for an enzymefails to appearin the
incompletedigestfor that enzyme,it maybeaddedto thelist of segmentsfor theincomplete
digest.

Thisis anexampleof a rulewhich canrepair the inputdata. Sincethe ideal results
of an incompletedigestioninclude cutting every combinationof the recognition
sitesfor an enzyme,the combinationof cutting all of the sitesshouldbe included
andthis correspondsto a completedigest.Whenthesesmallersegmentsfail to be
observed,it is usually becausethe segmentseparationand measurementpara-
metershavebeenoptimized to accuratelymeasurethe largersegments.

Perhapsthe mostuseful testfor digestconsistencyis the molecularweight test.
All of the sumsof the segmentsfor the completedigestsby oneor moreenzymes
should be equal. Eachcompletedigestrepresentsa decompositionof a structure
into non-overlappingsegments.If the sumsare notequal,thentheremustbe some
missing or extraneoussegments.This observationmay be characterizedas a
conservationlaw for massin the experiment.GAl alsohasrulespertainingto the
conservationof enzymesites.

Conservationlaws provideredundancyfor datacorrection.Whena discrepancy
arises,it is often possibleto usea “majority rules” logic to identify an inconsistent
pieceof data.The following rule illustratesthis idea.

If most of thecompletedigestsof one or moreenzymesyield a summedmolecularweight
of MW and thereis a digest(termedthe maverickdigest)which predictsa molecularweight
of MW’ whereMW’< MW, and if themaverickdigestcontainsa segmentof massequal to
MW—MW’, thenhypothesizethat thesegmentis anunresolveddoublet which should appear
twice in the maverickdigest.
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This rule incorporatesthe fact that segmentsof very close massare sometimes
unresolvedand a molecular weight discrepancycan often indicate the cause.
Even if no segmentequal to the massdiscrepancywas observed,it would be
possibleto hypothesizethat a segmentwasmissing. In that case,theremight be
less confidencein the conclusion becausethere would be no hypotheticalun-
resolveddoublet to explain the missingdata.

In summary, GAl uses a number of rules to detect and sometimes correct
inconsistenciesin the input data. This alleviatesproblemswith extraneousand
missingdata.Ruleswhich removeextraneousdataare usedbeforeruleswhich fill
in missingdata.More rulesfor checkingandcorrectingdataarelistedin Appendix
II.

4.2.2. Determiningpotentialsitesandsegments

Before the generationprocesscanbegin, GAl mustdeterminethe potentialsites
and segmentsfrom which to build the hypotheses.This processdetermines con-
straintsfor thegenerator.

The set of potential sites may be inferred from the I-enzyme complete digest
data. Sinceeachcompletedigestcuts the structureat eachof the sites,the number
of sites may be determinedfor eachenzymeby counting the segmentsleft after
cutting. For circular structures,the numberof recognitionsites for eachenzyme
is equal to the numberof segmentsappearingin the 1-enzymecompletedigest.
For linear structures,the numberof sitesis one less.

As discussedin Section 2.3, every segmentwhich appearsin an n-enzyme
completedigestmust appearin some 2-enzyme digest. GAl createsits set of
potential segmentsby collecting all of the segmentswhich appearin any of the
2-enzymecompletedigests.

In special cases,this method for determiningthe set of potential segmentsis
modified. If morethan two enzymesareused,thenmany of the segmentsin the
2-enzymecompletedigestswill be unessentialbecausethey have internal sites
for other enzymes.(It is not usually possibleto tell which of the segmentsare
essentialwithout generatingthe hypotheticalstructures.)However, if all of the
3-enzymedigestsare available,the essentialsegmentswill appearin the 3-enzyme
digestsbut manyof the non-essentialsegmentswill drop out. In otherexperiments
whereonly one enzymeis used,the segmentsfrom the I-enzymecompletedigest
are all that are needed.GAl usesthesecriteriato selecta minimum set of potential
segmentsfor the generationprocess.

An additionalconsiderationis the numberof timesthat a segmentmay appear
in a generatedstructure.If it can be determinedthat a segmentneedappearonly
oncein any hypothesis,the segmentis termed“unique” and the size of the set
of potential segmentscan be reduced.Rules for determiningthe uniquenessof
segmentsare listedin Appendix II.
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4.2.3.Symmetryand a canonicalformfor structures

Computing the equivalenceof hypothesesis complicatedwhen representation
techniquespermit morethanonerepresentationof a hypothesis.In segmentation
problems,“canonicalforms” may be definedthat specifywhich of the equivalent
representationsof a hypothesiswill be used.

The DNA structuresfor which GAl has beendesignedhave linear or circular
topologies.6Thesestructuresmay beconvenientlyrepresentedas lists,as in Fig. 3,
with some notationto indicatewhether the structureis closed to form a circle.
This representationdesignatesonesegment(Seg1) as a “startingsegment”for the
structure. If this designation is arbitrary, there will be several equivalent re-
presentationsfor a given physicalstructure.Fig. 5 showsa simple DNA structure
andtwo of its six possiblerepresentationsas lists startingwith a segmentlength.

a.

4~

b.

324
ACB

FIG. 5. (a) A simple circularDNA structure.The lettersA, B, and C standfor enzymerecogni-
tion sitesand thenumbersaresegmentlengths.

(b) Twoof its six representationsaslistsstartingwith asegmentlength.Therearesix representa-
tions becausewe can start with any of the threesegmentsand readoff thestructurein eitherof
two directions.

For linear structuresthereare two possibleorientations—eitherend may be
designatedas the starting segment.For circular structures,any segmentcould be
chosenas the starting segmentand thereare then two possibleorientationsonce
a startingsegmenthas beenselected.

GAl usessimilar canonicalforms for linear and circular structures.Given a
linear structure,GAl mustchoosebetweenthe given list and its reversal. GAl
choosesthe representationwhich minimizes the size of the starting segment.If
the first segmentis equalto the lastsegment,GAl minimizesthe secondsegment.

~ Although DNA exists in many more complicated shapes,segmentationexperiments deal
almost exclusively with structureshaving thesetopologiesor which may be idealizedas having
thesetopologies.

234
ABC
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Thisprocesscontinuesuntil GAl hasfoundan asymmetryat a segmentor until the
structureis completelysymmetric in its segments.In the latter case,GAl starts
over again,comparingthe alphabeticorder of the restrictionsitesstartingfrom the
endsof the structure. Finally, if the structureis completely symmetric in both
segmentsandrestrictionsites, it doesnot matterwhich of the two representations
is chosensincethey are indistinguishable.

For circular structuresthe processis similar. GAl tries to minimizethe starting
segment.This is done by picking the minimum segmentin the structure—except
that severalsegmentsmay be chosenif thereis a tie. Oncethe startingsegmentis
selected,GAl tries to minimize the subsequentsegments.Both orientationsof
the tied segmentsmust be considered.As with the linear canonicalform, ties
betweensegmentlengthsare resolvedby the alphabeticorder of the sitedesigna-
tions.

Given thesedefinitions of canonical form, two representationsin canonical
form correspondto the samephysicalstructureif and only if they are equal.

4.2.4, Using canonicalformsto limit generation

GAl generatesall structuralrepresentationsthat canbe put togetherfrom a given
set of sitesand segments.It does this by alternatelyplacing,oneat a time, first a
site and then a segment—buildingall possiblerepresentationsof structures.This
recursiveprocessinvolvesbookkeepingof sitesandsegmentsduringgeneration.

A desirableattributeof generatorsis that theybe irredundant,that is, that they
produceeachelementof the solution spaceexactlyonce. Whenan hypothesishas
severalpossiblerepresentations,an irredundantgeneratorshould produce only
the canonicalone.Unfortunately,it is not alwayspossibleto createanirredundant
generator.Given a completegeneratorof all possiblerepresentations,it is often
possibleto detectquite early that a class of hypotheseswill not be in canonical
form. GAl doesthis using a numberof canonicalform ruleswhich are described
below. Theserulesare very effective at eliminating non-canonicalhypotheses,so
that they rarely needto be eliminated from the outputof the generator.To make
GAl eliminate the remaining hypotheseshaving rare symmetries would slow
downthe commoncases.

Therules for pruning structuresnotin canonicalform are basedon topological
considerationsfor linear and circular structures.The following rule governsthe
selectionof a first segmentfor a circular structure.

If circular structuresare being generated,only the smallest segmentin the list of initial
segmentsshould be usedfor the first segment.

This rule follows immediatelyfrom the definition of circular canonicalform. The
next rule applieswhenthe secondsegmentis being placed.

If circular structuresare beinggeneratedandthe secondsegmentis about to beplacedand
it is thelargestof theremainingsegments,thenthis branchof thegenerationcan bepruned.
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Therepresentationsprunedby this rule cannotbe in canonicalform becausethe
reverseorientationwould generatea “morecanonical” structure.In otherwords,
considerthe representationwhich would result from reversing the final list of
segmentsand sitesstarting with the secondsegment.This correspondsto the same
physical structurebut the representationwould have a smaller secondsegment
and would thereforebe more canonical.Considerationsof combined rotations
andreorientationscanbe usedby rules to pruneat deeperpoints in the generation
process.Theserules andothersfor linear structures,are listedin Appendix 11.

4.2.5.Pruning rules

So far we havediscussedhow GAl constrainsits generationby limiting the output
of the generatorto canonical forms. When all redundantrepresentationsare
eliminated,the output of the generatoris still overtwo million structuresfor the
sampleproblem.This sectiondescribesthe use of pruning ruleswhich use digest
results to significantly reducethe numberof candidatesgenerated.

Experimentaldataoftenhavemissingor extraneoussegmentsdue to the difficul-
tiesand limitationsof measurement.If dataare incorrect,pruning rulesmayprune
usingincorrect information. For this reason,the sensitivity of eachof the rules
below to errorful data is important to consider. In the GAl program, the amount
of tolerablecontradictionbefore a candidateis eliminatedmay beadjustedby the
user(althoughit is typically setto zero). By settingthis to a positivenumbera user
may compensatefor a small amountof errorful data. This will preventa classof
candidatesfrom being discardedby a singleerrorful datum.This facility has not
beenusedmuch in practicebecausethe error-correctingruleshavebeenadequate.
For brevity in the ruleswhich follow, we will say “this branchmay be pruned”
whenwe meanthat theaccumulativenumberof contradictionsis increasedby one.
The current classof hypothesesis theneliminated if this is too great.

Thefirst step in the generationprocessis the selectionof the first segment.The
use of the canonicalforms to limit the selectionof the first segmenthas already
beenmentioned.The following rule is alsouseful in selectingthe first segmentfor
linearstructures.

When linearstructuresarebeinggenerated,only segmentswhich appearin some I-enzyme
completedigest shouldbeconsideredfor the firstsegmentof the structure.

The rationaleis that the first segmentis at anendof a linearstructureandtherefore
has only a single restrictionsite. Thus the segmentshouldappearnot only in the
n-enzymedigests, but also in some 1-enzymedigest. This rule will fail to prune
extraneoussegmentswhich happento appearin some 1-enzymedigest.It would
also pruneout a correctstructureif the end segmentcould not be observedin a
completedigest. In bothcases,however,thedata-checkingruleswould first detect
a molecular weight inconsistency.

One of the importantstructural constraintswhich can be inferred from the
digest data is which sites are permissible for terminating the segmentsin the
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structure. The following definition of “allowable termination sites” and rule
illustrate this.

The allowable terminationsites for a segmentare therecognition sites for thoseenzymes
in the2-enzymecompletedigestsin which thesegmentappears.(If thereis only oneenzyme,
thenonly its recognitionsitesare allowable.)

The following ruleusesthe list of allowablesites.

If a segmentis being placedand the previoussite is not one of the allowable siles for the
segment,then this branchof thegenerationmay be pruned.

Similar rulesareapplicablewhenasiteis aboutto beplaced.A strongerdefinition—
specifyingconditionsfor whencertainterminationsites mustbe used—isgivenin
Appendix II.

Pruningrulesbasedon allowableor requiredterminationsitescombineknow-
ledgeabouta previousstructuralelementin thehypothesiswith the observeddata
from the digeststo detect a pruning condition. It is possible to include more
context, that is, more of the hypothesisin this determination.Several rules in
GAl do this by usingthe summationof neighboringsegmentsto determinetheir
applicability.

Constraintsshouldgenerallybe tightenedasearly as possiblein the generation
process. The following rule involving the first segment of circular structures
illustratesthis.

If circularstructuresarebeinggeneratedandthefirst segmentin abranchof thegeneration
is uniqueandappearsin a I-enzymecompletedigestfor enzymeEl, thena recognitionsite
for El canbeplacedin frontof thefirst segment.(In other words,that site mayimmediately
beplacedasthe last site in the structure.)

The rationaleis that the segmentfrom the 1-enzymedigesthasthe samerecognition
site at bothends. Oneof thesesiteswill eventuallyhaveto appearat the far end
of the structure during the generation process. Allocating that site immediately
reducesby one the numberof sitesthat needto be consideredfor placementat all
of the intermediatestepsin the generation.

4.2.6.Evaluating the candidatestructures

After the generationprocesstherewill often be morethan one candidate.This is
expectedwhenthe evidenceis insufficient to discriminateamongthe hypotheses,
but there are other possiblecauses,First, extraneoussegmentsor coincidental
sumscancausesomeof the pruningrules notto be applied.Second,the pruning
rules do not use all of the evidencein all possibleways. As we go beyondthe
pruning rules implementedin GAl, the rules becomeincreasinglycomplex and
specialized.It becomesmoredifficult to provethe correctnessof such rulesandto
ensurethat theyare faithfully representedin theprogram.Forthesereasonsthere
is an evaluationphasefor GAl. For the problemstested so far, the numberof
candidatesleft after pruning for evaluationis usually less than five.
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For eachcandidateto be evaluated,GAl predictsthe ideal digestresults.Then
it comparesthe predictedresultswith theobservedlaboratoryresultsandcomputes
an ad hoc scoreto characterizethequality of thematch.

This scoreis a weightedsumover the segmentsin all of the availablelaboratory
digests.

SCORE = ~2 x (AGREE — MISSED) — EXTRA
All of the segments
in the digests

The scoringfunction aboveassignscredits for predictionswhich agreewith the
lab digestand penaltiesfor disagreements.The weighting reflects the fact that
segmentsare morelikely to be missingfrom a laboratorymeasurementthan to be
extraneous.Thus, a hypothesisshouldbe penalizedmorefor failing to predictan
observedsegmentthan for predictingan unobservedsegment.

We havenot done extensivetestswith the scoring function in an attempt to
optimize it. The qualityof the laboratorydatais such that it has very closeagree-
ment with the ideal data for a correctstructure.In addition, the numberof dis-
agreementsbetweenthe idealdigestsof two differentstructuresis usuallyconsider-
ableand increasesrapidly as the differencesare increased.Careful tuning of the
evaluationcoefficientshasnot beennecessary.

5. Al Issues:Choosinga SolutionMethod

One of the motivations for this casestudy is to gain a perspectiveon how the
problem-solvinggoals and the logic of a domain determinethe applicability of
alternativeproblem-solvingmethods.Some importantgeneral characteristicsof
domainsand methodsare listed in Table2. This sectionexaminescharacteristics
of the segmentationproblem domain and shows how they are important in the
selectionof a problem-solvingapproach.

In this section two approachesto hypothesis formation—model-drivenand
data-drivenwill becontrasted.In Section4 we introducedthe term model-driven
to describethe methodof usingan hypothesisgeneratorbasedon a modelof the
solution space. The term data-drivenhas been used to describea bottom-up
strategydatafor inferring hypothesesfrom datawithout agenerator.The ideais
to proposeonly thosecandidateswhich are suggestedby the data. One way to
view the difference betweenthesetwo approachesis in terms of indexing: the
data-drivenapproachstepsthroughthe data-spaceto proposehypothesesandthe
model-driven approach steps through the solution-spacechecking hypotheses
againstthe data.

The model-drivenanddata-drivenapproachesmay beviewedasextremepoints
ina spectrumof approaches.Many problem-solvingprogramscontainelementsof
both approaches.A data-drivenapproachto problemsolving is often intuitively
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TABLE 2. Characteristicsof domainsimportant in selectingproblemsolvingapproaches”

Characteristicsof Data
* Positivedata

(Data are observed)
Error-freedata
* Redundantdata

Characteristicsof Inferences
* Positiveinferences

(Hypothesis-forming)
* Generalinferences

(Broad inferences)
* Strong inferences

(Conclusive)
Unique chainof inferences

for each hypothesis

Goal Characteristics
* Find all solutions

Consistencyfor
every solution

* Negativedata

(Absenceof data is observed)
* Errorful data

Sparsedata

* Negativeinferences

(Hypothesiseliminating)
Specific inferences

(Narrow inferences)
* Weak inferences

(Suggestive)
* Severalchainsof inference

yield thesamehypotheses

Find one 5~’~tItiOfl

* Plausibility for

everysolution

In somecasestheleft and right columnsmaybe viewed asextremesof a spectrum.Asterisks
indicate thoseattributeswhich arecharacteristicof the segmentationdomain. Both positive and
negativeinferencesin this domain tendto be general.Negativeinferencestendto bestrongand
positive inferencestend to be weak. Although the raw data are errorful. theyare also redundant
and canbe reliably corrected.

appealingand the first considered.A model-drivenapproachsometimesseems
less intuitive—perhapsbecauseit operatespredominantlyby ruling out all of the
wronganswers.

In choosinga problem-solvingmethod,it is importantto examinethe character
of both the dataandtheinferenceruleswhich will be used.In this sectionwe will
seesomedifficulties with usinga data-drivenapproach,usingthe two rulesprevi-
ously described.

5.1. Sensitivityto missingdata

The performanceof any problem-solvingmethod is affected by missing data. In
the extremecase—nodataat all—methodsmustgeneratean unconstrainedset of
solutions.For segmentationproblems,thereis not enougha priori information to
afford any practicalenumerationof potentialstructures.(With no digestdataat
all, the solution spacewould be infinite sincethe numberof sitesin a structure
and the sizesof the segmentswould be indeterminate.)Choice of the generation
schemeand inferencerules determinesconsequencesof errors in the data.

The inference rules in the data-driven generation approachare sensitive to
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errorsin all of the digests.If segmentsare missing in anycompleteor incomplete
digest,somepossiblehypothesesmaynot be considered.The hypothesisgenerator
for the model-drivenapproachis less sensitiveto missing databecauseit requires
datafrom only the I-enzymeand 2-enzymecompletedigests.If dataare missing
from the otherdigests,at worst a few too manycandidatesmay be generated;in
many casesa few missingsegmentswill haveno ill effect at all.

5.2. Efficient useof thedata

A seconddifficulty with a purelydata-drivenapproachfor segmentationproblems
is that redundancyin the datacausesunnecessarycomputationalwork. This
effectincreaseswith problemsize andwith the amountof the data.

The numberof segmentsin anideal incompletedigest7for circular structuresis

N(N—1)+l

andfor linear structuresis
N(N+1)

2

where N is the numberof segmentsin the correspondingcompletedigest. Hence,
the numberof segmentsin an incompletedigest increasesquadraticallywith the
numberof segmentsin the correspondingcompletedigest.

Mostof thesesegments(exceptN of them which correspondto the individual
segmentsfrom the completedigest)could be usedby the incompletedigestrule.
However, in mostcasesonlyN of them are requiredto determinesegmentplace-
ment. The incompletedigestrule does not say how to selectfrom this excessive
data. Criteria for data selectionwould provide a middle ground betweendata-
drivenandmodel-drivenapproaches.

Unfortunately,it turns out that whendataare missing,selectionis harder.A
specificationwhich would cover all combinationsof missingdatawould be quite
complicated. Without this additional knowledge,a purely data-drivenapproach to
generationmustconsiderall ofthe evidencein order to avoidmissinga solution.The
cost of completenessis that it will do the mostwork whennoneof the dataare
missing.

Finally, the numberof inferencesthat can be drawn by eachapplication of
eitherof the data-drivenrules increasesexponentiallywith the numberof segments
in the summationset. Eachapplication of a rule to a segmentmay be used to
proposeany permutationof the segmentsin the summationset. Thus,the number
of inferencesis unwieldyfor rathermodestsets.Typically, thesamehypotheseswill
be generatedseveral timesby applying thetwo rules to different parts of the data.
In contrast,the model-drivenapproachconsiderseachcandidateat most once.

We are considering only those linear segmentscorrespondingto the model of digestion
discussedpreviously.In somecircumstances(e.g. “super-coiled”DNA) additional segmentsmay
appear,but theseare essentiallylaboratoryartifactswhich are removedfrom the data before
computation.Hence,they are not included in the discussion.
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5.3. Generalityand the useof negativeinference

Two types of inferencemay be distinguished—positiveandnegative.By “positive
inference” we meanusingdatato proposehypotheses;by “negativeinference”we
meanusing data to rule out hypotheses.For every domain two basic questions
shouldbeanswered.

How much evidenceis neededto infer that a hypothesisis true?

How much evidenceis neededto infer that ahypothesisis false?

Several researchershave been concernedwith quantifying the strength of
inferencesand the certaintyof hypotheses.This work seeksto quantify and use
measuresof certainty or belief in hypothesesaccordingto availableevidence.
Duda [4] reviews somerecentwork in this area.Sincethe pruning rulesusedby
GAl areall very reliable, sophisticatedtechniquesfor the accountingof certainty
havenot beennecessary.

The n-enzymeand incompletedigest rules are examplesof positive inference
becausethey propose structural hypotheses.Neither rule can unambiguously
determinemolecularstructure.Like the pruning rules in Section4.2.5,theserules
are generalbecauseeachapplication refers to a classof hypotheticalstructures.
For example, the n-enzymedigest rule statesthat somepermutationof a set of
segmentsis a substructureof a hypothesis;it doesnot determinethe orderof the
segments.

The generalityof theseinferenceshasimportantimplicationsfor the accumula-
tion of certainty.Sinceeachpositive inferenceleavesopenthe possibility of many
different substructures(the numberdependson the size of the set), it is possible
to createexamplesfor which there is an arbitrarily large amount of positive
evidenceconfirming a false hypothesis.Thus theseinferencesare weak and cer-
tainty for hypothesesdoesnot accumulatewith successivepositiveinferences.

In contrast,many of the negativeinferencerules in the segmentationdomain
are strong.Theserulesare basedon a theoryof segmentationwhich predictswhat
datashouldbe observedgiven ahypothesis.If the dataobserveddiffers from the
predictions,the hypothesismay be ruled out.

For negativeinference,generalityis an advantagebecauseit permits ruling out
classesof candidates.It is appropriateto ask how much negativeevidenceis
neededto rule out a hypothesis.A single contradiction is usually not enough
when thedataareerrorful. If errorsare rarein thedata,thecaseagainsta particular
hypothesisbecomessignificantlystrongerwith eachsuccessivenegativeinference.

The observationsaboutthe strengthof rules for positive andnegativeinference
may be summarizedas follows.

Rules for positive inferencehavethe most utility when they arehighly specific; rules for
negativeinferencehave the most utility whenthey are general.

Since all of the rules in the segmentationdomain are general,we are led to an
alternativestrategyto the data-drivenapproach.Insteadof using so much data
to drive positive inferences,we can use it insteadto drive negativeinferences.
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Candidatesare selectedby a processof elimination; we becomecertain that thet’
are correct throughour certainty that the otherpossibleanswersare wrong. This is
the model-drivenstrategyof using an exhaustivegeneratorof hypothesesand
effective rulesfor pruning its output.

5.4. Useof negativedata

In the datafor segmentationproblems,two kinds of datamay be recognized—a
segmentmay be observedor it may not be observed.Thus, the absenceof a
segmentin a digestmay be consideredas evidence. Both kinds of datamay be
usedfor both types of inference.

Reliability of datadependsonwhat kindsof errorsare common.If missingdata
are common,then negativedatawill be unreliablebecausemissing datacan be
misinterpretedas negativedata. If extraneousdata are common,then positive
datawill be unreliablebecauseextraneousdatacan bc misinterpretedas positive
data.

In segmentationproblems,extraneoussegmentsare rare while dataare fairly
often missing.Thus, for uncorrecteddigestdata, positive dataare more reliable
than negativedata. The datacorrectionand checking rulesdescribedin Section
4.2.1 usethe natural redundancyof digestdatato greatly improve the reliability
of bothpositiveandnegativedata.

5.5. Solution requirements

The following requirementssummarizesome conclusionsfrom the above con-
siderationsfor segmentationproblems.

1. The solution methodshouldgenerateall solutionswhich are consistentwith
the data. In this case,this meansrequiringall solutionswhich are not ruled
outby the data.

2. An improvementor increasein datashouldnotdegradeprogramperformance
measuredin terms of correctnessor time requirements.

3. The consequencesof errorful datashouldbe minimized.

4. A solution methodshouldmakeefficient useof the evidence.

6. Performance Evaluation

GAl has provento be fast andeffective for mostof the segmentationproblems
to which it hasbeenapplied.In somecasesit hasfound solutions overlookedby
human problem solvers. Sometimesit has reportedextra solutions which could
be ruled out by information not given to the program.The facility for checking
and correctinginput datahas beenuseful in catchingtyping errorsandhasoften
surprisedGAl’s users. As GAl has beenappliedto larger problems,it has been
necessaryto extendthe kinds of structuralconstraintswhich canbespecified.
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Table 3 summarizessome parametersof the performanceof GAl on three
laboratory experiments.The column labeled “Canonical Structures” indicates
the numberof canonicalstructures—computedas in the sampleproblem.In these
examples,only onecandidatewasgeneratedbecausethe pruning rules werevery
effective. In otherproblems,severalcandidatesreachfinal evaluation.

The amountof time requiredby GA! to do the calculationshas been broken
down into generationtime and evaluation time. Thesefigures show that the
computationtime is not linearlyproportionalto the numberof possiblehypotheses.
Generationtime is the time required to generatethe candidates—withsimul-
taneouspruning by the pruning rulesdiscussedalready.This will vary on different
problemseven if they havethe samenumberof canonicalstructuresbecausethe
rules are effective at different levels for different problems. Generationtime
increaseswhenthe tolerablenumberof contradictionsis increasedand whenthe
measuringtoleranceis increased.Evaluation time is mostly the time taken to
predictthe laboratoryresults but also includes the ranking of candidates.Varia-
tions in time of twenty to thirty percent,havebeen noticed and are due to the
time-sharedpagingenvironmentin which GAl is run.8

TABLE 3. Performanceof GAL on threeproblems~

Canonical Time (seconds)
Case structures Generation Evaluation

1 5 400 0.94 0.80
2 2 494 800 3.14 0.71
3 133 660 800 25.6 1.2

Time requirementsdependon the numberof possiblestructures,the availablelab results,the
resolutionof measurement,and knownstructuralconstraints.

GAl’s “sites and segments”structuralmodel is a well-establishedpart of the
theory of moleculargenetics.The limitation to linear and circular topologiesis
due to the natureof the plasmidsand viral DNA on which thesesegmentation
experimentsare performed.

TheGAl programhasbeentestedon aboutthirty problems.New pruning rules
and data-correctionrules have beenaddedas difficulties havebeenencountered
in laboratorydata.

As GAl has been applied to more complex segmentationproblems,it has
becomeclear that the humanproblem solversuse information not presentin the
digestdata. Thus, although GAl can solve in secondssmaller problemswhich
require minutes to hours for humansto solve, it could not narrow down the
possibilitieson someof the larger problems.The reasonfor this is that the geneti-
cistshavebiological information which providesadditionalstructuralconstraints

8 GAl is written in INTERLISP and is run on theSUMEX facility at Stanford.SUMEX has

a dual KI—lO computerwith 512K of memoryand usestheTENEX operatingsystem.
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not known to GAl. For example,previousexperimentsor independentbiological
evidencemay imply that certain segmentsmustbe adjacentor that a particular
segmentis at the endof a linearmolecule.GAl is beingextendedso thatadditional
constraintsaboutsegmentplacementcanbe specified.

7. Summaryand Comparison to DENDRAL
Segmentationproblemshavebeenused for a casestudyof alternativegeneration
strategies.This section attemptsto abstractandsummarizethe ideaswhich are
broadly applicableto many otherdomains.First, however,a comparisonto the
conceptuallysimilar DENDRAL program [2] will be given. The two domains
andprogramswill be examinedin order to highlight their similarities and differ-
ences.Thenthe main lessonsfrom the casestudywill be summarized.

7.1. Comparison to DENDRAL
GAl is similar in severalwaysto the DENDRAL program.Both programsinfer
structuresfrom fragmentationdataandgeneratethe structuresusinganexhaustive
generatoranda Generate-and-Testparadigm.Both programsevaluatethe candi-
datesusingmodelsof the fragmentationprocessanda scoring function.Mixtures
presentspecial problems in both domains.A general facility for dealing with
mixtures [10] was developedin DENDRAL and demonstratedfor the case of
mixtures of estrogens.Both programshaveevolved from usingconstraintsbased
solely on fragmentationdatatowardsusinggeneralstructuralconstraints.

Simplicity of the hypothesesin the segmentationproblem domain is largely
responsiblefor the relative simplicity of the GAl program as compared to
DENDRAL. An earlyversionof the DENDRAL program(acyclic DENDRAL)
considersstructureswhich are strictly trees. A newer DENDRAL program,
CONGEN, canhandlearbitrarycyclic graphs.(This advancein the DENDRAL
project was considereda major breakthrough.)GAl considersstructureswhich
are strictly linear or circular. The generatorin acyclic DENDRAL is complete
and irredundant;the generatorsin GAl and in CONGEN are complete,but
some non-canonicalcandidatesare discoveredonly after they havebeencom-
pletely generated.The piecesusedby the DENDRAL programare all atoms,have
various chemical valences,and can be put together in many ways which are
chemicallystable;the piecesusedby GAl areeitherDNA segmentsor recognition
sites, have “valence” oneor two, andmustbe put togetherso that segmentsand
sites alternate.There is no model of stability in GAl becauseall orderingsof
segmentsare stable. The difference in hypothesisstructuresimplifies symmetry
considerationsand is largely responsiblefor the fact that cyclic-DENDRAL
(CONGEN) requiredseveral man-yearsto develop and GA! required less than
two man-months.

The fragmentationrules in mass spectrometryyield the same kinds of con-
clusionsas thosein segmentationproblems,althoughtherearesomekey differences
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betweenthe domains.The rules for fragmentationin DENDRAL vary with the
chemicalclassbut thereis essentiallyonetype of fragmentation—analogousto an
incompletedigest.A massspectrumcorrespondsto incompletedigestinformation
becausethe fragmentsmay overlap.Mass spectrometryhasno analogto a com-
plete digestor to a multiple-enzymedigest. Thus, thereis no techniquein mass
spectroscopyto break a moleculeat one set of “sites” and then changesome
parameterto breakit at someotherset of distinct sites.In contrast,GAl’s frag-
mentationrules dependon enzymeswith different recognitionsitesto yield in-
dependentdecompositionsof the molecule. (When DENDRAL combines in-
formationfrom severalspectroscopictechniques,thesedo noteachgive a complete
decompositionof the moleculeinto fragments.)Theseindependentdecompositions
make it relatively easy to determinemolecular weight—a quite complicated
problemin themassspectrometrydomain [3]. Thedigestsalso provideredundancy
for a wide rangeof datacorrectioncapabilities.This makesthe use of negative
datareliablefor candidateelimination in segmentationproblems.

To summarize,GAl usesthe samegeneralframeworkthat DENDRAL uses—
Generate-and-Test.The simplicity of the symmetry considerationsin GAl wasa
largefactor in the overall simplicity of the program.Finally, the redundancyof
data in segmentationproblems makesdata correctionpossibleand permits the
reliableuseof negativedata.

7.2. Lessonsfrom thecasestudy
The choice betweenmodel-driven and data-driven approachesdependsboth on the problem

solving goals and the logic of the domain.

We haveconsideredthe choicebetweena data-drivenandmodel-drivenapproach
for segmentationproblems.One factor in the selectionis that the goal is to find
all of the solutionsthat are reasonablyconsistentwith the data.A secondfactor
is that the rulesof inferencein this domainare general(i.e. non-specific);this has
important implications on how the inferencesshould be applied in order to
accumulatecertainty.A third factor is that reliable rules for negativeinference
were available.If the goal were to find one solution—givenerror-freedataand
highly specific rulesof positive inference—adata-drivenapproachwould probably
havean advantageof speed.

It wasalso particularly convenientthat

(1) the constraintsfor the hypothesisgeneratorcould be easily inferred from
the digestdataand

(2) that the representationof the hypothesescould be uniform.
For model-driven generation an increase in data leadsto an improvement in performance.

That an increasein datashouldnot degradeperformanceis alwaysappealing
but less often achieved.In the model-drivenapproachto segmentationproblems
therulesof inferenceareorganizedsothat increaseddatayields increasedpruning—
thussatisfyingthis criterion. In thedatadrivenapproachto this problem,additional
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datamay yield (after additional computationalwork) only the samehypotheses
again. The additionof redundantdatadoesnot degradeperformancein a model-
driven approachbecauseit solves the problem by indexing through the solution
spaceinsteadof throughthe data.

Errorful data appearsevenin somesimpledomains.

This is perhapsobvious to anyonewho has built a program which usesreal
data, but it bears repeating.The rules usedby GAl are an illustration of the
possibilitiesfor categorizingerrors.The simple topologicalmodel andthe inherent
redundancyof the datacreateconsiderableopportunity for datacorrectionand
detection.

This study has discussedsomegeneral techniquesbut GAl is not a general program.

Somecommontechniquesandconsiderationsusedbothin GA! andDENDRAL
have generalapplicability. For example,the techniquesthat were useful in con-
junctionwith model-basedapproachinclude:

(I) the use of canonicalforms for efficiency in generation,

(2) pruningrules to eliminateclassesof candidatesand

(3) rules for the detectionandcorrectionof errorful data.

Given the striking similarities between the programs and problem solving
goals, it is reasonableto ask whethera generalprogramcould be written which
would cover both (and possibly other) domains.What seemsto be lacking is a
program to createthe irredundantgeneratorof hypotheses—givena description
of the nodesandarcsof thegraphsandsymmetryconsiderations.The factthat the
developmentof the theory behind the generatorin DENDRAL requiredseveral
yearssuggeststhat this would be a difficult task.
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Appendix I. Proposing New Laboratory Techniques

Sometimesthe explication of the logic of a domain for a computerprogramhas
additionalbenefitsbeyondthe creationof the applicationprogram. This section
describesa newlaboratorytechniqueinvolving completedigestionby oneenzyme

~ MOLGEN [7] is a joint project betweenthe Heuristic ProgrammingProjectand Genetics
departmentof StanfordUniversity, andthe ComputerScienceDepartmentof the University of
New Mexico.
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andincompletedigestionby another.In somecases,this new laboratorytechnique
can resolvestructural ambiguitieswithout the necessityof using an additional
enzyme.The idea for this techniquecame out at a discussionabout why GAl
could not discriminatebetweentwo structures.

Fig. 6 illustratestwo simpleDNA structuresfor which conventionaldigestion
techniquesyield the samesegments.However,an unconventionalapproachusing
completedigestionby enzymeB followed by incompletedigestion by enzymeA
yields discriminatoryresults as shown.The first structuremay be convertedinto
the secondstructureby rotating the 1 and 5 segmentsaroundthe recognitionsite
for enzymeB. Conventionaldigest results do not changewhen this rotation is
performed. The unconventionalapproachavoids this rotational ambiguity by
cutting~the Bsite beforethe incompletedigest.

a.

5 7

b. Complete Digests Incomplete Dige5ts

A: 763 A:161310976 3

B: 16 B: 16

A&B: 7531

C. Structure Unconventional Digests

16 15 11 10 8 7 5 3 1

Il. 16 15 12 11 10 7 5 4 3 1

Fiu. 6. (a) Two simpleDNA structures.The labelsA and B standfor enzymerecognitionsites.
StructureII is like structureI exceptthat the segmentsof length 1 and5 are reversed.

(b) Conventionaldtgestsresults.Theseresultsare the samefor both structures.

(c) Unconventionaldigestresultsusingcompletedigestionby enzymeB followed by incomplete
digestionby enzymeA. This techniquecandistinguishbetweenstructureI andstructureII without
introducinganadditional enzyme.

The techniquecould havebeensuggestedby the processof filling out all com-
binationsof digestparametersas shownin Table4. This tableshows that the new
techniquemay be viewedas the combinationof using an incompletedigestwith
morethanone enzyme.

Structure I Structure II

8
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There are many generalizationsof the above technique involving multiple
partial digestswith multiple enzymes.(Theresolutionof currentgelsfor separating
andmeasuringsegmentsis a limiting factor here.)Anothervarietyof segmentation
evidence requiring more sophisticatedequipment is two-dimensional analysis.
This involves the digestion of a sampleby one enzymeand separationof the
segmentsalong one axis, followed by the application of a secondenzymeand
separationalong a perpendicularaxis. Lederberghas speculatedon the utility of
combining complete and incomplete digestion with the use of 2-dimensional
analysis.For example,an incompletedigestionby oneenzymefollowed by com-
pletedigestionby the sameenzymealong the secondaxisyieldsa type of experi-
ment dataanalogousto metastabledatafor massspectrometry.

TABLE 4. Proposednew digestion techniques

1-dimensionalEnzymeAnalysisa

Complete Incomplete
Digest Digest

conventional conventional
conventional New

2-dimensionalEnzymeAnalysisb

Complete Incomplete
Digest Digest

1-enzyme conventional New (analogousto metastables
in massspectroscopy)

conventional New

a This table illustrates the combinations of usingcompleteor incompletedigestionwith one or
moreenzymesin theI-dimensionalanalysistechniquesdiscussedin this paper.Theunconventional
digestis the combination of incompletedigestionwith useof morethan oneenzyme.

b The samecombinationof techniquescan be usedin 2-dimensionalenzymeanalysis.This
leadsto two new techniquesfor digestion.Oneof thesetechniquesis analogousto “metastable
scanning”in massspectroscopy.

Oneof the longterm goalsof the MOLGEN projectis to exploretechniquesfor
invention and discovery. A working paper [6] discussessome examplesof this
in the contextof a recentgeneticsexperiment.

Appendix II. Rules for SegmentationProblems

Thisappendixlists the ruleswhich makeup the problem-solvingknowledgein the
GAl program. The term “rules” is usedbecauseof the productionrule format

1-enzyme
n-enzyme

n-enzyme
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in which theseentriesmaybe described.Eachentry describesthe conditionsunder
whichaninferencemay bemade.Severalof theseruleshavealreadybeendescribed
in the text. The geneticsjustification of theserules will notbe givenhere.All of
the rulesexceptfor the data-driven(D) rules areimplementedin the GAl program
asLISP expressions.

Rulesfrom the Data-Driven Approach

Rule Dl. If a segmentfrom the incomplete digest for enzymeEl equalsthe sumof a set M
of segmentsfrom the complete digest by the same enzyme, then the segmentsin M are
probablycontiguousin thestructureandareseparatedby sitesfor enzymeEl.

Rule D2. If a segmentfrom the 1-enzymedigestfor enzymeEl is equalto asumof a setM
of segmentsfrom the 2-enzymedigestby enzymesEl and E2, then the segmentsin M are
probablycontiguousin the structureandareseparatedby recognitionsites for enzymeE2.

Rule D3. If a segmentfrom the2-enzymedigestfor enzymesEl andE2 is equal to a sum
of a set M of segmentsfrom the 3-enzymedigest by enzymesEl, E2, and E3, then the seg-
mentsin M are probablycontiguousin the structureand are separatedby recognitionsites
for enzymeE3.

Rulesfor SegmentUniqueness

Rule UI. If no segmentappearsmore than oncein the list of potential segmentsat the
beginningof the generation process,then every segment is a unique segment.

Rule U2. Everysegmentlarger thanhalf the molecular weight is unique.
Rule U3. If a segmentappearsmore thanonce in any 2-enzymeor 3-enzymecomplete

digest,then that segmentis not unique. (It may be repeatedin the structure.)
Rule U4. If a segmentwhich is repeatedin the list of potential segments appearsin the

1-enzymedigest for enzyme A and only in n-enzyme digests which include A (but is not
repeated more than oncein anyof these),then the segmentis unique.

Data Checkingand CorrectingRules
Rule Cl. If a segmentwhich appearsin the completedigestfor anenzymefails to appear

in the incompletedigest for that enzyme,it may be addedto the list of segments for the
incomplete digest.

Rule C2. Every segmentwhich appears in a complete digest involving three or more
enzymesmust appear insomecompletedigest involving only two of the enzymes.

Rule C3. All of thesumsof the segmentsfor the completedigestsby one or more enzymes
shouldbeequal.Let MW be the molecularweight(sumofsegments)predicted by the majority
of the completedigests.

Rule C4. For circular molecules, the number of segmentsexpectedin every n-enzyme
completedigestis the sumof the numbersof segmentsfrom the 1-enzymedigests;for linear
molecules,the number is one less. (This rule is one form of a law for the conservationof
recognitionsites.)

Rule C5. If the sumsof all the completedigests are equal but the number of segmentsin
somen-enzymecompletedigest is less than the numberof segmentspredictedby Rule C4,
then hypothesizethe existenceof therequirednumberof small unobservedsegments.

Rule C6. If there is a digest (termed the maverick digest) which predicts a molecular
weight of MW’ whereMW’ < MW and if the maverickdigestcontainsa segmentof mass
equal to MW—MW’, then hypothesizethat the segment is an unresolved doublet which
shouldappeartwice in the maverick digest.
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Rule C7. If thereis an n-enzymecomplete digest (termed the maverickdigest) which
predicts a molecularweight of MW’ whereMW’ < MW andif the numberof segmentsin
the maverick digest is less than the number predicted by Rule C4, then hypothesizean
unobservedsegmentequal to MW—MW’.

Rule C8. If circular structuresare beinggeneratedand there is a segmentof size X in an
incompletedigest (andX is not known to beanextraneoussegment),then thereshould also
be a segmentwhosesize is the differenceMW—X.

Rule C9. Rulesfor removingextraneoussegmentsshould beusedbeforethosefor inserting
missingsegments.

Rule ClO. If thereis a maverickdigest which predictsa molecular weight of MW’ where
MW’ > MW and if there is a segmentin the maverickdigest whosemass is equal to MW’—
MW, then hypothesizethat thesegmentis extraneous.

Rule CII. If thereis a maverickdigestwhich predictsa molecularweight of MW’ where
MW’ > MW and if thereare segmentsin the maverickdigest equal to the sum of other
segmentsin the digest,thenhypothesizethat thedigestion is incomplete.(If removal of some
of thesesegmentswill correctthemolecularweightdiscrepancywhile preservingtheexpected
numberof segments,then removethesegments.)

Rule C12. If a segmentappearsin the completedigest of N enzymeswhich is larger than
any segmentwhich appearsin thedigestsof any N—I of the enzymes,thenhypothesizethat
the segmentis extraneous.

Rule C13. If a segmentof size X appearsin thecompletedigestfor enzymeEl andif there
is a 2-enzymecompletedigest for enzymesEl and E2 in which thereis no setof segments
whosesumis X, thenreport that eitherthetoleranceis toosmallor thedigestsareinconsistent.

RuleC14. If asegmentof sizeX appearsin theincompletedigestfor enzymeEl andif there
is no set of segmentsin the completedigest for enzymeEl whosesum is equal to X, then
either thetoleranceis toosmall or X is anextraneoussegment.

Rule C15. If linear structuresare being generated,then every 2-enzymecompletedigest
must contain two segmentswhich also appearin one or the other of the corresponding
1-enzymecompletedigests. (Thesearethe endsegments.)

Rule C16. No incompletedigest shouldcontainanysegmentwhich is smaller thanall of
the segmentsfrom the corresponding1-enzymecompletedigest.

CanonicalForm Rules

Rule F]. If a linear structureis being generated,the largest segment in the initial list
should not be usedas thefirst segmentin thestructure.

Rule F2. If linear structuresare being generatedandall of the remainingsegmentsto be
placedare less than thefirst segmentand themassof thestructureis less than themolecular
weight (so that at leastone of them will be placedin thestructure),then this branchof the
generationprocesscan bepruned.

Rule F3. If circular structuresare beinggenerated,only the smallest segmentin the list of
initial segmentsshould be usedfor thefirst segment.

Rule F4. If circular structuresare being generatedand thesecondsegmentis about to be
placedand thereare severalsegmentsto be placedand the segmentis the largest of the
remainingsegments,then this branchof thegenerationcan bepruned.

RuleF5. If circularstructuresare beinggeneratedand a segmentequalto thefirst segment
is aboutto beplacedand thetotal massis less thanthemolecularweight(so that at leastone
moresegmentwill be placed)and all remainingsegmentsare less than the secondsegment
of the structure,thenthis branchof the generationmay be pruned.

Rule F6. If circular structuresare beinggeneratedanda segmentequal to thefirst segment
is about to be placedand the previoussegmentis less than the secondsegment,then this
branchof the generationmay be pruned.
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Pruning Rules

Rule P1. If linear structuresare being generated,then only segmentswhich appearin
someI-enzymecompletedigestshould be usedasthefirst segmentof thestructure.

Rule P2. If linear structuresare beinggeneratedand the user hasindicateda set of end
segments,then the minimum segmentin this set should be usedasthe first segmentin the
structure.

Definition P3. Allowable sitesfor segments.Recognitionsitesareallowablefor terminating
asegmentonly if thesegmentappearsin the2-enzymecompletedigestsfor thecorresponding
enzymes.(If thereis only one enzymein the experiment,then only its sites at-c allowable.)

Rule P4. If asegmentis aboutto beplacedandtheprevioussite is not oneof theallowable
sites for this segment,thenthis branchof the generationmay be pruned.

Rule P5. If a site is about to be placedand it is not an allowable site for the previous
segment,then this branchof the generationmay be pruned.

Definition P6. Requiredterminationsites for segments.If only oneenzymewas usedin the
experiment,thenthesite for that enzymeis requiredfor everysegment.If two enzymeswere
used,thenfor each segmentwhich doesnot appearin a I-enzymedigest, both enzymesites
are required.If threeor more enzymeswere used,then for eachsegmentwhich appearsin
exactly one 2-enzymecompletedigest, the sites for theenzymesinvolved in that digest are
both required.

Rule P7. If a segmenthavingrequiredsites is about to be placedand the previoussite is
not one of them, thenthis branchof the generationmay bepruned.

Rule P8. If a site is about to be placedandthe previous segmenthas required sites and
this site is not oneof them, thenthis branchof the generationmay bepruned.

Rule P9. If a site is about to be placedand the previoussegmenthas two required sites
and theprevioussite is oneof the two requiredsites but this site is not the other one, then
this branchof the generationmay bepruned.

Rule PlO. If a segmentis about to be placedwhich would increasethemassof thecurrent
structureto be greaterthan the expectedmolecularweight and thereare moresites to be
placed,then this branchof the generationmay be pruned.

Rule P11. If circular structuresare being generatedand the first segmentis uniqueand
appearsin the 1-enzymecompletedigestfor enzymeEl, thena recognitionsite for El canbe
placedin front of the first segment.

Rule P12. If linear structuresare being generatedand a segmentis about to be placed
which is on thelist of user-suppliedend-segmentsand therearemore sitesto beplaced,then
this branchof the generationmay be pruned.

DefinitionP13. Allowable inter-sitesegments.For recognitionsites El and E2, a segment
is said to beallowablebetweenEl andE2when it appearsin the appropriatedigests.Specifi-
cally, if El is distinct from E2, the segmentmust appearin the 2-enzymecompletedigest
involving El and E2. Otherwiseit mustappearin the I-enzymecompletedigest for El.

RuleP14. If a site El is aboutto be placedand thereis anothersite E2 precedingit in the
structure(andthereis nosite equalto El or E2betweenthem)and thesumof theintermediate
segmentsis not an allowable segmentfor El and E2, then this branchof the generationmay
be pruned.

Definition P15. An incompletedigest is said to be “ideal” if it has the right number of
segmentsandeachof thesegmentsequalsthesumof a setof segmentsfrom thecorresponding
completedigest. (The numberof segmentsexpectedin an ideal incompletedigest is given in
Section 5.2.)

Rule P16. If the incompletedigestfor enzymeEl is ideal and thereis a sum of segments
betweenEl sites which doesnot appearin theidealdigest, then this branchof the generation
may be pruned.
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