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ABSTRACT

The analysis of DNA structure from restriction enzyme segmentation data has been viewed by
molecular geneticists as one of their simpler analysis problems. This paper treats seqgmentation
problems as a case study in the selection between data-driven and model-driven hypothesis formation.
The main purpose of this paper is to set forth some useful considerations for selecting a problem
solving approach according to the characteristics of a domain. The case study illustrates why an
exhaustive model-driven approach, which operates primarily by ruling out all the wrong answers, is
a good approach for this domain. A program called GAl solves segmentation problems using tech-
niques similar to those used in the DENDRAL program.
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1. Introduction

A common task in molecular genetics laboratories is the analysis of DNA structure
from restriction enzyme segmentation data. This task is one of the simplest,
although time-consuming, analysis tasks in molecular genetics. It is described in
Section 2.

The thrust of this paper is to examine the import of selecting different problem
solving approaches. This paper characterizes the segmentation problem domain
and compares a data-driven strategy to a model-driven strategy for forming
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hypotheses. The model-driven approach has been used in several Artificial Intelli-
gence applications including chemical analysis [2], machine learning of mass
spectroscopy rules [8], and machine vision [9]. This paper seeks:
(1) to quantify some advantages of this approach for this domain,
(2) to identify some general characteristics of probiem domains on which the
selection of this approach is based and
(3) to discuss some representation and programming ideas which are useful
for implementing it.

It will be shown that the best way to determine the answers in segmentation
problems is to use an exhaustive model-driven approach which operates primarily
by ruling out the wrong answers. This research has led to the development of an
application program named GA1' which usually solves problems in a few seconds
and requires less laboratory work than is customarily done.

A secondary benefit from the explication of the problem-solving knowledge is
that some new laboratory techniques have been proposed. They are described in
Appendix 1.

2. Segmentation Problems

One of the hurdles in understanding Artificial Intelligence applications is the
terminology of task domains. An attempt has been made to minimize the amount
of technical terminology in the following example so that it will be easy to read.
A few genetics terms will be introduced as needed.

2.1. A sample problem
To describe a segmentation problem, it is easiest to begin with the answer. Fig. 1
illustrates a circular DNA structure. Each of the numbers represents the size
(in arbitrary units) of a segment in a DNA structure. The labels (e.g. Eco RI)
represent enzyme recognition sites. When an enzyme is used to cut or “digest”? a
DNA structure, it will cut at specific recognition sites.> The problem solution
describes a sequence of segments separated by recognition sites which best explains
the laboratory data. These data are produced by cutting the whole DNA structure
with enzymes and measuring the possibly overlapping segments.

An analogy might make the problem easier to visualize. The segment lengths
may be likened to lengths of chain and the recognition sites may be likened to
locks with keys. The solution to the sample problem is analogous to a circular

! The name “GA1" was chosen to indicate that this program is the first in a series of “Geneti-
cist’s Assistants,”

2 Digestion refers to the action of breaking apart the DNA molecules. The terminology “en-
zyme digestion” is a carry over from the first enzymes that were studied—those involved in the
digestive system.

® This recognition of sites corresponds to a physical template matching process. Each enzyme
cuts when it recognizes a specific sequence of nucleotides in the DNA molecule.
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chain composed of smaller chains locked together in a particular order (Fig. 2). In
these terms the solution to the sample problem has six locks and three different
keys (B, H, E). At the beginning of the experiment we are given a box of identical
circular chains. We are not permitted to see the chains, but may dispatch an
assistant with one or more keys (and possibly a time limit) to go to the box and
unlock the corresponding locks. The assistant may report back the lengths of the
chain pieces that are left after the unlocking operations. The goal is to infer the
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FiG. 1. Solution to the sample problem. The numbers indicate masses of the DNA segments
{measured in megadaltons) and the labels (Bam, Hind III, Eco RI) show the recognition and
cutting sites for the enzymes.

FiG. 2. Locks and chains analogy. The locks sites can be opened with appropriate keys and
correspond to enzyme recognition sites. The chains correspond to linear segments of DNA
molecules which can be observed when the locks have been opened. The goal is to infer the
configuration of the chain from the record of segments observed after different kinds of unlocking
operations.
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original configuration of the chains from the pieces that are ob<erved after different
unlocking operations.

Returning to genetics terminology, the enzymes may be used singly (called
l-enzyme digests) or in combination (r-enzyme digests) to cut an unknown DNA
structure. Table 1 shows the segment sizes that were measured after enzyme
digestion in the sample problem. These are the input data for the segmentation
problem. The goal is to infer plausible DNA structures from the digest data.

TaABLE 1. Input Data for the Sample Problem®

Enzyme(s) Segments observed after
enzyme digestion

Hind IIT 3.82 .18

Bam 2.35 1.65

Eco RI 31

Hind III & Bam 235 1.2 .27 .18

Hind IIT & Eco RI  1.87 1.0 .95 .18

Bam & Eco RI 1.6 1.4 .75 .25

¢ Segment sizes are expressed in megadaltons—a unit of mass approximately equal to 1.66 10— 1%
grams. The resolution of measurement for this experiment was one percent. These data were

provided by Jerry Feitelson.

Because of combinatorics, the sample problem was considered to be too difficult
to solve from the available data. An additional digest involving all three enzymes
was subsequently performed and an answer was determined after an hour’s work.
The manual solution did not include testing the answer for uniqueness. GA1l
subsequently solved this problem in about one second and verified that the answer
was unique. The program was also able to solve the problem without the additional
digest data in approximately three seconds.

2.2. Genetics background
Much of the recent progress in molecular genetics relies on techniques for structural
analysis of DNA. Several analytical techniques are available for determining gross
or fine structural information. The techniques described in this paper are useful
for determining structure at a level that is coarser than nucleotide structure but
finer than gene structure. Study of structure on this level is a common step in many
experiments involving recombinant DNA [1]. These experiments involve careful
splicing together of DNA from different sources to study gene expression in
microorganisms. Most of these experiments involve splicing the genes into small
linear and circular DNA molecules termed ‘““vectors.” Structural analysis is
performed both before and after the splicing operations.

Different kinds of enzyme digestions are used for the analyses. An enzyme
digestion may be either complete or incomplete. In a complete digestion, all sites
in the DNA molecules which are recognized by the enzyme are cut. “Incomplete
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digestion” means a limited application of an enzyme. After an incomplete digestion,
the sample will contain a mixture of segments resulting from the random cleavage
of the DNA molecules at the recognition sites. Under ideal conditions, segments
resulting from every possible combination of cuts at the recognition sites can be
observed.

Complete digests are useful in determining the composition of a structure in
terms of enzyme sites and segments. The number of sites can be determined from
the number of segments of a complete digest combined with the knowledge of
whether the structure is linear or circular. Although a complete digest by one
enzyme determines the sizes of the segments and the total molecular weight, it
does not determine the order of the segments. An incomplete digest can be helpful
in determining the order of segments since segments corresponding to the sum of
neighboring segments will appear in the digest. This is explained further in Section
3.2.1.

Digests may also be described as l1-enzyme or n-enzyme digests depending on
the number of enzymes involved. In an n-enzyme complete digest, the DNA will
be cleaved at all of the sites recognized by any of the restriction enzymes used in
the digest. Enzymes are chosen so that particular genes are cut or not cut. When
segment sizes are similar in size, digestion data may not determine segment orienta-
tion and placement unambiguously. In such cases, additional enzymes are some-
times introduced which may cleave the segments asymmetrically. The 3-enzyme
digests constrain the problem by indicating which of the segments in the 2-enzyme
digests have uncut sites. Most experiments involve only four or five restriction
enzymes and most digestions involve no more than three enzymes.

After the digestions have been carried out, the lengths or masses of the segments
are measured. There is always a limiting resolution in this measurement—given
as one percent in the sample problem. This may be as high as ten percent in some
experiments. Because of the ubiquitous requirement to specify the resolution of
measurement, it gets rather tiresome to repeat these qualifications. For the sake
of brevity, we will say that two measurements are “‘equal” when they are “equal
within tolerance.” Similarly we will refer to the “sum of segments” to mean the
sum of their masses or lengths.

2.3. Combinatorics of the sample problem
The number of possible answers in segmentation problems depends on the number
of segments in the digests and on the resolution of measurement in the experiment.
GAI1 has been applied to problems having several billion potential solutions in
the solution space. It will be seen that the sample problem, which is much simpler
than most of the segmentation problems to which GA1 has been applied, has a
solution space of over two million possible answers.

The description of the solution space for the sample problem is given in
three steps. First, the l-enzyme digest results are used to develop a template
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(Fig. 3) for the possible answers. Then an argument is given that only segments
from the 2-enzyme digests need be used in filling in the template. Finally, it will be
shown that some of the segments in the 2-enzyme digests can be ignored.

The l-enzyme digests in the sample problem each yield two segments after
digestion. For circular structures, this means that each enzyme cuts the molecule
exactly twice. Since the recognition sites were known to be unique, the sample
problem must have six recognition sites—two for each of the three enzymes. (If
it had not been known before the experiment that the sites were unique, this could
be inferred from the fact that the segments in l-enzyme digests are different for
the different enzymes). For a circular structure, the number of sites must equal
the number of segments. This means that the solution to the sample problem must
have six sites and six segments as shown in the template in Fig. 3. This template
defines the solution space.

Seg; Segy Segy Seg, Segg Seg6

sitey sitey site3 sitey site‘,5 siteé

F1G. 3. Template for hypotheses in the sample problem. The space of possible hypotheses may be
generated by assigning sites and segments to this template.

Each segment in a solution is bounded by two recognition sites—one at each
end. Thus, every completely digested segment will be severed from the structure
when these two enzymes are applied and must appear in some 2-enzyme complete
digest—no matter how many enzymes are used in the experiment. In the data from
the sample problem, twelve segments appear in the 2-enzyme digests. Thus, every
solution corresponds to an arrangement of six of the twelve segments in the six
positions of the template.

Finally, it is possible to show that no hypothesis need be considered which uses
any of the segments in the sample problem more than once. Reasoning about the
uniqueness of segments generally involves the measurement tolerance. In this
problem, the only segment which is repeated in the 2-enzyme digests is the 0.18
segment. This segment appears in all of the digests involving the enzyme Hind III.
Since this segment appears in the Hind III complete digest, it has a Hind III site
at each end. If this segment had an uncut site for some other enzyme, then a
smaller segment would appear in one of the 2-enzyme digests. The absence of any
smaller segment allows us to trim down the number of possible segments to
eleven.

The order of the sites and segments on the template is not known. This yields

! 6! 1

— % 6! == 2 494 800 structures.
6!5!

!X e X
21x2!x2! 12

The first term is the number of ways to select six of the eleven unique segments;
the second term counts the permutations of assigning these segments to Seg |
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through Seg 6; the third term counts permutations of the six sites to Site 1 through
Site 6 (allowing for the fact that each enzyme must have two recognition sites).
The division by 12 accounts for circular symmetry since each structure is re-
presented twelve times—allowing for six starting places (Seg 1 through Seg 6) and
two possible orientations. A similar analysis can be given for problems where the
hypothesized molecule is linear.*

If an additional laboratory step is performed in the sample problem—the
simultaneous digestion by all three enzymes—the number of potential segments
to be placed is reduced from eleven to six. This extra laboratory step reduces the
number of possible structures to 5400. The manual solution to the sample problem
used the extra laboratory step to reduce the combinatorics. The existence of
programs like GAl means that the trade-off can be made in the other order to
save laboratory time.

3. The Data-driven Approach
Laboratory geneticists typically do not use a formalized algorithmic approach
to solving structural problems. Often they examine the data to see what structures
are suggested. The first (and, as it turns out, inadequate) approach, termed the
“data-driven” approach, attempts to capture this idea. This approach is described
here because its faults help clarify the requirements for a better method.

3.1. Data-driven approaches in general

The term data-driven will be used to describe a strategy for inferring hypotheses
from data. This approach is also called bottom-up and it will be contrasted with a
model-driven approach which uses a generator (based on a model of the solution
space) to propose hypotheses.

3.2. Specifics of the data-driven approach

There are two main methods for inferring structure from data in this domain.
The first uses the information from incomplete digests to propose that specific
segments are contiguous in the solution. The second method uses 2-enzyme and
3-enzyme digest information for this purpose.

3.2.1. Reasoning from incomplete-digest data
Since an incomplete digest employs only a limited application of an enzyme, many
structures in the sample will have some of their recognition sites still intact. When
the resulting segments from an incomplete digest are compared to those from a
complete digest by the same enzyme, many segments can be observed in the
4 For linear molecules, the ends of the molecule provide unique origins. In such cases the
analysis may be simplified by decomposing it into separate analyses for each pair of enzymes.
The separate solutions may then be merged. This strategy is seldom useful for circular molecules
because such unique origins are not usually available.
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incomplete digest which are equal to the sum of various segments from the com-
plete digest. This suggests the incomplete digest rule:

If a segment from the incomplete digest for enzyme El is equal to a sum of a set M of
segments from the complete digest by the same enzyme, then the segments in M are probably
contiguous in the structure and are separated by sites for enzyme E1.

For example, suppose that the complete digest by an enzyme includes the
segments 3, 4, and 6, among others, and the incomplete digest by the same enzyme
has a segment of size 13. The incomplete digest rule could be used to propose that
the segments 3, 4, and 6 are contiguous.

3.2.2. Reasoning from n-enzyme digest data
The incomplete digest rule does not tell how to combine digestion results when
several enzymes are involved. Complete digests by different enzymes yield different
decompositions of the starting structure. When a structure is digested to com-
pletion by several restriction enzymes, the segments produced after digestion by
the first enzyme are cut at the sites recognized by each subsequent enzyme.

The simplest case of the n-enzyme rule is the 2-enzyme rule.

If a segment from the 1-enzyme digest for enzyme El is equal to a sum of a set M of seg-
ments from the 2-enzyme digest by enzymes E1 and E2, then the segments in M are probably
contiguous and arg separated by sites for E2.

This rule may be explained by an example. Suppose there is a segment of size 12
in the complete digest by enzyme A and segments of sizes 2, 3, and 7 in the com-
plete digest by enzymes A and B. The n-enzyme rule says that we may take this
as evidence that the small segments are contiguous in the structure and separated
by sites for enzyme B. The n-enzyme rule does not tell us the order in which the
three segments appear.

4. The Model-driven Approach
This section describes the model-driven approach used by GA1 as well as many of
the techniques used in implementing it. A comparison of data-driven and model-
driven approaches and a discussion about determining their suitability for different
domains is given in Section 5.

4.1. Model-driven approaches in general

Feigenbaum [5] uses the term “model-driven”® to describe an approach which
uses a generator based on a model of the solution space to propose hypotheses. A
generator is a procedure for enumerating the elements of the solution space.
It is called exhaustive or complete when it exhaustively enumerates the solution
space. When the solution space is very large, an exhaustive model-based approach
depends on the use of effective methods for eliminating most of the hypotheses
proposed by the generator. This approach is also called the Generate-and-Test
paradigm. When a generator enumerates the space by refining general hypotheses,
the approach may be called top-down.

5 The term model-driven should not be confused with “model-based”, which refers to the use
of a model for various purposes in problem solving.
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4.2. Specifics of the model-driven approach

The following sections discuss several aspects of the GAl program. In addition
to the generator, which is central to the model-driven approach, data correction,
hypothesis elimination, and candidate evaluation will be described. Several of
these topics will be considered again in Section S,

The main steps in GAl are shown in Fig. 4. The first three steps acquire and
correct the data and set up constraints for the exhaustive generation of hypotheses.
The recursive generation cycle is where most of the computational work is done.
All possible hypotheses are systematically proposed and most of them are elimin-
ated. At each iteration through the loop, a site or segment is placed and the
relevant pruning rules are applied. If the class is not pruned, the cycle is repeated
for the next site or segment recursively. Backtracking commences whenever a
hypothesis is accepted or the current class of candidates can be ruled out. Thus,
the algorithm does not propose complete candidates and then rule them out; the
rules are applied within the generator to eliminate branches of the solution space
so that hypothetical structures are usually discarded before they are completely
specified.

. Acquire input data,
(Digest data, topology, tolerance, and other constraints.)

2. Check and correct input data,
(Data checking rules.)

3. Determine generator constraints.
{Potential sites and segments. )

4, Generation Cycle: Aiternately place a site and then
a segment. {This assures that
every hypothesis is considered, }

5. Apply canonical form rufes.
{This assures that each hypothesis
is considered at most once, }

6. Apply pruning rules.
(Etiminates contradictory classes
of candidates. }

7. Evaluation of remaining hypotheses.

F1G. 4. Computational steps in GA1. The generation cycle in steps 4 through 6 recursively assigns
sites and segments to a template (see Fig. 3) to specify hypotheses. Backtracking for alternate
assignments occurs whenever a hypothesis is accepted or a class of hypotheses is rejected.

In the sections which follow, several ideas will be discussed which are important
for model-driven approaches. Among these are the use of canonical forms, the
use of pruning rules based on data to limit the generation process, and the use of
rules to check and sometimes correct the input data. Many of the ideas and
techniques are similar to ideas used in the DENDRAL program [2], which gener-
ates chemical structures satisfying chemical constraints.

7
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4.2.1. Data-checking rules
Three factors complicate the use of segmentation data from the laboratory.

1. MISSING DATA. There are sometimes segments missing from the laboratory
data. When an insufficient quantity of a segment is present, it will not be
observed. Without a strong model, missing data can be mistaken for negative
data.

2. INSUFFICIENT RESOLUTION. Segments of nearly identical size may blur
together and be observed as a single segment. This is caused by the limited
resolution of measurement. This may cause segments to be missing which
would appear in an “ideal” digest.

3. EXTRANEOUS DATA. These are extra segments which appear in the
digest of a structure which would not appear under ideal digest conditions.

. There are several sources of extra segments in the digest. For example, there
may be impurities, there may be a mixture of structures, or a supposedly
complete digest may actually be incomplete. Without a strong model,
extraneous data can be mistaken for positive data.

This section describes some of the rules which GA1 uses to check and sometimes

correct data in segmentation problems.
If a segment which appears in the complete digest for an enzyme fails to appear in the
incomplete digest for that enzyme, it may be added to the list of segments for the incomplete

digest.
This is an example of a rule which can repair the input data. Since the ideal results
of an incomplete digestion include cutting every combination of the recognition
sites for an enzyme, the combination of cutting all of the sites should be included
and this corresponds to a complete digest. When these smaller segments fail to be
observed, it is usually because the segment separation and measurement para-
meters have been optimized to accurately measure the larger segments.

Perhaps the most useful test for digest consistency is the molecular weight test.
All of the sums of the segments for the complete digests by one or more enzymes
should be equal. Each complete digest represents a decomposition of a structure
into non-overlapping segments. If the sums are not equal, then there must be some
missing or extraneous segments. This observation may be characterized as a
conservation law for mass in the experiment. GA1 also has rules pertaining to the
conservation of enzyme sites.

Conservation laws provide redundancy for data correction. When a discrepancy
arises, it is often possible to use a “majority rules” logic to identify an inconsistent
piece of data. The following rule illustrates this idea.

If most of the complete digests of one or more enzymes yield a summed molecular weight
of MW and there is a digest (termed the maverick digest) which predicts a molecular weight
of MW’ where MW’< MW, and if the maverick digest contains a segment of mass equal to
MW-MW’, then hypothesize that the segment is an unresolved doublet which should appear

twice in the maverick digest.
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This rule incorporates the fact that segments of very close mass are sometimes
unresolved and a molecular weight discrepancy can often indicate the cause.
Even if no segment equal to the mass discrepancy was observed, it would be
possible to hypothesize that a segment was missing. In that case, there might be
less confidence in the conclusion because there would be no hypothetical un-
resolved doublet to explain the missing data.

In summary, GA1l uses a number of rules to detect and sometimes correct
inconsistencies in the input data. This alleviates problems with extraneous and
missing data. Rules which remove extraneous data are used before rules which fill
in missing data. More rules for checking and correcting data are listed in Appendix
1L

4.2.2. Determining potential sites and segments

Before the generation process can begin, GA1 must determine the potential sites
and segments from which to build the hypotheses. This process determines con-
straints for the generator.

The set of potential sites may be inferred from the l-enzyme complete digest
data. Since each complete digest cuts the structure at each of the sites, the number
of sites may be determined for each enzyme by counting the segments left after
cutting. For circular structures, the number of recognition sites for each enzyme
is equal to the number of segments appearing in the I-enzyme complete digest.
For linear structures, the number of sites is one less.

As discussed in Section 2.3, every segment which appears in an n-enzyme
complete digest must appear in some 2-enzyme digest. GAl creates its set of
potential segments by collecting all of the segments which appear in any of the
2-enzyme complete digests.

In special cases, this method for determining the set of potential segments is
modified. If more than two enzymes are used, then many of the segments in the
2-enzyme complete digests will be unessential because they have internal sites
for other enzymes. (It is not usually possible to tell which of the segments are
essential without generating the hypothetical structures.) However, if all of the
3-enzyme digests are available, the essential segments will appear in the 3-enzyme
digests but many of the non-essential segments will drop out. In other experiments
where only one enzyme is used, the segments from the l-enzyme complete digest
are all that are needed. GA1 uses these criteria to select a minimum set of potential
segments for the generation process.

An additional consideration is the number of times that a segment may appear
in a generated structure. If it can be determined that a segment need appear only
once in any hypothesis, the segment is termed “‘unique’ and the size of the set
of potential segments can be reduced. Rules for determining the uniqueness of
segments are listed in Appendix I
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4.2.3. Symmetry and a canonical form for structures

Computing the equivalence of hypotheses is complicated when representation
techniques permit more than one representation of a hypothesis. In segmentation
problems, “canonical forms” may be defined that specify which of the equivalent
representations of a hypothesis will be used.

The DNA structures for which GA1 has been designed have linear or circular
topologies.® These structures may be conveniently represented as lists, as in Fig. 3,
with some notation to indicate whether the structure is closed to form a circle.
This representation designates one segment (Seg 1) as a ““starting segment” for the
structure. If this designation is arbitrary, there will be several equivalent re-
presentations for a given physical structure. Fig. 5 shows a simple DNA structure
and two of its six possible representations as lists starting with a segment length.

a, 2

2 3 4
A B C

3 2 4
A C B
FI1G. 5. (a) A simple circular DNA structure. The letters A, B, and C stand for enzyme recogni-
tion sites and the numbers are segment lengths.

(b) Two of its six representations as lists starting with a segment length. There are six representa-
tions because we can start with any of the three segments and read off the structure in either of

two directions.

For linear structures there are two possible orientations—either end may be
designated as the starting segment. For circular structures, any segment could be
chosen as the starting segment and there are then two possible orientations once
a starting segment has been selected.

GA1 uses similar canonical forms for linear and circular structures. Given a
linear structure, GA1 must choose between the given list and its reversal. GAl
chooses the representation which minimizes the size of the starting segment. If
the first segment is equal to the last segment, GA1 minimizes the second segment.

¢ Although DNA exists in many more complicated shapes, segmentation experiments deal
almost exclusively with structures having these topologies or which may be idealized as having

these topologies.
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This process continues until GA1 has found an asymmetry at a segment or until the
structure is completely symmetric in its segments. In the latter case, GA1 starts
over again, comparing the alphabetic order of the restriction sites starting from the
ends of the structure. Finally, if the structure is completely symmetric in both
segments and restriction sites, it does not matter which of the two representations
is chosen since they are indistinguishable.

For circular structures the process is similar. GAI tries to minimize the starting
segment. This is done by picking the minimum segment in the structure—except
that several segments may be chosen if there is a tie. Once the starting segment is
selected, GA1l tries to minimize the subsequent segments. Both orientations of
the tied segments must be considered. As with the linear canonical form, ties
between segment lengths are resolved by the alphabetic order of the site designa-
tions.

Given these definitions of canonical form, two representations in canonical
form correspond to the same physical structure if and only if they are equal.

4.2.4. Using canonical forms to limit generation

GA1 generates all structural representations that can be put together from a given
set of sites and segments. It does this by alternately placing, one at a time, first a
site and then a segment—building all possible representations of structures. This
recursive process involves bookkeeping of sites and segments during generation.

A desirable attribute of generators is that they be irredundant, that is, that they
produce each element of the solution space exactly once. When an hypothesis has
several possible representations, an irredundant generator should produce only
the canonical one. Unfortunately, it is not always possible to create an irredundant
generator. Given a complete generator of all possible representations, it is often
possible to detect quite early that a class of hypotheses will not be in canonical
form. GA1 does this using 2 number of canonical form rules which are described
below. These rules are very effective at eliminating non-canonical hypotheses, so
that they rarely need to be eliminated from the output of the generator. To make
GAIl eliminate the remaining hypotheses having rare symmetries would slow
down the common cases.

The rules for pruning structures not in canonical form are based on topological
considerations for linear and circular structures. The following rule governs the
selection of a first segment for a circular structure.

If circular structures are being generated, only the smallest segment in the list of initial
segments should be used for the first segment,

This rule follows immediately from the definition of circular canonical form. The
next rule applies when the second segment is being placed.

If circular structures are being generated and the second segment is about to be placed and
it is the largest of the remaining segments, then this branch of the generation can be pruned.
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The representations pruned by this rule cannot be in canonical form because the
reverse orientation would generate a ““‘more canonical” structure. In other words,
consider the representation which would result from reversing the final list of
segments and sites starting with the second segment. This corresponds to the same
physical structure but the representation would have a smaller second segment
and would therefore be more canonical. Considerations of combined rotations
and reorientations can be used by rules to prune at deeper points in the generation
process. These rules and others for linear structures, are listed in Appendix 1I.

4.2.5. Pruning rules

So far we have discussed how GAI constrains its generation by limiting the output
of the generator to canonical forms. When all redundant representations are
eliminated, the output of the generator is still over two million structures for the
sample problem. This section describes the use of pruning rules which use digest
results to significantly reduce the number of candidates generated.

Experimental data often have missing or extraneous segments due to the difficul-
ties and limitations of measurement. If data are incorrect, pruning rules may prune
using incorrect information. For this reason, the sensitivity of each of the rules
below to errorful data is important to consider. In the GA1 program, the amount
of tolerable contradiction before a candidate is eliminated may be adjusted by the
user (although it is typically set to zero). By setting this to a positive number a user
may compensate for a small amount of errorful data. This will prevent a class of
candidates from being discarded by a single errorful datum. This facility has not
been used much in practice because the error-correcting rules have been adequate.
For brevity in the rules which follow, we will say “this branch may be pruned”
when we mean that the accumulative number of contradictions is increased by one.
The current class of hypotheses is then eliminated if this is too great.

The first step in the generation process is the selection of the first segment. The
use of the canonical forms to limit the selection of the first segment has already
been mentioned. The following rule is also useful in selecting the first segment for
linear structures.

When linear structures are being generated, only segments which appear in some l-enzyme

complete digest should be considered for the first segment of the structure.

The rationale is that the first segment is at an end of a linear structure and therefore
has only a single restriction site. Thus the segment should appear not only in the
n-enzyme digests, but also in some I-enzyme digest. This rule will fail to prune
extraneous segments which happen to appear in some l-enzyme digest. It would
also prune out a correct structure if the end segment could not be observed in a
complete digest. In both cases, however, the data-checking rules would first detect
a molecular weight inconsistency.

One of the important structural constraints which can be inferred from the
digest data is which sites are permissible for terminating the segments in the
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structure. The following definition of ‘‘allowable termination sites” and rule
illustrate this.
The allowable termination sites for a segment are the recognition sites for those enzymes

in the 2-enzyme complete digests in which the segment appears. (If there is only one enzyme,
then only its recognition sites are allowable.)

The following rule uses the list of allowable sites.

If a segment is being placed and the previous site is not one of the allowable sites for the
segment, then this branch of the generation may be pruned.

Similar rules are applicable when a site is about to be placed. A stronger definition—
specifying conditions for when certain termination sites must be used—is given in
Appendix IL

Pruning rules based on allowable or required termination sites combine know-
ledge about a previous structural element in the hypothesis with the observed data
from the digests to detect a pruning condition. It is possible to include more
context, that is, more of the hypothesis in this determination. Several rules in
GALl do this by using the summation of neighboring segments to determine their
applicability.

Constraints should generally be tightened as early as possible in the generation
process. The following rule involving the first segment of circular structures
illustrates this.

If circular structures are being generated and the first segment in a branch of the generation
is unique and appears in a 1-enzyme complete digest for enzyme El, then a recognition site

for E1 can be placed in front of the first segment. (In other words, that site may immediately
be placed as the last site in the structure.)

The rationale is that the segment from the 1-enzyme digest has the same recognition
site at both ends. One of these sites will eventually have to appear at the far end
of the structure during the generation process. Allocating that site immediately
reduces by one the number of sites that need to be considered for placement at all
of the intermediate steps in the generation.

4.2.6. Evaluating the candidate structures

After the generation process there will often be more than one candidate. This is
expected when the evidence is insufficient to discriminate among the hypotheses,
but there are other possible causes. First, extraneous segments or coincidental
sums can cause some of the pruning rules not to be applied. Second, the pruning
rules do not use all of the evidence in all possible ways. As we go beyond the
pruning rules implemented in GAl, the rules become increasingly complex and
specialized. It becomes more difficult to prove the correctness of such rules and to
ensure that they are faithfully represented in the program. For these reasons there
is an evaluation phase for GAIl. For the problems tested so far, the number of
candidates left after pruning for evaluation is usually less than five.
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For each candidate to be evaluated, GAl predicts the ideal digest results. Then
it compares the predicted results with the observed laboratory results and computes
an ad hoc score to characterize the quality of the match.

This score is a weighted sum over the segments in all of the available laboratory
digests.

SCORE = X2 x (AGREE — MISSED) — EXTRA
All of the segments
in the digests

The scoring function above assigns credits for predictions which agree with the
lab digest and penalties for disagreements. The weighting reflects the fact that
segments are more likely to be missing from a laboratory measurement than to be
extraneous. Thus, a hypothesis should be penalized more for failing to predict an
observed segment than for predicting an unobserved segment.

We have not done extensive tests with the scoring function in an attempt to
optimize it. The quality of the laboratory data is such that it has very close agree-
ment with the ideal data for a correct structure. In addition, the number of dis-
agreements between the ideal digests of two different structures is usually consider-
able and increases rapidly as the differences are increased. Careful tuning of the
evaluation coefficients has not been necessary.

5. AI Issues: Choosing a Solution Method

One of the motivations for this case study is to gain a perspective on how the
problem-solving goals and the logic of a domain determine the applicability of
alternative problem-solving methods. Some important general characteristics of
domains and methods are listed in Table 2. This section examines characteristics
of the segmentation problem domain and shows how they are important in the
selection of a problem-solving approach.

In this section two approaches to hypothesis formation—model-driven and
data-driven will be contrasted. In Section 4 we introduced the term model-driven
to describe the method of using an hypothesis generator based on a model of the
solution space. The term data-driven has been used to describe a bottom-up
strategy data for inferring hypotheses from data without a generator. The idea is
to propose only those candidates which are suggested by the data. One way to
view the difference between these two approaches is in terms of indexing: the
data-driven approach steps through the data-space to propose hypotheses and the
model-driven approach steps through the solution-space checking hypotheses
against the data.

The model-driven and data-driven approaches may be viewed as extreme points
in a spectrum of approaches. Many problem-solving programs contain elements of
both approaches. A data-driven approach to problem solving is often intuitively
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TABLE 2. Characteristics of domains important in selecting problem solving approaches®

Characteristics of Data

* Positive data * Negative data
(Data are observed) (Absence of data is observed)
Error-free data * Errorful data
* Redundant data Sparse data
Characteristics of Inferences
* Positive inferences * Negative inferences
(Hypothesis-forming) (Hypothesis eliminating)
* General inferences Specific inferences
(Broad inferences) (Narrow inferences)
* Strong inferences * Weak inferences
(Conclusive) (Suggestive)
Unique chain of inferences * Several chains of inference
for each hypothesis yield the same hypotheses
Goal Characteristics
* Find all solutions Find onc solution
Consistency for * Plausibility for
every solution every solution

* In some cases the left and right columns may be viewed as extremes of a spectrum. Asterisks
indicate those attributes which are characteristic of the segmentation domain. Both positive and
negative inferences in this domain tend to be general. Negative inferences tend to be strong and
positive inferences tend to be weak. Although the raw data are errorful, they are also redundant
and can be reliably corrected.

appealing and the first considered. A model-driven approach sometimes seems
less intuitive—perhaps because it operates predominantly by ruling out all of the
WIrong answers.

In choosing a problem-solving method, it is important to examine the character
of both the data and the inference rules which will be used. In this section we will
see some difficulties with using a data-driven approach, using the two rules previ-
ously described.

5.1. Sensitivity to missing data

The performance of any problem-solving method is affected by missing data. In
the extreme case—no data at all-—methods must generate an unconstrained set of
solutions. For segmentation problems, there is not enough a priori information to
afford any practical enumeration of potential structures. (With no digest data at
all, the solution space would be infinite since the number of sites in a structure
and the sizes of the segments would be indeterminate.) Choice of the generation
scheme and inference rules determines consequences of errors in the data.

The inference rules in the data-driven generation approach are sensitive to
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errors in all of the digests. If segments are missing in any complete or incomplete
digest, some possible hypotheses may not be considered. The hypothesis generator
for the model-driven approach is less sensitive to missing data because it requires
data from only the 1-enzyme and 2-enzyme complete digests. If data are missing
from the other digests, at worst a few too many candidates may be generated; in
many cases a few missing segments will have no ill effect at all.

5.2. Efficient use of the data

A second difficulty with a purely data-driven approach for segmentation problems
is that redundancy in the data causes unnecessary computational work. This
effect increases with problem size and with the amount of the data.

The number of segments in an ideal incomplete digest’ for circular structures is

N(N=-D+1

and for linear structures is .

N(N +1)
2

where N is the number of segments in the corresponding complete digest. Hence,
the number of segments in an incomplete digest increases quadratically with the
number of segments in the corresponding complete digest.

Most of these segments (except NV of them which correspond to the individual
segments from the complete digest) could be used by the incomplete digest rule.
However, in most cases only N of them are required to determine segment place-
ment. The incomplete digest rule does not say how to select from this excessive
data. Criteria for data selection would provide a middle ground between data-
driven and model-driven approaches.

Unfortunately, it turns out that when data are missing, selection is harder. A
specification which would cover all combinations of missing data would be quite
complicated. Without this additional knowledge, a purely data-driven approach to
generation must consider all of the evidence in order to avoid missing a solution. The
cost of completeness is that it will do the most work when none of the data are
missing.

Finally, the number of inferences that can be drawn by each application of
either of the data-driven rules increases exponentially with the number of segments
in the summation set. Each application of a rule to a segment may be used to
propose any permutation of the segments in the summation set. Thus, the number
of inferences is unwieldy for rather modest sets. Typically, the same hypotheses will
be generated several times by applying the two rules to different parts of the data.
In contrast, the model-driven approach considers each candidate at most once.

" We are considering only those linear segments corresponding to the model of digestion
discussed previously. In some circumstances (e.g. “‘super-coiled” DNA) additional segments may
appear, but these are essentially laboratory artifacts which are removed from the data before
computation. Hence, they are not included in the discussion.
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5.3. Generality and the use of negative inference
Two types of inference may be distinguished—positive and negative. By “‘positive
inference” we mean using data to propose hypotheses; by “negative inference” we
mean using data to rule out hypotheses. For every domain two basic questions
should be answered.

How much evidence is needed to infer that a hypothesis is true?

How much evidence is needed to infer that a hypothesis is false?

Several researchers have been concerned with quantifying the strength of
inferences and the certainty of hypotheses. This work seeks to quantify and use
measures of certainty or belief in hypotheses according to available evidence.
Duda [4] reviews some recent work in this area. Since the pruning rules used by
GAI1 are all very reliable, sophisticated techniques for the accounting of certainty
have not been necessary.

The n-enzyme and incomplete digest rules are examples of positive inference
because they propose structural hypotheses. Neither rule can unambiguously
determine molecular structure. Like the pruning rules in Section 4.2.5, these rules
are general because each application refers to a class of hypothetical structures.
For example, the n-enzyme digest rule states that some permutation of a set of
segments is a substructure of a hypothesis; it does not determine the order of the
segments.

The generality of these inferences has important implications for the accumula-
tion of certainty. Since each positive inference leaves open the possibility of many
different substructures (the number depends on the size of the set), it is possible
to create examples for which there is an arbitrarily large amount of positive
evidence confirming a false hypothesis. Thus these inferences are weak and cer-
tainty for hypotheses does not accumulate with successive positive inferences.

In contrast, many of the negative inference rules in the segmentation domain
are strong. These rules are based on a theory of segmentation which predicts what
data should be observed given a hypothesis. If the data observed differs from the
predictions, the hypothesis may be ruled out.

For negative inference, generality is an advantage because it permits ruling out
classes of candidates. It is appropriate to ask how much negative evidence is
needed to rule out a hypothesis. A single contradiction is usually not enough
when the data are errorful. If errors are rare in the data, the case against a particular
hypothesis becomes significantly stronger with each successive negative inference.

The observations about the strength of rules for positive and negative inference
may be summarized as follows.

Rules for positive inference have the most utility when they are highly specific; rules for
negative inference have the most utility when they are general.
Since all of the rules in the segmentation domain are general, we are led to an
alternative strategy to the data-driven approach. Instead of using so much data
to drive positive inferences, we can use it instead to drive negative inferences.
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Candidates are selected by a process of elimination; we become certain that they
are correct through our certainty that the other possible answers are wrong. This is
the model-driven strategy of using an exhaustive generator of hypotheses and

effective rules for pruning its output.

5.4. Use of negative data

In the data for segmentation problems, two kinds of data may be recognized—a
segment may be observed or it may not be observed. Thus, the absence of a
segment in a digest may be considered as evidence. Both kinds of data may be
used for both types of inference.

Reliability of data depends on what kinds of errors are common. If missing data
are common, then negative data will be unreliable because missing data can be
misinterpreted as negative data. If extraneous data are common, then positive
data will be unreliable because extraneous data can be misinterpreted as positive
data.

In segmentation problems, extraneous segments are rare while data are fairly
often missing. Thus, for uncorrected digest data, positive data are more reliable
than negative data. The data correction and checking rules described in Section
4.2.1 use the natural redundancy of digest data to greatly improve the reliability
of both positive and negative data.

5.5. Solution requirements
The following requirements summarize some conclusions from the above con-
siderations for segmentation problems.

I. The solution method should generate all solutions which are consistent with
the data. In this case, this means requiring all solutions which are not ruled
out by the data.

2. An improvement or increase in data should not degrade program performance
measured in terms of correctness or time requirements.

3. The consequences of errorful data should be minimized.

4. A solution method should make efficient use of the evidence.

6. Performance Evaluation

GA1 has proven to be fast and effective for most of the segmentation problems
to which it has been applied. In some cases it has found solutions overlooked by
human problem solvers. Sometimes it has reported extra solutions which could
be ruled out by information not given to the program. The facility for checking
and correcting input data has been useful in catching typing errors and has often
surprised GA1’s users. As GA1 has been applied to larger problems, it has been
necessary to extend the kinds of structural constraints which can be specified.
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Table 3 summarizes some parameters of the performance of GAI on three
laboratory experiments. The column labeled “Canonical Structures’ indicates
the number of canonical structures—computed as in the sample problem. In these
examples, only one candidate was generated because the pruning rules were very
effective. In other problems, several candidates reach final evaluation.

The amount of time required by GAIl to do the calculations has been broken
down into generation time and evaluation time. These figures show that the
computation time is not linearly proportional to the number of possible hypotheses.
Generation time is the time required to generate the candidates—with simul-
taneous pruning by the pruning rules discussed already. This will vary on different
problems even if they have the same number of canonical structures because the
rules are effective at different levels for different problems. Generation time
increases when the tolerable number of contradictions is increased and when the
measuring tolerance is increased. Evaluation time is mostly the time taken to
predict the laboratory results but also includes the ranking of candidates. Varia-
tions in time of twenty to thirty percent, have been noticed and are due to the
time-shared paging environment in which GA1 is run.®

TasLE 3. Performance of GA1 on three problems®

Canonical Time (seconds)
Case structures Generation Evaluation
1 5 400 0.94 0.80
2 2 494 800 3.14 0.71
3 133 660 800 25.6 1.2

* Time requirements depend on the number of possible structures, the available lab results, the
resolution of measurement, and known structural constraints.

GAI’s “sites and segments” structural model is a well-established part of the
theory of molecular genetics. The limitation to linear and circular topologies is
due to the nature of the plasmids and viral DNA on which these segmentation
experiments are performed.

The GA1I program has been tested on about thirty problems. New pruning rules
and data-correction rules have been added as difficulties have been encountered
in laboratory data.

As GAI1 has been applied to more complex segmentation problems, it has
become clear that the human problem solvers use information not present in the
digest data. Thus, although GAIl can solve in seconds smaller problems which
require minutes to hours for humans to solve, it could not narrow down the
possibilities on some of the larger problems. The reason for this is that the geneti-
cists have biological information which provides additional structural constraints

8 GAI is written in INTERLISP and is run on the SUMEX facility at Stanford. SUMEX has
a dual KI-10 computer with 512K of memory and uses the TENEX operating system.
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not known to GA1l. For example, previous experiments or independent biological
evidence may imply that certain segments must be adjacent or that a particular
segment is at the end of a linear molecule. GA1 is being extended so that additional
constraints about segment placement can be specified.

7. Summary and Comparison to DENDRAL

Segmentation problems have been used for a case study of alternative generation
strategies. This section attempts to abstract and summarize the ideas which are
broadly applicable to many other domains. First, however, a comparison to the
conceptually similar DENDRAL program [2] will be given. The two domains
and programs will be examined in order to highlight their similarities and differ-
ences. Then the main lessons from the case study will be summarized.

7.1. Comparison to DENDRAL
GALl is similar in several ways to the DENDRAL program. Both programs infer
structures from fragmentation data and generate the structures using an exhaustive
generator and a Generate-and-Test paradigm. Both programs evaluate the candi-
dates using models of the fragmentation process and a scoring function. Mixtures
present special problems in both domains. A general facility for dealing with
mixtures [10] was developed in DENDRAL and demonstrated for the case of
mixtures of estrogens. Both programs have evolved from using constraints based
solely on fragmentation data towards using general structural constraints.

Simplicity of the hypotheses in the segmentation problem domain is largely
responsible for the relative simplicity of the GAIl program as compared to
DENDRAL. An early version of the DENDRAL program (acyclic DENDRAL)
considers structures which are strictly trees. A newer DENDRAL program,
CONGEN, can handle arbitrary cyclic graphs. (This advance in the DENDRAL
project was considered a major breakthrough.) GAl considers structures which
are strictly linear or circular. The generator in acyclic DENDRAL is complete
and irredundant; the generators in GAl and in CONGEN are complete, but
some non-canonical candidates are discovered only after they have been com-
pletely generated. The pieces used by the DENDRAL program are all atoms, have
various chemical valences, and can be put together in many ways which are
chemically stable; the pieces used by GA1 are either DNA segments or recognition
sites, have “‘valence” one or two, and must be put together so that segments and
sites alternate. There is no model of stability in GAl because all orderings of
segments are stable. The difference in hypothesis structure simplifies symmetry
considerations and is largely responsible for the fact that cyclic-DENDRAL
(CONGEN) required several man-years to develop and GAl required less than
two man-months.

The fragmentation rules in mass spectrometry yield the same kinds of con-
clusions as those in segmentation problems, although there are some key differences
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between the domains. The rules for fragmentation in DENDRAL vary with the
chemical class but there is essentially one type of fragmentation—analogous to an
incomplete digest. A mass spectrum corresponds to incomplete digest information
because the fragments may overlap. Mass spectrometry has no analog to a com-
plete digest or to a multiple-enzyme digest. Thus, there is no technique in mass
spectroscopy to break a molecule at one set of “sites” and then change some
parameter to break it at some other set of distinct sites. In contrast, GA1’s frag-
mentation rules depend on enzymes with different recognition sites to yield in-
dependent decompositions of the molecule. (When DENDRAL combines in-
formation from several spectroscopic techniques, these do not each give a complete
decomposition of the molecule into fragments.) These independent decompositions
make it relatively easy to determine molecular weight—a quite complicated
problem in the mass spectrometry domain [3]. The digests also provide redundancy
for a wide range of data correction capabilities. This makes the use of negative
data reliable for candidate elimination in segmentation problems.

To summarize, GAI uses the same general framework that DENDRAL uses—
Generate-and-Test. The simplicity of the symmetry considerations in GAl was a
large factor in the overall simplicity of the program. Finally, the redundancy of
data in segmentation problems makes data correction possible and permits the
reliable use of negative data.

7.2. Lessons from the case study
The choice between model-driven and data-driven approaches depends both on the problem
solving goals and the logic of the domain.
We have considered the choice between a data-driven and model-driven approach
for segmentation problems. One factor in the selection is that the goal is to find
all of the solutions that are reasonably consistent with the data. A second factor
is that the rules of inference in this domain are general (i.e. non-specific); this has
important implications on how the inferences should be applied in order to
accumulate certainty. A third factor is that reliable rules for negative inference
were available. If the goal were to find one solution—given error-free data and
highly specific rules of positive inference—a data-driven approach would probably
have an advantage of speed.
It was also particularly convenient that
(1) the constraints for the hypothesis generator could be easily inferred from
the digest data and
(2) that the representation of the hypotheses could be uniform.
For model-driven generation an increase in data leads to an improvement in performance.
That an increase in data should not degrade performance is always appealing
but less often achieved. In the model-driven approach to segmentation problems
the rules of inference are organized so that increased data yields increased pruning—
thus satisfying this criterion. In the data driven approach to this problem, additional



108 M. STEFIK

data may yield (after additional computational work) only the same hypotheses
again. The addition of redundant data does not degrade performance in a model-
driven approach because it solves the problem by indexing through the solution
space instead of through the data.

Errorful data appears even in some simple domains.

This is perhaps obvious to anyone who has built a program which uses real
data, but it bears repeating. The rules used by GAl are an illustration of the
possibilities for categorizing errors. The simple topological model and the inherent
redundancy of the data create considerable opportunity for data correction and
detection.

This study has discussed some general techniques but GA1 is not 2 general program.

Some common techniques and considerations used both in GAI and DENDRAL
have general applicability. For example, the techniques that were useful in con-
junction with model-based approach include:

(1) the use of canonical forms for efficiency in generation,
(2) pruning rules to eliminate classes of candidates and
(3) rules for the detection and correction of errorful data.

Given the striking similarities between the programs and problem solving
goals, it is reasonable to ask whether a general program could be written which
would cover both (and possibly other) domains. What seems to be lacking is a
program to create the irredundant generator of hypotheses—given a description
of the nodes and arcs of the graphs and symmetry considerations. The fact that the
development of the theory behind the generator in DENDRAL required several
years suggests that this would be a difficult task.
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Appendix I. Proposing New Laboratory Techniques

Sometimes the explication of the logic of a domain for a computer program has
additional benefits beyond the creation of the application program. This section
describes a new laboratory technique involving complete digestion by one enzyme

® MOLGEN [7] is a joint project between the Heuristic Programming Project and Genetics
department of Stanford University, and the Computer Science Department of the University of
New Mexico.
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and incomplete digestion by another. In some cases, this new laboratory technique
can resolve structural ambiguities without the necessity of using an additional
enzyme. The idea for this technique came out at a discussion about why GAl
could not discriminate between two structures.

Fig. 6 illustrates two simple DNA structures for which conventional digestion
techniques yield the same segments. However, an unconventional approach using
complete digestion by enzyme B followed by incomplete digestion by enzyme A
yields discriminatory results as shown. The first structure may be converted into
the second structure by rotating the 1 and 3 segments around the recognition site
for enzyme B. Conventional digest results do not change when this rotation is
performed. The unconventional approach avoids this rotational ambiguity by
cutting the B site before the incomplete digest.

a, 1
BA
S 7
A
A
3
Structure | Structure 1l
b. Complete Digests Incomplete Digests
A: 763 A: 16131097 6 3
B: 16 B: 16

Ag&B: 7531

C. Structure Unconventional Digests

1. 16 15 niwsezs 31

. 16 15 12 11 10 7 5431
Fig. 6. (a) Two simple DNA structures. The labels A and B stand for enzyme recognition sites.
Structure II is like structure I except that the segments of length 1 and 5 are reversed.
(b) Conventional digests results. These results are the same for both structures.

(c) Unconventional digest results using complete digestion by enzyme B followed by incomplete
digestion by enzyme A. This technique can distinguish between structure I and structure IT without
introducing an additional enzyme,

The technique could have been suggested by the process of filling out all com-
binations of digest parameters as shown in Table 4. This table shows that the new
technique may be viewed as the combination of using an incomplete digest with
more than one enzyme.

8
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There are many generalizations of the above technique involving multiple
partial digests with multiple enzymes. (The resolution of current gels for separating
and measuring segments is a limiting factor here.) Another variety of segmentation
evidence requiring more sophisticated equipment is two-dimensional analysis.
This involves the digestion of a sample by one enzyme and separation of the
segments along one axis, followed by the application of a second enzyme and
separation along a perpendicular axis. Lederberg has speculated on the utility of
combining complete and incomplete digestion with the use of 2-dimensional
analysis. For example, an incomplete digestion by one enzyme followed by com-
plete digestion by the same enzyme along the second axis yields a type of experi-
ment data analogous to metastable data for mass spectrometry.

TaBLE 4. Proposed new digestion techniques

1-dimensional Enzyme Analysis#

Complete Incompiete

Digest Digest
1-enzyme conventional conventional
n-enzyme conventional New

2-dimensional Enzyme Analysisb

Complete Incomplete
Digest Digest
1-enzyme conventional New (analogous to metastables

in mass spectroscopy)

n-enzyme conventional New

a This table illustrates the combinations of using complete or incomplete digestion with one or
more enzymes in the 1-dimensional analysis techniques discussed in this paper. The unconventional
digest is the combination of incomplete digestion with use of more than one enzyme.

b The same combination of techniques can be used in 2-dimensional enzyme analysis. This
leads to two new techniques for digestion. One of these techniques is analogous to “metastable
scanning’’ in mass spectroscopy.

One of the long term goals of the MOLGEN project is to explore techniques for
invention and discovery. A working paper [6] discusses some examples of this
in the context of a recent genetics experiment.

Appendix II. Rules for Segmentation Problems

This appendix lists the rules which make up the problem-solving knowledge in the
GAI program. The term ‘“‘rules” is used because of the production rule format
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in which these entries may be described. Each entry describes the conditions under
which an inference may be made. Several of these rules have already been described
in the text. The genetics justification of these rules will not be given here. All of
the rules except for the data-driven (D) rules are implemented in the GAL program

as LISP expressions.

Rules from the Data-Driven Approach

Rule DI. If a segment from the incomplete digest for enzyme E1 equals the sum of a set M
of segments from the complete digest by the same enzyme, then the segments in M are
probably contiguous in the structure and are separated by sites for enzyme E1.

Rule D2. If a segment from the I-enzyme digest for enzyme E1 is equal to a sum of a set M
of segments from the 2-enzyme digest by enzymes E1 and E2, then the segments in M are
probably contiguous in the structure and are separated by recognition sites for enzyme E2.

Rule D3. If a segment from the 2-enzyme digest for enzymes E1 and E2 is equal to a sum
of a set M of segments from the 3-enzyme digest by enzymes El, E2, and E3, then the seg-
ments in M are probably contiguous in the structure and are separated by recognition sites

for enzyme E3.

Rules for Segment Uniqueness

Rule Ul. If no segment appears more than once in the list of potential segments at the
beginning of the generation process, then every segment is a unique segment.

Rule U2. Every segment larger than half the molecular weight is unique.

Rule U3. If a segment appears more than once in any 2-enzyme or 3-enzyme complete
digest, then that segment is not unique. (It may be repeated in the structure.)

Rule U4. If a segment which is repeated in the list of potential segments appears in the
1-enzyme digest for enzyme A and only in n-enzyme digests which include A (but is not
repeated more than once in any of these), then the segment is unique.

Data Checking and Correcting Rules

Rule CI. If a segment which appears in the complete digest for an enzyme fails to appear
in the incomplete digest for that enzyme, it may be added to the list of segments for the
incomplete digest.

Rule C2. Every segment which appears in a complete digest involving three or more
enzymes must appear in some complete digest involving only two of the enzymes.

Rule C3. All of the sums of the segments for the complete digests by one or more enzymes
should be equal. Let MW be the molecular weight (sum of segments) predicted by the majority
of the complete digests.

Rule C4. For circular molecules, the number of segments expected in every n-enzyme
complete digest is the sum of the numbers of segments from the 1-enzyme digests; for linear
molecules, the number is one less. (This rule is one form of a law for the conservation of
recognition sites.)

Rule C5. If the sums of all the complete digests are equal but the number of segments in
some n-enzyme complete digest is less than the number of segments predicted by Rule C4,
then hypothesize the existence of the required number of small unobserved segments.

Rule C6. If there is a digest (termed the maverick digest) which predicts a molecular
weight of MW’ where MW’ << MW and if the maverick digest contains a segment of mass
equal to MW-MW’, then hypothesize that the segment is an unresolved doublet which
should appear twice in the maverick digest.
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Rule C7. If there is an n-enzyme complete digest (termed the maverick digest) which
predicts a molecular weight of MW’ where MW’ < MW and if the number of segments in
the maverick digest is less than the number predicted by Rule C4, then hypothesize an
unobserved segment equal to MW-MW’,

Rule C8. If circular structures are being generated and there is a segment of size X in an
incomplete digest (and X is not known to be an extraneous segment), then there should also
be a segment whose size is the difference MW-X.

Rule C9. Rules for removing extraneous segments should bz used before those for inserting
missing segments.

Rule CI0. If there is a maverick digest which predicts a molecular weight of MW’ where
MW’ > MW and if there is a segment in the maverick digest whose mass is equal to MW’—
MW, then hypothesize that the segment is extraneous.

Rule CI11. If there is a maverick digest which predicts a molecular weight of MW’ where
MW’ > MW and if there are segments in the maverick digest equal to the sum of other
segments in the digest, then hypothesize that the digestion is incomplete. (If removal of some
of these segments will correct the molecular weight discrepancy while preserving the expected
number of segments, then remove the segments.)

Rule C12. If a segment appears in the complete digest of N enzymes which is larger than
any segment which appears in the digests of any N-| of the enzymes, then hypothesize that
the segment is extraneous.

Rule C13. If a segment of size X appears in the complete digest for enzyme El and if there
is a 2-enzyme complete digest for enzymes El and E2 in which there is no set of segments
whose sum is X, then report that either the tolerance is too small or the digests are inconsistent.

Rule C14. If a segment of size X appears in the incomplete digest for enzyme EI and if there
is no set of segments in the complete digest for enzyme El whose sum is equal to X, then
either the tolerance is too small or X is an extraneous segment.

Rule C15. If linear structures are being generated, then every 2-enzyme complete digest
must contain two segments which also appear in one or the other of the corresponding
l-enzyme complete digests. (These are the end segments.)

Rule C16. No incomplete digest should contain any segment which is smaller than all of
the segments from the corresponding 1-enzyme complete digest.

Canonical Form Rules

Rule FI. If a linear structure is being generated, the largest segment in the initial list
should not be used as the first segment in the structure.

Rule F2. If linear structures are being generated and all of the remaining segments to be
placed are less than the first segment and the mass of the structure is less than the molecular
weight (so that at least one of them will be placed in the structure), then this branch of the
generation process can be pruned.

Rule F3. If circular structures are being generated, only the smallest segment in the list of
initial segments should be used for the first segment.

Rule F4. If circular structures are being generated and the second segment is about to be
placed and there are several segments to be placed and the segment is the largest of the
remaining segments, then this branch of the generation can be pruned.

Rule F5. If circular structures are being generated and a segment equal to the first segment
is about to be placed and the total mass is less than the molecular weight (so that at least one
more segment will be placed) and all remaining segments are less than the second segment
of the structure, then this branch of the generation may be pruned.

Rule F6. If circular structures are being generated and a segment equal to the first segment
is about to be placed and the previous segment is less than the second segment, then this

branch of the generation may be pruned.
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Pruning Rules

Rule PI1. If linear structures are being generated, then only segments which appear in
some |-enzyme complete digest should be used as the first segment of the structure.

Rule P2. If linear structures are being generated and the user has indicated a set of end
segments, then the minimum segment in this set should be used as the first segment in the
structure.

Definition P3. Allowable sites for segments. Recognition sites are allowable for terminating
a segment only if the segment appears in the 2-enzyme complete digests for the corresponding
enzymes. (If there is only one enzyme in the experiment, then only its sites are allowable.)

Rule P4. If a segment is about to be placed and the previous site is not one of the allowable
sites for this segment, then this branch of the generation may be pruned.

Rule P5. If a site is about to be placed and it is not an allowable site for the previous
segment, then this branch of the generation may be pruned.

Definition P6. Required termination sites for segments. If only one enzyme was used in the
experiment, then the site for that enzyme is required for every segment. If two enzymes were
used, then for each segment which does not appear in a I-enzyme digest, both enzyme sites
are required. If three or more enzymes were used, then for each segment which appears in
exactly one 2-enzyme complete digest, the sites for the enzymes involved in that digest are
both required.

Rule P7. 1f a segment having required sites is about to be placed and the previous site is
not one of them, then this branch of the generation may be pruned.

Rule P8. If a site is about to be placed and the previous segment has required sites and
this site is not one of them, then this branch of the generation may be pruned.

Rule P9. If a site is about to be placed and the previous segment has two required sites
and the previous site is one of the two required sites but this site is not the other one, then
this branch of the generation may be pruned.

Rule P10. If a segment is about to be placed which would increase the mass of the current
structure to be greater than the expected molecular weight and there are more sites to be
placed, then this branch of the generation may be pruned.

Rule P11. If circular structures are being generated and the first segment is unique and
appears in the 1-enzyme complete digest for enzyme El, then a recognition site for E1 can be
placed in front of the first segment.

Rule PI2. If linear structures are being generated and a segment is about to be placed
which is on the list of user-supplied end-segments and there are more sites to be placed, then
this branch of the generation may be pruned.

Definition P13. Allowable inter-site segments. For recognition sites El and E2, a segment
is said to be allowable between E1 and E2 when it appears in the appropriate digests. Specifi-
cally, if El is distinct from E2, the segment must appear in the 2-enzyme complete digest
involving E1 and E2. Otherwise it must appear in the 1-enzyme complete digest for El.

Rule P14. If a site E1 is about to be placed and there is another site E2 preceding it in the
structure (and there is no site equal to E1 or E2 between them) and the sum of the intermediate
segments is not an allowable segment for E! and E2, then this branch of the generation may
be pruned.

Definition P15. An incomplete digest is said to be “ideal” if it has the right number of
segments and each of the segments equals the sum of a set of segments from the corresponding
complete digest. (The number of segments expected in an ideal incomplete digest is given in
Section 5.2.)

Rule P16. If the incomplete digest for enzyme El is ideal and there is a sum of segments
between EI sites which does not appear in the ideal digest, then this branch of the generation
may be pruned.
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