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Abstract.  Linked module abstraction is a methodology for designing digital
architecture in which the sequencing of computational events is given primary
attention. The sequencing of events is specified in terms of modules that carry out
instructions and links between them that determine the flow and control of
information. The methodology provides a number of simple composition rules for
rapidly composing systems without certain classes of bugs. The resulting system
descriptions can be implemented as either synchronous or self-timed digital systems.

This paper develops the underlying concepts and proposes graphical and
programming language notations for the methodology. Their viability for describing
and exploring architectural alternatives is demonstrated by examples of familiar
subsystems drawn from design practice. The paper also discusses how the
methodology was deliberately cngincered to factor the concerns of a digital systems
designer.

*This research was done as part of thie Knowledge-Based VLSI Design Project, in
collaboration with Stanford University, The Stanford compenent of this research is
funded by the Defense Advanced Research Projects Agency.
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1. Introduction

Digital systems and their specifications can be complicated. A designer of
complex systems must be able to partition his concerns in order to focus on
important things. This paper proposes a model of digital system design, /inked
module abstraction, in which the sequencing of computational events is given primary
attention. The abstraction is explicit about the decomposition and sequencing of
computations. It is uncommitted about the structures for achieving the timing and
logical properties of devices. |

This work is part of an effort to extend the design methodology of the Mead and
Conway textbook [Mead80] to cover more aspects of integrated system design. The
linked module abstraction is intended to be used in combination with other
descriptions of digital systems and their design methodologies ([Bell81], [Tong81}).
Each methodology provides a set of concepts and rules for composing digital
systems, and emphasizes a limited set of design concerns. Table | summarizes a set
of design methodologies that are being integrated in an experimental system for
digital system design (Stefik and Brown [Stefik81a)):

Table I. The partitioning of design concerns

Description Concerns Composition Examples

Level Rules of Bugs

Layout Physical dimensions ~ Lambda Rules Separation Errors

CPS Digital behavior Composition of Charge Sharing
PUEs, PDEs, and  Switching Levels
pass transistors Threshold drops

CRL Clocking Stage composition mixed clocks

unclocked feedback
LMA Event forking, joining, deadlock
Sequencing module composition data not ready

The layour description level is concerned with the constraints imposed by the
electrical properties of silicon and the fabrication process. Composition rules at this
level are the familiar lambda design rules (e.g., Mead and Conway [Mead80], Lyon
[Lyon81)). The clocked primitive switches level (CPS) [Beli81] describes circuits in
terms of pull-up devices, pull-down devices, and pass transistors; it provides rules for
composing these that preserve digital behavior. The clocked register and logic level
(CRL) [Bell81] describes digital systems in terms of clocked registers and
combinational logic; it is concerned with the correctness of clocking signals in two-
phase systems. Like the CRL abstraction, linked module abstraction (LMA)
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describes systems in terms of registers and logic. In centrast, it is uncommitted about
the implementation of sequencing: it indicates the order of computations using
forking and joining constructions. The composition rules deal directly with the
relationships between control and data, and with the prevention of deadlock in the
use of shared modules. The LMA language describes the structure of digital systems
in terms of modules and subsystems; it describes the paths that data can flow, the
sequential and parallel activation of modules, and the placement of registers.
Specifications at this level highlight critical architectural trade-offs such as
communication versus redundant computation, copied structures versus shared
structures, serial versus parallel computation.

One of the motivations for LMA descriptions is the observation that component
(or cell) libraries at the layout description level, which are a mainstay of present CAD
systems for integrated system design, are inherently tied to the lifetime of a
technology. Seemingly minor changes (such as the addition of a metal layer or
buried contacts) can effectively obsolete them. A library of LMA structures is more
independent of implementation technology; it can be related to implementation
technology through a series of intermediate descriptions and the knowledge for
transforming the descriptions and making design trade-offs. As technology shifts, the
knowledge for transforming the descriptions must be changed, but a library of LMA
modules would be relatively stable. Given multiple sets of transformation rules,
LMA descriptions could be transformed into multiple implementations (e.g.,
cMOS/50S and nMOS).

This document is organized as follows: Section 2 presents the basic vocabulary of
the linked module methodology. It defines the computational elements, their
computational phases, and rules for composing them. Section 3 proposes an
equivalent programming language for the graphical notation used in Section 2. The
programming language uses familiar concepts from conventional software and gives
them appropriate hardware interpretations. The language is intended to make it easy
to program hardware according to linked module composition rules. Section 4 uses
the notations to illustrate architectural alternatives for some interesting and well-
known subsystems. Section 5 reconsiders the methodology and shows how it usefuily
partitions architectural design decisions. Section 5 also shows how the composition
rules eliminate some classes of design errors. Section 6 acknowledges a debt to a
diverse set of researchers who have thought about related problems.

Suggestions to the Reader

The main purpose of the linked module abstraction is to provide a language for
describing digital architectures. Examples of these are given in Section 4, and the
reader is encouraged to browse through these carly. The sections on composition
rules and language features preceding these examples are quite long and detailed.
The reader is encouraged to skim thesc sections quickly, since the examples are
understandable without all of the details of the language. The most important
concepts are modules, forks and joins, calling buffers. For computer programmers,
the only unfamiliar notations are the fork-join constructions.
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2. Methodology and Graphical Notation

This section introduces the linked module methodology for describing digital
systems. It describes the basic elements for computation and communication, and
some composition rules for designing digital systems using them.

2.1. Modules

Modules in the linked module methodology are computational elements that
perform complete instructions. By this we mean that a module, once started,
completes what it is doing before it can be restarted. Each module has a number of
directional lines: a Go line and a Done line for synchronizing communication with
other modules, optional Input and Qutput data lines, and an optional Interrupt line.
Each module also has a set of input buffers corresponding to the input data lines.

{Figure 1 showing GO, DONE,
Interrupt, & Data lines of Module.}

A module is controlled by the absorption and emission of tokens on the Go and
Done lines, respectively. The operation of a module takes place in three phases as
follows:

Waiting for Go. During this phase the module is idle. The input buffers hold
their previous values. The output lines are stable and driven to their values
from the previous cycle.

Running. The process of starting a module is to first place data on the input
lines and then place a token on the Go line. This causes the module to load
the input buffers from the input lines and to enter the running phase.

Somctimes the activating module drives only a subset of the input lines. Those input buffers whose
corresponding input lincs are not connected to the activating module retain their previous valugs.

During this phase the module performs its computation, which is some
function of the values of the input buffers.

To complete the computation, the module may use other modules (including registers) to perform parts of the
computation.
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The output data lines are driven with the results of the computation during

this phase. The running phase ends (after a finite delay) when the
computation is complete.

Waiting for Done. In this phase the module places a token on the Done line.
The phase ends when the token is absorbed by another module. After this
phase, the module re-enters the waiting for go phase.

If a module does not have the optional Interrupt line, then it can not accept a
token on the Go line unless it is in the first phase of the computational cycle. If,
however, a module has an Interrupt line, it can be interrupted by placing a token on
that line. The token is absorbed immediately and the module runs its interrupt
computation to send constants to other modules.

Modules without explicit interrupt code go immediately to the waiting for go phase.

When the interrupt code is finished, the module goes to the waiting for go phase. A
major application interrupt lines is for specifying initialization procedures in digital
systems.

2.2.  Functional Composition

An important advantage of specifying the computational cycle in terms of an
abstract protocol is that the rules for linking modules together to form computational
subsystems are quite simple. A simple example is the serial linking of modules to
create composite functions. The following figure illustrates the linking of modules F
and G to compute F (G (x)), that is, F ° G (x):

{Figure 2 of F (G (X)).}

In this figure, x is connected to the input of module G, and the output of G is
connected to the input of F. Since G’s Done line is connected to F's Go line, F can
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not begin its calculation until G has finished (which is exactly what we want). The
figure shows a pipeline arrangement that allows G to begin another calculation as
soon as F absorbs its token. If, however, we want to specify a composed module FG
that does not accept another input until it has delivered its output, we can indicate
this graphically as follows:

{Figure 3 of FG composite module.}

The module box indicates explicitly that FG coordinates its Go and Done tokens. In
this case, G will not be offered another Go token (via FG) until after F has delivered
its Done token to F An equivalent graphical notation for FG

{Figure 4 of FG Redrawn}

emphasizes that the coordination of F and G has nothing to do with their illustration
in the interior of FG. That coordination is caused by the module box of FG
interacting with the serial connection of the Go and Done lines of F and G.

23. Calling Buffers

We say that module F calls module G if module F activates module G to perform
part of its computation. If F calls G, then necessarily G will finish before F. In the
linked module abstraction, there are two constructions for calling: buffered and
unbuffered. A buffered call passes the activating token through a calling buffer and
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an unbuffered call does not,

This section describes the communication element termed a calling buffer for
communicating with shared submodules. Shared submodules are modules that are
called by more than one module. Calling buffers are used to coordinate the use of
shared submodules (e.g., to signal the calling module when submodules are finished
and to allocate the use of submodules among calling modules without deadlock).

A calling buffer has a number of directional lines: a Go line and a Done line for
synchronizing with the calling module, a Call and Return line for synchronizing with
the called and shared submodule, and optional data lines. There are input data lines
for connecting to the input buffer of the calling module, and output data lines for
connecting with the output lines of the calling module; there are also call data lines
and return data lines for data transmission to the called module. A data buffer is
associated with each of the output data lines.

{Figure 5 of Calling Buffer}

Like a module, a calling buffer is controlled by the absorption and emission of
tokens on its Go and Done lines, respectively.

In Section 2.5, we will see that there are two protocols for invoking shared modules. This section describes the normal
or Start/Wait protocol.  The other is the \Wait/Start (or reversed) protocol.

The operation of a calling buffer takes place in four phases as follows:

Waiting for Go. During this phase the calling buffer is idle. The output
buffers of the calling buffer hold their previous values. This phase ends when
a token is placed on the Go line.-

Calling. During this phase the calling buffer places its input data on the
calling data lines, and cmits a token on the Call line.

The input data lines of the calling buffer must be connected to either (1) the inpit buffer of the calling
module, (2) the output lines of a module known to be idle, or (3) an output buffer of another calling buffer
known to be idle at the time of the call. In the first case, the input buffer is stable since the calling module
can only be activated during the running phase of the calling module. In the latter cases, the output buffer (or
output lines) must be stable because the caliing buffer (or module) is in a wairing for go state..

Waiting for Return. This phase is entered when the token is absorbed from
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the Call line. The calling buffer then absorbs the token from its Go line.
During this phase, the shared submodule performs its computation. When
the submodule is done, it returns the data on the return data lines and emits a
token on the Return line. This causes the calling buffer 10 load the data into
its output buffer and then to absorb the token from the Return line (releasing
the shared submodule).

Waiting for Done. In this phase the calling buffer synchronizes with the
calling module. It places the output data on the output data lines and emits a
token on the Done line. This phase ends when the token is absorbed from the
Done line. After this, the calling buffer re-enters the wairing for go phase.

The calling buffer is an important construction in our methodology. Section 2.5
shows that a calling buffer can be constructed using a Srarr element and a Wait
element. Section 2.6 gives the composition rules for linking a calling buffer to the
calling module and called submodule.

24. Linking Modules Together

A token in the linked module computational model is analogous to a program
counter in a conventional computer. One can imagine representing the program
counter as a token which sweeps through a program. The token activates an
instruction when it reaches it, and moves on when the instruction is completed. In
digital systems, unlike most computer programs, it is common for several modules to
be active at the same time (i.e., for there to be more than one program counter). The
linked module abstraction provides forking (i.e., fan-out) and joining (i.e., fan-in)
constructions to control the sequencing in these systems. There are three major
qualifiers called all, any, and select as explained in the text below:

The Synchronizing and non-Synchronizing All-Forks

The non-synchronizing all-fork delivers the output of one module to each of several
receiving modules. It is indicated graphically as follows:

{Figure 6 of All-Fork}

10
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When the input module emits a token on it done line, the all-fork emits a token to
each of the receiving modules. Each of these modules absorbs the token when they
are ready. When all of them have absorbed a token, the all-fork absorbs the token
from the input module.

Since the data through an all-fork is always switched the same way that the tokens are, it is somelimes convenient to
omit cither the Go and Done lines or the data lines in the graphical notation. This convention is also followed in the
notations for other kinds of forks and joins as appropriate.

A synchronizing all-fork starts all of the receiving modules simultaneously, when
they are all ready. A synchronizing all-fork is indicated graphically by three
horizontal bars (instead of two).

The Any-Fork

The any-fork is used to deliver the output of one module to any one of several
other modules. It is indicated graphically as follows:

{Figure 7 of Any-Fork}

When the input module emits its token, the any-fork waits until one of the receiving
modules is receptive. 1f more than one receiving module is ready, a precedence
ordering is used. '

The precedence ean be indicated explicitly by numbering the lines to the receiving modules, or implicitly by left to right
listing,

The any-fork emits a token to the chosen module and then absorbs the token from
the input module. .

The Select-Fork

The select-fork delivers the output of one module to one of several receiver
modules. It is indicated graphically as follows:

11
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{Figure 8 of Select-Fork}

When the input module emits the token, the select-fork reads a data line (labeled
key) from the input module indicating which of the possible receiving modules has
been selected, and then offers a token to it. When the receiving module has
absorbed the token, the selector fork absorbs the token from the input module.

In Section 5, we will consider some ways 10 extend the coverage of the methodology by adding some more general (and
complex) kinds of select-forks. For example, a simple generalization of the select-fork allows tokens to be sent to several
receiving modules at once.

The All-Join

The all-join is used when a single module needs the data from several cutput
modules. It is indicated graphically as follows:

{Figure 9 of All-Join}

Each of the output modules emits a token to the all-join when their data are ready.
The all-join then offers a token to the receiving module. When the receiving module
absorbs the token, the all-join absorbs all of the tokens from the output module.

The dat lines from the output modules must go to distinet inputs of the receiving module to avoid conflicting data.,

The Any-Join
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The any-join is used when a single module can accept data from any of several
modules. This is illustrated graphically as follows:

{Figure 10 of Any-Join goes here.}

The output modules emit tokens to the any-join when their data are ready. When
the receiving module is ready, the any-join chooses one of the input modules using a
precedence ordering.

As before, the precedence can be indicated explicitly by numbering the wires from the output modules. If no numbers
arc shown, then a left-to-right precedence is implicit.

The any-join then switches the data-joins to connect the data lines from the chosen
output module to the data lines of the receiving module.

If some of the input wires of the receiving module are connected to only one of the output modules, then no data-join
switch is required for them. These inputs will only be loaded when the activation is caused by the corresponding output
module,

The any-join then offers a token to the receiving module. When the receiving
module absorbs the token, the any-join absorbs the token from the activating output
module. The any-join conserves tokens: tokens that are not absorbed during one
cycle of operation, will be available for absorption during the next cycle according to
precedence.

2.3.  Examples

This section illustrates how to use the forks and joins for some common
constructions.

Sequential Instructions

In the functional composition example in Figures 2 through 4, the data lines are
interconnected so that the output of each module is the input of the next in the
sequence. The following figure shows a more general example of sequential

13
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instructions:

{Figure 11 (a & b). Sequential Instructions}

F is a module which sequentially activates three other modules: A, B, and C.

The connections are exactly the same if the boxcs labeled A, B, and C represent calling buffers for shared submodules.

Figure 11a shows a general way to connect Go and Done lines to sequence module
activations. Module F can not finish until all of the instructions have been
performed. Furthermore, the data on F’'s output lines must be valid until F is
completed. Modules B and C compute output data for F. The all-join above F’s
Done ensures that B and C will hold their data (possibly in registers not shown) until
F is done. The all-fork after B enables C 1o start without waiting for F to finish.

Some optimizations of the control wiring are possible in this example. Figure
11b suggests that it is enough to simply connect the control wires of the modules
serially, leaving out the all-fork and all-join. To see why this works, consider that A,
B, and C are in a module without loops, aud A can only be started when the the
module is. It follows that if B is running, then A must be finished; and if C is
running, then B must be finished. Furthermore, by definition, the output lines of a
module are stable once its computation has finished. Hence, it is not necessary to
keep B in a waiting for done state, and the input terminal of the outer module’s Done
line can be connected to C (eliminating both the fork and the join), The more
elaborate control wiring of Figure 1la is needed only there are loops going back to
reactivate modules A or B..

Re-using Outputs

Sometimes it necessary to use the output of a module as input to more than one
module. An example of this is the computation of F( G( H(x) ), H(x) ), where we
want to use the same value of H(x) in computing both arguments of F. In
conventional programming langtiages, the following sequence can be used to achieve
this:

Temp ¢ H(x)

14
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F ( G(Temp), Temp)

This approach uses some intermediate storage (Temp) to avoid calling H(x) twice.
The following figure shows how to specify the calculation using forks and joins, but
without any additional registers:

{Figure 12 of F (G (H(x)), H(x) ) }

The all-fork insures that H will hold its output lines until both G and F have
accepted the data. The all-join insures that F will not begin its computation until
both H and G have finished. Section 3 shows how the wiring of this construction can
be expressed in a programming notation.

Starting and Waiting

Start and Wait are useful timing signals between modules. Srart means to
activate another module without waiting for it to finish.  Wait means to wait for
another module to finish, without necessarily initiating it. In the linked module
abstraction, Starts and Waits usually come in pairs.

Start and Wait have been formalized as timirg signals on semaphore variables in operating system design [l{ansen73].

Figure 13 illustrates a way of generating a start signal in the linked module
notation;

{Figure 13 of Start}
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This construction uses a synchronizing all-fork to generate a token on the Call line to
start the called module, a token on the LinkOut line to enable the associated Wait,
and a token on the ContinueQut line to pass control to the next instruction. The

optional input data lines can be used to pass data to the started module on the call
data lines.

Although this implementation of Swarr does not wait for the module to finish, it does wait for it to be started.

Figure 14 shows how to construct a Wair in the linked module notation:

{Figure 14 of Wait}

This construction uses an all-join and a module (drawn sideways) to implement the
Wait. The all-join accepts an enabling token on the link-in line from the associated
Start. (A token arriving on this line indicates that the associated Start has fired, and
the Wait can prepare to accept data from the started module.) When the awaited
module finishes, it sends a token on the Return line. The optional return data lines,
buffer, and output data lines are used to hold the output data from the awaited
module. A token arriving on the Continueln line indicates that the intermediate
instructions between the Starr and Wair have been completed.

The reader may have noticed that the calling buffer can be implemented by a
Siart followed by a Wair. Figure 14.1 illustrates an interconnection that produces
the 4-phase cycle of a calling buffer. (Because no intermediate instructions are used
between) the Siart and the Wair, the ContinucOut and Continueln lines are not
necded.

Wait/Start Buffers

16
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In a reversed protocol buffer the Wait comes before the Start as in the following
figure:

{Figure 15. Wait-Start Buffer.}

This reversed-protocol is not suitable for subroutine-like calls, because the value
returned does not depend on arguments sent in the current call. Like normal
protocol, reversed protocol provides that the submodule be called once for every
activation of the calling buffer. In Wait/Start buffers, however, the computation of
the calling module potentially overlaps the computation in the called module.

Two uses for Wait/Stant buffers are for communication with daia generarors and data absorbers. A data generator is
a module which delivers data to the calling modules without using the parameters of the calling module. [n ordinary
computer programming, random number generators and assynchronous [/0 would be examples. A data absorber would
be a routine that accepts the data from the caller and processes it, without providing further feedback to the calling
module. A possible example of this would be writing data to a disk. Modules that are called by a Wait/Stant protocol
need to be in a waiting for done phase after system initialization.

Token Generators and Absorbers

In all of the examples so far, modules are started, run for a period of time, and
emit a single token. This kind of behavior is characteristic for most components of
the digital systems that we have considered. Sometimes, however, it is convenient to
have subsystems termed generators that emit information and tokens repeatedly
without being restarted. Similarly, it is sometimes convenient to have subsystems
termed absorbers that absorb information repeatedly, without emitting tokens.

Constructions for generators and absorbers is illustrated in the following figure;

17
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{Figure 15.1. (a) Token Generator and (b) Token Absorber.}

Generators and absorbers both have an initialize line which must absorb a token to
start them. (Such a line would be activated through a Start from another module.)
Both systems are composed of two null modules (i.e., modules that perform no
computation). The token generator works as follows.

(1) The generator receives a token on its initialize line.

(2) The first module runs and emits a token on its Done line.

(3) The second module absorbs the token, runs, and delivers a token to the
all-fork.

(4) The all-fork sends one token to the receiver on its Source line, and
another token back to the first module.

Once initialized, the token generator will emit fresh tokens on its source output
whenever tokens are absorbed from that line. The token absorber works as follows:

(1) The absorber receives a token on its initialize line.

(2) The second module runs and emits a token on its Done line.

(3) The all-join receives one token.

(4) If a token appears on the absorber’s Sink line, the all-join will emit a
token to the first module.

(5) The first module will then run, and emit a token to the second module.
(6) As before, the second module will emit a token to the all-join.

Once initialized, the token absorber will absorb any tokens that appear on its Sink
line.

2.6. Composition Rules

13



Linked Module Abstraction 19

Composition rules for linked module abstraction govern the interconnection of
modules, both externally and through calls. These rules are intended to make it easy
to create subsystems and composite modules. Many of these composition rules will
be incorporated into the grammar of the programming notation of Section 3.

Legal Connections Rule

The legal connections rule says that lines are oriented and that they only can
connected terminals of the same type. This rule has been used implicitly in all of the

examples so far.

Type of Line Connects From

Output Data Terminals
Output Data Terminals
Output Data Terminals
Output Data Terminals
Call Data Terminals
Input Buffers

Data Join Inputs

Data Line

Control Line Done Outputs
Done Qutputs
Done Outputs
Done Outputs
Go Outputs
Go Outputs
Fork Outputs
Split Outputs
Fork Outputs
Fork Outputs
Join Outputs
Join Qutputs
Return Outputs

Single Connection Rule

The following chart summarizes the legal connections:

Connects To

Input Data Terminals
Select Key Terminals
Data Join Inputs
Return Data Terminals
Input Data Terminals
Input Data Terminals
Input Data Terminals

Go Inputs
Fork Inputs
Join Inputs
Return Inputs
Go Inputs
Call Inputs
Go Inputs
Go Inputs
Join Inputs
Fork Inputs
Join Inputs
Join Inputs
Done Inputs

Control wires and data wires connect an output terminal to an input terminal. No
terminal can be connected to more than one wire,

Notation: Sometimes it is convenient to omil all-forks and all-joins in a figure by making them implicit when more than

1 wire is connccted to a terminal.
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Fan-out Rule

If the output data lines of a module (M) connect to more than one other module,
then the Done line must be connected through a fork to the Go lines of all of the other
modules.

More specifically,

[f the data are intended to go to all of the other modules each time, then the
Done line should be connected through an all-fork and the data can be
connected directly.

If the data are intended to go arbitrarily to one of the other modules, then the
Done line should be connected through an any-fork and the data must be
connected through a corresponding any-data-fork.

If the data are intended to go selectively to one of the other modules, then the
Done line should be connected through a select-fork and the data must be
connected through a corresponding select-data-fork.

This rule ensures tiiat module M will hold its output data (initiating no new
computation) until the other modules have received it

Fan-in Rule

If the input data lines of a module are connected to more than one other module,
then its Go line must be connected through a join to the Done lines of all of the other
modules.

This rule ensures that the input data for a module needs will be stable when the
module begins.

This rule is superfluous in cases where it can be proven that the sequencing of medules necessarily implies that the input
data must be stable. For example. serial modules without looping inside a calling module are necessarily activated
sequentially, and whenever a module is activated the outputs of all previous modules in the serics must necessarily be
stable.  In such cases. the datajoin can be optimized away.

The Token Conservation Principle

Most of the linking methods exchange a single token in a transaction, with two

20
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exceptions: the all-fork emits more tokens than it absorbs, and the all-join absorbs
more tokens than it emits. However, the operation of a module is based on the
absorption and subsequent emission of exactly one token in each computation cycle.
This leads to the following principle:

For all paths through a module, the emission and absorption of tokens inside must
exactly balance.

The following figure shows some important fork-join constructions that balance
their token transactions:

{Figure 15.2. Common Fork-Joins}

‘The combinations of forks and joins in the following figure do not conserve tokens:

{Figure 15.3. Fork-Joins that do not conserve tokens}

The all/any fork-join in Figure 15.3 acts as a token-multiplier; the any/all fork-join
acts as a token divider. These constructions cannot be used by themselves in a
module, siice they do not conserve tokens.

Composite Module Rules
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A module that calls other modules to perform parts of its computation is called a
composite module. The submodules of a composite module may finish at different
times. The general requirement for composite modules follows:

All of the outputs of a composite module must be computed before its Done token is
emitted,

Submodules may be linked serially to perform sequential computations, or in parallel
using forks and joins to perform parallel computations. In both cases it is essential to
connect the Done lines of the submodules to the Done input terminal of the
composite module in such a way that the composite module will emit an output
token when the overall computation is finished.

A single function composite module is one that always computes the same function
of its inputs. When it is done, it supplies output data on all of its output lines.
Several ways to achieve this are listed below:

(1) By connecting the Done lines of all the modules that compute output data
to an all-join. (This does not work if there are loops in the module.)

(2) By using forks and joins only in token-conserving fork-join combinations
inside the module.

(3) By augmenting the constructions in rule (2) with loop structures as in
Figure 154.

{Figure 15.4 Example of a Loop Construct.}

Figure 15.5 shows an example of an ill-formed composite module M. Submodules
A, B, and C are activated in parallel, but M only waits for A; the tokens emitted by
B and C are absorbed by the token absorber TA. The problem with M is that there
is no guarantee that the data output by B and C will be valid when M indicates that
it is done.
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{Figure 15.5. Example of ill-formed Composite Module.}

Figure 11 shows an example of the interconnections for a single function module
composed of sequential calls to submodules. Since submodules B and C compute
output data, their Done lines are connected to the all-join at the bottom of the
composite module.

A multi-function composite module is one that performs one of a set of functions
according to a command. Typically, a different set of outputs is computed for each
command. The following figure illustrates a multi-function module:

{Figure 16. Multi-function composite module.}

By convention, multi-function modules have a special data line designated command.
This line is used as the key to a select-fork which activates a set of modules (called
the command code) for cach command. The code for a command is, in effect, similar
to a single function module: it reads a subset of the composite module’s input
buffers, and drives a subset of the composite module’s output lines. Commands may
share input data and other computational structures; they are mutually exclusive in
their times of execution. In Figure 16, submodules A1 and B1 are the command set

23



Linked Module Abstraction

for function 1, and module A2 is the command set for function 2.

Each command set for a composite module must follow the rules for a single-
function module.

Shared Module Rule

Shared modules are modules that are called by more than one module.

In this section, we will confine our attention to modules following the normal (or Start/Wait) protocol

A composition rule follows:

Calls to shared modules should be buffered.

This composition rule is motivated by the problem of deadlock, which sometimes
occurs when parallel systems share resources. For a simple example of deadlock,
consider two modules F and G, both of which use submodules A and B to some of
their output data. When F receives a token on its Go line, it activates A and then B:
when G receives a token on its Go line, it activates B and then A.. By the output
holding rule, all submodules must hold their output data (staying in the waiting for
done phase) until the calling module is finished. Suppose that F activates A just
before G activates B. At this point, A waits for F to finish, F waits to activate B, B
waits for G to finish, and G waits to activate A.. Without outside intervention, none
of the modules will finish: This condition of circular waiting is called deadlock.

As described by Hansen [Hansen73] and others, the following conditions are
necessary for the occurrence of a deadlock:

(1) Mutual exclusion: A resource can only be used by one process at a time.

(2) Non-preemptive scheduling: A resource can only be released by the process
which has acquired it.

(3) Partial allocation. A process can acquire its resources piecemeal.

(4) Circular waiting. The previous conditions permit concurrent processes to
acquire part of their resources and enter a state in which they wait indefinitely
to acquire each other’s resources.

Deadlocks are prevented by ensuring that one or more of the necessary conditions
never hold. In the linked module abstraction, conditions (1) and (2) cannot be easily
defeated. By linking calling buffers as in the following figure, we can defeat circular
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waiting:

{Figure 17 Sharing a Module}

In this configuration, the calling modules emit tokens on their Call lines whenever
they are ready. When the shared module is ready, the any-join selects one of them,
emits a token to the shared module, and absorbs a token from the chosen calling
buffer. (This allows the calling buffer to enter its waiting for return phase, and starts
the shared module performing its computation. When the shared module finishes, it
emits a token on its Done line.

This argument depends on the assumption that the computation in the shared module will terminate. We will cxamine
some conditions bearing on this in the following sections.

At this point, only one of the calling buffers is in a waiting for return phase. (The
others are in a waiting for call phase). Hence the calling buffer that was chosen by
the any-join is the only one able to absorb the returned token. This buffer loads the
data into its output buffer and absorbs the token. This allows the any-fork to absorb
the token from the shared module, so that the shared module can return to the
waiting for go state. The shared module does not need to wait and hold data for the
calling module because each calling buffer buffers the output data. Hence, circular
waiting is prevented.

The proof of non-deadlock for linked Start/Wair constructions with intermediate instructions is essentially the same,
and is left for the reader.

Non-Recursion Rule

The previous argument for preventing deadlock using calling buffers presumes
that the shared module will finish in a finite time. This conditidn will not be met if
the shared module tries to call itself or the calling module before finishing. This
leads us to the following rule:
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A module cannot call itself recursively (directly or indirectly).

The notion of module cafling in the linked-module abstraction involves the sending of data to modules along data lines.
This contrasts with the stack implementation of calls in software for conventional computers, and illustrates why recursion
is disallowed: there is no place to store the calling arguments and return addresses. [t is possible to implement a stack-
oricnted notion of function calling in hardware. Section 4 proposes several alternative implementations of stacks.

To determine whether modules are recursive, it is too strong to recursively list the
modules that are called by a module. For example, it is legitimate for F to call G
and G to call F if the calls are mutually exclusive by the logic of the modules.

No Double Starts

Calling buffers preclude the possibility of the calling module trying to start the
shared submodule again, before receiving back the return token. This is because a
Wait immediately follows the Start in a calling buffer. If calling buffers are not used
exclusively, it is possible to cause a deadlock by invoking two Starts to the same
submodule without intermediate Waits. As in the recursion example, such
constructions lead to a deadlock, with the calling module waiting to start the shared
module and the shared module waiting on the calling module to accept the first
return token.

2.7.  Subsystems

Sometimes it is convenient to consider collections of modules and linking
constructions as a unit, even when the unit itself is not strictly a module (i.e., it does
not have a single Go line and Done line). We call such constructions subsystems and
delineate them graphically by dashed lines instead of solid module boxes.
Communication with subsystems is ultimately directed to the modules that constitute
them. Subsystems can perform several operations at the same time. A precise
characterization of subsystems and notations for them are given in Section 3.11.
Several examples of subsystems are presented in Section 4.
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3. A Programming Language for Linked Modules

This section proposes a linear notation, called the LMA programming language,
for describing linked modules. The linear notation is a kind of hardware
programming language. It expresses the same concepts as the graphical notation in
the previous section, but it uses many familiar notations and constructions from
conventional programming languages. We believe that the linear notation makes it
convenient to create linked module descrxptlons of the architecture and behavior of
digital systems.

In addition to notations for linked modules that correspond to the graphical
notations, some programming notations for the convenience of the digital designer
are proposed. These are used to specify parameterized modules, conditional parts,
and information for testing and debugging the modules in a system.

For pedagogical purposes, this section is organized around examples. It begins
with the use of program variables to represent input buffers and output terminals.
Subsequently, notations for submodules, registers, conditionals, case statements,
concurrency, indexed set constructions are developed.

3.1. Imputs, Outputs, Submodules, and Assignment Statements

The following example illustrates the correspondence between the linear and
graphical notations for 2 module M. M has two inputs (x and y) and two outputs (a
and b). M uses two submodules, F and G. F takes x as its argument and computes
a; G takes y as its argument and computes b. F is to be computed before G. The
definitions of F and G are given externally:

{Figure 21. Example of two sequential submodule calls.}

Module M
inputs [x,y: Bits[16]]
outputs [a,b: Bits[16]]
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components [Fl: F, Gl: G]
action |

b « Fl(x);

a <« Gl(y), ]
end Module M

The definition of module M is partitioned into several kinds of specifications; the
inputs, the outputs, the components, and the specification of the action of the module.
In analogy with conventional software, the inputs and outputs are given variable
names. The input variables correspond to the input buffers of the module and can
only be read; the output variables correspond to the output lines of the module and
can only be written. Function call notation (i.e., subroutine calls) are used to
indicate calls to submodules.

In this example, the definitions of F and G are given externally to the definition
of M, but M has its own unshared copies of them (F1 and G1, respectively). The
notation is meant to suggest that F1 is the local name of a copy of F, which is
externally defined.

For brevity in this text, we will sometimes use the global name (e.g., F) to refer to either the local copy or the external
definition. It should be clear from context which is intended.

Assignment statements are used to indicate where the values of functions go. In
this example, the assignment statements are interpreted as the wiring of module
output lines. When a module returns multiple outputs, they can be combined in a
single assignment statement as follows:

X, y, 22 « M (argl, arg2, arg3);

In conventional software, the intention of the following sequence of statements is
clear.

a < 1;

a « 0;

In the LMA programming language, we want to draw on programming idioms
whenever possible. In this case, if a is an output terminal, the apparent graphical
notation would result in a violation of the fan-in composition rule. The output
terminal cannot be driven both to 1 and to 0. In a Section 3.5 we will introduce the
notion of implied registers as an alternate interpretation of the assignment statement,
which admits such programming idioms.

In some cases, it will be possible to oprimize the specification by reducing the apparent number of registers. We are
open 1o suggestions on this point.
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3.2, Sequence and Concurrency

The serial listing of program statements indicates that the statements are activated
sequentially in their order of appearance. In the linked module abstraction, parallel
execution is achieved using all-forks. The following figure illustrates the graphical
and linear notations for a module M in which submodules B, C, and D are activated
in parallel. In this example, submodule A is first activated using w as its argument.
Then output of A is given to B, C, and D and their outputs are used to drive x, y,
and z, respectively.

{Figure 22. Example of parallel activation of submodules.}

Module M
inputs [w: Bits[16]]
outputs [x,y,z: Bits[16]]
wires v
components [Al: A, Bl: B, Cl. C, DI1: D]
action [
v « Al(w);

<& x € Bl(v), y ¢ Cl(v), z « DI(v) &; ]
end Module M

The notation <& ... &> indicates an all/all fork-join for parallel execution. The
notations for fork-joins are summarized in the following table:

Notation Meaning

<& ... & non-synchronizing all/all fork-join
{&!.. &>  synchronizing all/all fork-join
4..0p any/any fork-join

& ...> allZany fork-join®

{..& any/all fork~join*
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* These fork-joins are not token-conserving.

Another point of interest is the wires specification for v, the output of A and the
input of B, C, and D. The wires notation indicates unambiguously that B, C, and D
all use the output of the same call to A..

The order of activation can also be indicated in the linear notation by the
embedding of submodule calls. The next example shows the graphical notation and
two equivalent linear notations for a module M which computes F (G (H (x))), that
is, F°G~°H (x)

{Figure 23. Composed Functions.}

Module M version 1
inputs [x: Bits[16]]
outputs [a: Bits[16]]
wires y,z]
components [F1: F, Gl: G, Hl: H]
action |
y « HI(x);
z < Gl(y);
a « FI(2); ]
end Module M

Module M version 2
inputs [x: Bits[16]]
outputs [a: Bits[16]]
components [F1: F, G1: G, Hl: H]
action [
a « F1 ( G1 (H1 (x))); ]
end Module M

The first version of M uses the wire notation to indicate data flow and lists the
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submodules H, G, and F in the order of activation. The second version of M uses
embedded submodule calls to indicate both data flow and the order of activation.

3.3. Case Statements and Conditionals

The select/any fork-joins in the linked module notation indicate selective
branching in control flow. This construction is important for any kind of conditional
branching and for the multi-function composite modules of Section 2.6. In the linear
notation, this concept is expressed most familarly in case statements and conditional
statements,

The following example illustrates a multi-function composite module which
accepts two commands: increment and decrement. If the command line carries a
datum corresponding to increment, then submodule F is activated. If the command
line carries a datum corresponding to decrement, then submodule G is activated.
The figure gives the equivalent graphical and linear notations for this:

{Figure 24. Example of a Case Statement.}

Module M

inputs [x: Bits[16], command: Action]

outputs fa: Bits[16]]

components [F1l: F, Gl: G]

action |

[Case command

[increment {a « F1(x)}]
[decrement {a « G1(x)}] ]

end Module M :

We use braces { .. } 10 delimit a sequence of statements.

The decoding of the command variable is not made explicit in this notation. We have chosen a syntax to make it
similar to conventional Case statements and also recognizably close to messages in an object-oriented language. At issues
is whether the language should be explicit about the representation of selection keys. We are open 1o suggestions on this
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point.

In this example, both commands to module M use the same input data: x. In
some cases, different commands use different data. For example, in the following
module, the new command uses X, and the prev command no input data at all. (It
returns data received from another module.)

{Figure 25. Data Steering in a multi-function module.}

Module M
inputs {x: Bits[16], command: Action]
outputs [a: Bits[16]]
components [Backup: GenBackup[16] ]
constants  [save, retrieve: Action]
action |
[Case command
[new {a e x; Backup(save, x)}]
[prev {a « Backup(retrieve)}] |
end Module M

GenBackup is a parametcrized module;  Rackup is an instance or local copy of this in which 16 is the value of the
parameter.  Paramcterized modules are discussed in a later section.

In this example, the input command steers the control flow in the select-fork as well
as the data flow of x in the select-data-fork. Hence, the output of M (that is, a) is x if
the command is new, and is the value of the call to backup if the command is prev.

In the linear notation, we have our first example of constants defined for use in
the module. In this case, they are of type Action and are used to indicate commands
to Backup. The examples above show the Case statement as the first statement in a
module. These examples correspond to the multi-function composite modules of
Section 2.6, in which the commands share data but are mutually exclusive in
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execution. Case statements can also be used to represent selective braching at other
(decper) parts of a module definition.

Another programming construction which maps directly onto selection is the
conditional statement. The following example illustrates the graphical and linear
notations for a module, which computes F(y) if x=4, and G(y) otherwise:

{Figure 26. Example of a Conditional Statement.}

Module M
inputs [x,y: Bits[16]]
outputs [a: Bits[16]]
components [EQUALS: NUMEQUALS [16]]
action |
If (EQUALS x 4)
Then a « F(y)
Else a « G(y) ]
end Module M

It is an open issue whether the syntax of our notation should provide special syntax for commonly used basic modules
like EQUALS {(e.g., an cquals sign). We are open to suggestions on this,

If more than one statement is desired for the Then clause or the El/se clause, then
braces should be used as follows:

If X = 4
Then {a « F(y); be(G (H(x)):}
Elise {a « G(y); b«H(x):}

LMA language extends the /fsyntax to provide Elself clauses when the conditions
are intended to be mutually exclusive:
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If x <10 Then a « G(x)
Elself x < 20 Then a « F(x)
Elself x < 50 Then a « H(x)
Else a « J(x) ;

3.4. Caller Constraints

When a module has several commands, it is often the case that the different
commands use different subsets of the input data. For example, the module M
defined in Figure 25 uses different data for the new and prev commands: the new
command uses the input variable x, and the prev command uses no input variables.
Calls to module M would accordingly have different forms according to the
command. For example, a call to M invoking the new command would specify the
variable as follows:

M (new 16);
and a call to M invoking the prev command would not specify the variable:
Temp « M(prev);

By convention, calls lacking particular arguments correspond to graphical notations
in which no wires go io the corresponding input buffers. The semantics of this is that
the unwired input arguments are nor changed by the call.

In some cases, the correct operation of a module for certain commands depends
on the non-initialization of particular input variables. [t is important that calls with
these commands do not specify extraneous arguments. This is indicated in the LMA
programming language by extending the notation of the Case statement to specify
which input variables are expected for each command. The following figure
illustrates this for M:

Module M -

inputs [x: Bits[16], command: Action]

oultputs [a: Bits[16]]

components  [Backup: GenBackup[16] ]

constants  [save, retrieve: Action]

action |

[Case command

[new (x) {a « x; Backup(save, X)H
[prev () {a « Backup(retrieve)}]] ]

end Module M

The semantics of the notation in this example is that calls specifying new as a
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command must provide x, and calls specifying prev must nor specify any arguments
(except command).

This notation forces a convention that all calls 1o a particular command must use the same arguments. It does not allow
for optional arguments for a command. We are open to suggestions on this point

In analogy with the specification of input data for commands, it is sometimes
appropriate to specify output data for commands. A call to a module that does not
return the appropriate output data is probably in error. This is illustrated in the
following example:

Module M1 '
inputs [x: Bits[16], command: Action]
outputs [a,b: Bits[16]]
components [Backup: GenBackup[16] ]
constants  [save, retrieve: Action, zero: Integer{0,16]]
action |
[Case command
[new (x) - (b)  {Backup(save, x), b « 0}]
[prev 0 = (ab) {b « Backup(retrieve), a « zero}]]]
end Module M1

In this example, calls with thc new command must provide the input argument x
and return the output argument b; calls with the prev command must provide no
input arguments, and must return the output arguments a and b.

The reader will note that the specifications for input and output variables are distributed among several declarations. The
types of all the arguments are specified in the inpurs and ourputs specifications. The correspondence of the arguments
with the module commands is indicated in the extended Case statement

3.5. Registers

In the examples so far, the storage of information in modules has been only in
their input buffers. For many kinds of hardware, it is useful to have local registers,
in which data can be stored for later retrieval. Information in registers persists
between activations of modules. This section shows how

(1) Registers can be implemented as modules.

(2) The implementation of registers can be optimized to be essentially null
modules. :

(3) The declarations at the beginning of a module can be extended to yield
simplified specifications for registers.
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(4) The assignment statement and variable notation can be extended to
represent storage and retrieval from registers.

(5) The need for registers can sometimes be implicit in the use of assignment
statements in a module.

The following graphical and linear notations show one way to create a register:

{Figure 27. Module for a register.}

Module Registerl6
inputs  [dataln: Bits[16], command: action]
outputs  [dataOut: Bits[16]]
action [
[Case command
[read () — (dataOut)
{dataOut«dataln}]
{write (dataln) — ()

end Module Registerl6
This definition of a register depends on the convention that calls to read the
register do not have wires to dataln, that is, they do not change dataln. Given this

observation, it is possible to simplify the definition of a register to be essentially a
null module as follows:

{Figure 28. Simplified version of LM register.}
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Registers are used so frequently that it is convenient to have simple linear
notations for defining them. In the linked module language, registers can be defined
as parameterized components, For example,

components [R1: Register [16], R2: Register [8], R3: Bit]

defines three registers R1, R2 and R3 with lengths 16 bits, 8 bits, and 1 bit
respectively.

In addition to declarations for registers, the LMA programming language
provides simple notations for reading and writing registers. For example, the
following two versions of module M both use register R1. The first version uses
submodule notation for accessing the register; the second version uses an extended
interpretation of the assignment statement:

Module M

inputs [x: Bits[16], command: Action]
outputs [a,b: Bits[16]]

components [R1. Register[16]]

constants  [read,write: Action]

action |
[Case command
[regular (x) — (a) {
a « F( Rl(read), x);
R1(write x)}]
[special (x) - (b) {
b ¢ Rl(read);
end Module M

Module M

inputs [x: Bits[16], command: Action]
oulputs [a,b: Bits[16]]

components [R1: Register [16]]

action [
[Case command
[regular (x) - () {
a « F(R1x);
R1 « x}]
[special (x) = (b)
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{b « R1}]
end Module M

In the second version of M, the interpretation of the symbol RI is interpreted as
either a read or write command to the register, depending on context.

The next example illustrates the notion of implicit registers.

Module M .
inputs [x: Bits[16], command: Action]

outputs {a,b: Bits[16]]
components [R1: Register [16]]
action |
[Case command
[regular (x) — (a,b) {
a « F(R1,x);
b « x}]
[special (x) — (b)
{b « R

1}]
end Module M

In this example, the output variable b is set differently in the regular and the special
commands. The straightforward mapping of this onto the graphical notation would
have two data lines driving the b terminal -- resulting in a violation of the fan-in
composition rule. A different interpretation of the linear notation preserves the
programmer’s intent without violating the rule. This interpretation is that the symbol
b represents an implicit register, whose output is connected to M’s output terminal.
In this interpretation, the assignment statements simply load that register (instead of
driving M’s output lines).

Another interpretation would be a select/select fork-join with a data-join for switching the wires to output terminal b.
‘This interpretation avoids the nead for a register. The choice between these interpretations may be considered to be the
choice of the optimizing compiler.

The same issue of fanin applies to wires. In this case. the interpretation of such wires as register may not preserve
programmer’s intent. We aré open to suggestions about this issue.

3.6. Parameterized Modules and Conditional Parts

Parameterization is a syntactic device for defining generalized structures. For
example, the following is a parameterized definition of register, in which the size of
the register is specified as a parameter:

Module Register
parameters  [size: Intcger]
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inputs [dataln: Bits[size], command: action]
outputs [dataOut; Bits|size]]
action |

[Case command
[read () — (dataOut)
{dataOut«dataln}]
[write (dataln) - ()

end Module Register

Declarations of instances of a parameterized module must provide the parameters.
For example, the components declaration:

components [R1: Register[16], R2: Register{§]]

creates two instances of Register and specifies their lengths. In this example, the
type of the parameter size is integer. Parameters can be of any legal type. For
example,

parameters [ErrorHandler: F]
specifies an instance of module F as a parameter, and
parameters [MyKind: Type]

specifies a type as a parameter.

One of the important uses for parameters is for defining modules that have
certain components conditionally, that is, depending on parameters. Conditional
parts are indicated in the LMA programming language by When statements. A
When statement has a similar syntax to the If statement, but it has a different
meaning. A When statement is evaluated when an instance of the module is created.
It indicates that certain parts of the linked module specification should be
conditionally included in the instance. The When statement does not itself
correspond to hardware. In contrast, an [f statement is evaluated only when the
module is run; the [f statement corresponds to a select-fork in the instance. Both
statements are illustrated in the following example:

Module Bline
parameters [RNbr: BLine, Size: Integer,

EndFlg: Boolean, ErrorHandler: BLineFuli]
components. [HasData, LastDatum: Bit, R1: Register{Size]]

action |
[Case command
[push (in) = (
{{When EndFlg



Linked Module Abstraction

Then ErrorHandler(Full)
Else {If HasData
then LastDatum « 0;
RNbr(push R1)
else LastDatum « 1;}}
Rl « In}}]

;hd Module Bline

In this example, the call to ErrorHandler is included in an instance only if the
EndFlg parameter is true. Otherwise, the [fstatement with the Has-Data predicate is
included.

3.7. Sets of Components and Indexed Selections

Many hardware systems are constructed out of collections of identical entities. In
programming notations, it is convenient to define such collections as indexed sets, so
that individual elements can be referred to by number instead of by name. This is
particularly useful for defining parameterized modules, where the size of the
collection is determincd by a parameter. The syntax for defining indexed sets of
identical modules is illustrated in the following example:

Module BQUEUE

inputs [command: action, Dataln: Item]
outputs [DataOut; Item]

parameters  [depth: Integer, Item: Type]
components [QC: Sedi, [1..depth], QueueCell]]

In this example, QC is defined as an indexed set of QueueCells. The syntax indicates
that there are depth elements in the set, where depth is a parameter supplied when
the module is instantiated. The use of the parameter i is ilustrated below:

components [QC: Sefi, [1..depth],
QueueCell [Item: Item,
LeftNbr: QC[i-1],
RightNbr: QC[i+1]]]

This example establishes LeftNbr and RightNbr parameters for each element of the
set QC: the right neighbor is defined as the next element in the set. By convention,
all indexing in sets is computed modulo the length of the set. This makes QC
circular in that the right neighbor of QC[depth] will be QC[l1]. To avoid the
circularity, we can use a When statement as follows:
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components [QC: Seli, [1..depth],
QueueCell [Item: [tem,
LeftiNbr: When i>1 Then QC[i-1],
RightNbr: When iK<depth Then QC[i+1]]]
This example establishes LeftNBr and RightNbr parameters for each element of the

QC set; the When statement precludes the first (i.e., leftmost) element from having a
left neighbor, and the last (i.e., rightmost) element from having a right neighbor.

The LMA programming language also augments the notations for forks and joins
to facilitate using them with indexed sets. The notation:

<& Set [i, [L.depth], QC[ij(MoveRight)] &>

represents an all/all fork-join which sends a MoveRight command simultaneously to
every element of the QC set. Analogously, the notation:

| Ser [i, [1..depth], QCli](MoveRight)] >

represents an any/any fork-join which sends the command to one element of the set.
Finally, a select/any fork join is indicated as follows:

{Select [key<currentPos, QClkey](MoveRight)] > .

‘The semantics of this are essentially the same as the semantics of a Case statement.
If several statements are to be executed for a given value of the key, then the
statements should be surrounded by braces as in the following:

{Select [key«currentPos, {x « QC[key](read);
QClkeyl(push y)}] P

3.8. Starts and Waits

Start and Wait are key words in the LMA language and used as follows:
Start [M(argl arg2), label]
<,y 2> ¢ Wait [M, label]

where label is a unique label used to identify the pairing of Starts and Waits. M is
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the name of the module started (and waited for), argl and arg2 are calling arguments
to M, and x, y, and z are the values returned by M.

3.9. Interrupts

Interrupt code is used to initialize modules. The interrupt code for a module is
indicated in the interrupt specification as follows:

Module M
inputs [x: Bits[16], command: Action]
outputs [a: Bits[16]]
components [F1: F, G1: G, R1: Bit]
action [ .
[Case command
[increment {a « FI(x); R1 « 1;}]
[decrement {a « Gl(x); R1 « 0;}] ]
interrupt |
[R1 « 0]
end Module M

An interrupt signal to a module is generated by an interrupt, annotated as in the
following example:

Module M
inputs [x: Bits[16], command: Action]
outputs [a: Bits[16]]
components [F1: F, Gl: G, R1: Bit]
action |
[Case command
[initialize ) = O {/nterrupt [F1]}
fincrement (x) — (a) {a « FI(x); R1 « 1;}]
[decrement (x) — (a) {a « Gl(x); R1 « 0;}] ]
interrupt
[R1 « 0]
end Module M

In this example, M sends an interrupt to F1 if it receives an initialize command.

3.10. Preconditions and Postconditions
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Argument checking is an important debugging concept from programming
practice. This section introduces the analogous concept for hardware: providing
specialized and separable code for testing module interfaces during simulation.

Arguments are interfaces for subroutines. By argument checking we mean the
systematic checking of the validity of the values of arguments passed to a subroutine
during its execution, to determine whether they are consistent with its purpose and
limitations. By checking arguments while exercising a system on test cases, a
programmer can often spot cases where subroutines fail to work correctly together.
This technique is useful for debugging interfaces when parts of a program are written
by different people. It is also useful when the specifications of interfaces for a
system are in flux.

Repeated checking of arguments whenever subroutines are run introduces an
overhead on the calling process. One way to avoid this overhead is to treat the
checking code as conditionally compiled: so that it can be excluded when the
subroutine is believed to be debugged, and reintroduced later only if the system is
changed or if further debugging is needed. In hardware, the overhiead of repeated
checking might be measured in terms of the silicon area of the logic for doing the
test.

The LMA programming language provides preconditions and postconditions
specifications for checking the arguments and returned values of modules. This code
can be run in simulations of a digital system as needed, but is not part of the
specifications to be implemented as hardware. An example of such code for a stack
follows:

Module Stack
parameters ...
components [FullFlag: Bit ...

action |
[Case command
[push (item) = () ..]
[pop ..]
ffull? ... ]
[empty? .. ] ]
preconditions |
[Case command
[push {/f FullFlag
Then ReportError(NoRoom)}

End Module Stack

In this example, the protocol for calling the stack involves first testing for available
space using a full? command. If this protocol is violated and a push command is
issued when the stack is full, then the preconditions will detect and report the error.
Presumably, examples of incorrect protocol will be detected by adequate testing
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before the stack is implemented. When the stack is implemented, the preconditions
code can be factored out from the rest of the specification.

3.11. Subsystems

The examples so far have dealt only with modules. This section generalizes the
module concept to the subsystem concept. Subsystems share some of the same
properties and LMA programming notations.

The following table summarizes some of the differences between modules and
subsystems:

Modules Subsystems

Finish processing one set of inputs Pipelined processing of inputs.

before starting another set.

There is one Go line and one Done Subsystems can have several Go and

line per module, Done lines.

Commands are mutually exclusive. Some commands can be executed
simultaneously.

Commands correspond to cases in a Commands correspond to either named

select/any fork. Go & Done lines, or to module
commands.

Because of the similar ideas for subsystems, it is convenient to have similar LMA
notations. The following example of a subsystem illustrates many of these
conventions:

Subsystem FIFQ-Scrambler
parameters  [Item: Type, Size: Integer]
inputs [Dataln: Item, SFactor: Type]
outputs [DataOut: Item]
components [FC: Ser [i, [l.size], FSC[item: Item,
. LNbr: when i>1 then FSC[i-1],
RNbr: when i<size then FSC[i+1]]
CP1: Compactor[Size]]
commands |
[scramble (SFactor) — () {<& Ser [i, [1.size], FC[i}(Scramble SFactor)] &>}
[push (Dataln) - () {FC[1])(push Dataln); CPI(foo);}]
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[reset ) —» () {CP1(init)}]
[undo ) —» () {CPl(undo)}] ]
end Subsystem FIFO-Scrambler;

This example illustrates several points:

(1) LMA notation uses the same declarations for inputs, outputs, parameters, and
components for subsystems and modules. (This makes it possible to have local names
for subsystem structure, analogous to the module substructure.)

(2) Instead of an actions specification, the submodule has an analogous commands
specification.

(3) Each command is associated with a Go line. For example, the scramble
command is connected to an all/all fork-join, and the push command is connected to
two sequential calling buffers.

(4) Whether the commands can be executed simulaneously must be inferred from
the specification. For example, since the reset and undo commands are both calls to
CP1, they must be mutually exclusive. Either command can overlap execution with
a scramble command, and they may partially overlap a push command.
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4. Architectural Examples

A major goal of the linked module abstraction is to provide suitable terms for
describing digital architecture. The LMA language describes the structure of digital
systems in terms of modules and subsystems; it describes the paths that data can
flow, the sequential and parallel activation of modules, and the placement of
registers.  This section illustrates some alternative architectures for familiar
subsystems.

4.1. Stacks (LIFO)

The first set of examples are architectures for stacks. It might seem surprising
that there are interesting or fundamental choices in the design of a stack. After all, a
stack is a simple thing:

(1) It has two basic commands: push and pop.
(2) It has a simple last-in-first-out (LIFO) behavior.

(3) It has two error conditions: push on a full stack, and pop on an empty
stack.

However, there are several properties of stack architectures that are not determined
by or considered in this simple characterization of stacks:

(1) When can a stack respond to a pop after a push? (Must all of the effects of
the previous pop be settled out?)

(2) During a pop, what moves? (Data or pointers or .. 7)
(3) How many interconnections are necessary between the stack storage cells?
(4) How many storage cells must the stack controller be connected to?

(5) How is the number of elements stored in a stack represented? (i.c., how is
the top of the stack represented?) '

(6) How many registers arc required per stack cell?

(7) Does the time to push an element into a stack constant depend on how full
the stack is?
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In the architectural examples that follow, we will see different ways to answer
these questions. Five architectures for stacks are considered:

(1) Pointer Stack. This stack corresponds to the usual software implementation of
stacks, using an index into an array of registers. The index points to the top of the
stack. Pop and push operations read and write data according to the index.

(2) Roving Marker Stack. Like the pointer stack, this architecture uses an indicator
of the top of the stack. In constrast, it uses a mark bit associated with each cell
instead of an index register to indicate the top of the stack. In a push or pop
instruction, all of the cells receive the command but only the one with the mark bit
set performs the operation. The marker bits are essentially passive bits that are set
and reset by the stack cells.

(3) Ganged Marker Stack. Like the previous architecture, this one uses marker bits
to indicate the top of the stack. In this architecture, however, the marker bits are
themselves active and pass their contents simultaneously in the appropriate direction.

(4) Buffered Stages Stack. In the previous implementations, only the indicators
changed on push and pop instructions to indicate the top of the stack. In this
implementation, the top of the stack is always the left-most stack cell and all the data
in the stack move simultaneously as required. Intermediate buffer stages are
required to allow all of the data to move simultaneously. The controller sends its
commands to all of the stack cells.

(5) Ripple Stack. Like the buffered stages architecture, this one moves the data on
push and pop instructions. In contrast, this architecture requires only local
interconnections between the stack cells and no additional buffers between them. A
push command from the controller starts at one end of the stack; the required
movement ripples left to right through the stack.

4.1.1, The Pointer Stack

The pointer stack is the architecture most often implemented in software using
random access memory. A register containing the address of the top of the stack is
used to index into the memory. The following figure shows the basic
interconnections and an LMA description of it.

{Figure 29. Pointer Stack.}
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Module PointerStack
inputs [command: action, dataln: item]
outputs  [dataOut: item]
parameters  [depth: Integer, item: Type]
components [pointer: Register[addressWidth(depth)]
—addressWidth(n) computes the number of bits necessary to address n items.
R: Sei[i, depth, Register{item]]]
--We use Register{item] as an abbreviation for Register{Size(item))
action [Case command
[push [if pointer<depth
then {seleci{key <pointer | R[key] « dataln)];
pointer«pointer+ 1}]}
[pop [if pointer>1
then {pointer < pointer-1;
Cselect key«pointer; dataOuteR[key] |>H]]
interrupt [{pointer«1}]]
end Module PointerStack

The push command loads the data, and then advances the pointer. The pop
command decrements the pointer and then unloads the data. Because PointerStack is
a module, the pus and pop commands are mutually exclusive. Addressing of
memory registers is done with a sclect/any fork-join. The need for an adder (or at
least a reversible counter) in the module is implicit in the "+" operation.

4.1.2. Roving Marker Stack

In this implementation, each stack cell has a marker bit. The cell containing the
data at the top of the stack has its marker bit set to 1. On a push or pop, the marked
storage cell requests its appropriate neighbor to set its marker bit. Since a marker bit
is shifted to move the top of the stack, no adder is needed in this architecture.
Commands are sent to all of the cells, but only the marked one needs to act. The
following figure shows the basic connections in the graphical notation, and a detailed
LMA program for the stack controller and for a cell with marker bit.

{Figure 30. Roving Marker Stack.}
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Module RovingMarkerStack
inputs [command: action, dataln: item]
oulputs [dataOut; item]
parameters |[depth: Integer, item: Type]
constants  [push, pop, setBit, clearBit: Action]
components [outReg: Register[item),
MC: Sedi, depth,
MarkedCell[LNbr: when i>1 then MC[i-1],
RNbr: when i<depth then MC[i+ 1],
out: outReg]]}
action [Case command
[push {<&! Se[i, depth, MCl[i}(push, dataln) &>}]
[pop {<&! Seii, depth, MC[i](pop)] &>;
dataOut«outReg}]
interrupt [{<& Sei, depth, MCJi](clearBit)]>;
MC[1](setBit)}]]
end Module RovingMarkerStack

Module MarkedCell

inputs [command: action, dataln: item]

parameters [item: Type, LNbr: MarkedCell, RNbr: MarkedCell,
out: Register[item]]

components [myBit: Bit, dataReg: Register{Item]]

action  [Case command

[push {if myBit=1 then {dataRege«dataln; MyBit«0; RNbr(setBit)}}]
[pop {if myBit=1 then {myBit«0; LNbr(popValue)}}]

[popValue  {myBite1; outedataReg}]

[setBit {myBit<1}]

[clearBit {myBit<0}]]
end Module MarkedCell ‘

[n this architecture, the push and pop commands are sent from the controller to
all of the MC's simultaneously using the synchronous all/all fork-join. The MC’s are
initialized so that only one of them has its myBit set to one, and this condition is
preserved by the operations. The marker bit is set to 1 in the cell after the last
datum. Items are passed between the marked cells and their controller is though the
shared register outReg, which is passed as a parameter to the cells.

A variation on this architecture would avoid the input buffer dataln in cach marked cell by passing the information in a
shared register specificd as a parameter.

49



Linked Module Abstraction 50

4.1.3. Ganged Marker Stack

This is another version of a moving marker stack, except that the all of the
marker bit cells are moved, instead of just the top ones. They are shifted
simultaneously by a command from the controller. The following figure shows a
partial specification in the graphics notation and the LMA program language
description for a ganged marker stack:

{Figure 31. Ganged Marker Stack.}

Module GangedMarkerStack
inputs [command: action, dataln: item]
outputs [dataOut: item]
parameters  [depth: Integer, item: Type]
constants [moveRight, moveLeft: Action]
components [CS: CircularShifter[depth], outReg: Register[item],
Data: Sef[i, depth, Register[item]]]
action [Case command
[push {<& Sei, depth, if CS(read i)=1 then Data[i] - dataln]] &>;
CS(moveRight)}]
[pop {CS(moveleft);
<& Seili, depth, if CS(read i)=1 then dataOut«Data[i]] & }]]
end Module GangedMarkerStack '

Subsystem CircularShifter
parameters  [length: Integer]
components [B: Set[i, length, Bit]]

commands [
[moveRight () » () <& Seifi, length, B[i+ 1]« BJi] ] &>]
[moveLeft ) = () <& Sei[i. length, B[i]<B[i+1] ] &}

[read (Index) — (dataOut) <{Select key«Index, dataOut « Blkey]|>]]
[write (dataln, Index) — () <Select key<«Index, B[key] ¢ dataln D]
interrupt [K& Sed[i, length, Bfi]«0] &>;
B[1]«1)
end Subsystem CircularShifter

The push and pop commands translate into all/all fork-joins containing select/any
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fork-joins for the conditional statements. Since all of the assignment statements in
the pop case drive dataQut, it must be treated as an implicit register as in Section
3.5. In the CircularShifter subsystem, the "+" is a compile-time operation -- it does
not map into adders, but into the relative wiring of the B[i]'s through calling buffers.
Because of the buffering provided by the calling buffers themselves, it is not
necessary to specify intermediate buffering betweeen the B[i] for the circular shifter.

4.1.4. Buffered Stages Stack

The organization of this stack differs from the previous stacks in the decision of
what to move during stack operations. In the previous architectures, the top of the
stack moves, but the data-are stationary in the cells; in this architecture, the top of
the stack is stationary but the data in the stack move. All of the cells pass data
simultaneously, through buffers between the cells. The following figure shows a
partial graphical description and the LMA programming descriptions of the stacks.
;he LR are the stack cells, the BR are the buffers, and the BufferedStagesStack is

e controller:

{Figure 32. Buffered Stages Stack}

Module BufferedStagesStack
parameters  [depth: Integer, item: Type]
inputs fcommand: action, dataln: item)]
outputs  [dataOut: item)]
constants [moveRight, movel_eft, getRight, getLeft: Action]
components [dataReg: Register[item],
LR: Sei[i, depth,
LinkedRegister[item: item
LNbr: when i>1 then BR[i-1]
else dataReg,
RNbr: when i<depth then BR{i]]
BR: Seifi, depth-1, Register{item]]
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action [Case command
[push {dataRegedataln;
<& Sef[i, depth, LR[i](moveRight) &>;
<& Sel[i, depth, LR[i](getLeft)} &>}]
[pop {<& Sefi, depth, LR[iJ(moveLeft)] &>;
<& Sei[i, depth, LR][i}(getRight)] &>;
dataOut«dataReg}]
end Module BufferedStagesStack

Module LinkedRegister
inputs f[command: action]
components [data: Register[item]]
parameters  [item: Type, LNbr: Registerfitem], RNbr: Register[item]]
action  [Casecommand
- [moveRight ) > () RNbredata)

[moveleft (— () LNbredata]

[getRight (- () data<RNbr]

[getLeft 0—-(0 data«LNbr]]
end Module LinkedRegister

An interesting observation about simultaneous shifting of data in a series of
modules is that some buffers other than the input buffers must be provided to hold
the data. In this architecture, intermediate registers BR[i] have been used to buffer
the data between the LR[i]. On a push command, the controller issues a sequence of
two commands to the LR[i], telling them to first send data to the BR[i] on the right,
and to then read the data from the BR[i-1] on the left. For proper operation, all of
the moveRight operations must be complete before the getLeft operations are started.
(On pop commands, the order is correspondingly reversed.) The wiring of the BR
and LR is accomplished in the components specification of the controller.

We could have used calling buffers as implicit buffering between the LR[i]. In this program, the calling buffers provide
no buffering because the actions in the LinkedRegister specify that no impurs are used for any of the commands.

4.1.5. Ripple Stack

This is another version of the stack that moves the data and uses the lefimost cell
as the top of the stack. In contrast with the previous architecture, this one moves the
data one at a time (rippling through the stack), and does not need intermediate
buffers between the stack cells. [t requires half as many registers as the previous
version of the stack, but requires time proportional to the current depth of the stack.

Module RippleStack
inputs [command: Action, dataln: item]
oultputs [dataOut: item]

parameters  [depth: Integer, item: Type]
conslanis [moveRight, startMoveleft, pop, store: Action]
components [ DC: Sei[i, depth,
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DataCell[item: item
LNbr: when i>1 then DC[i-1],
RNbr: when iKdepth then DC[i+ 1]]]]
action [Case command

[push { DC[1](moveRight); DC[1](store, dataln)}]

[pop {dataOuteDC[1](pop); DC[depth] (startMoveLeft)}]
interrupt [<& Sel[i, depth] {DCfi](store, 0); DCl[i}(pop)}] &>}]
end Module RippleStack

Module DataCell
inputs [command: action, dataln: item]
outputs [dataOut: item]
parameters  [item: Type, LNbr: DataCell{item], RNbr: DataCell[item]]
components [Filled: Bit]
action  [Case command
[moveRight 0-0 {ifFilled=1
then RNbr(moveRight);
RNbr(store, dataln)}]
[startMoveleft Q— ()  {ifFilled=0 then LNbr(startMoveLeft)
else { LNbr(moveLeft);Filled«0}}]
[moveLeft 0—-0 {ifFilled=1
then LNbr(moveLeft); LNbr(store, dataln)}]
[store (dataln) — () {-- no code necded. data stored in dataln} ]

[pop (O - (dataOut) {dataQut«dataln; Filled «0}]]
end Module DataCell

This architecture has the interesting property that the controller is only connected to
the first and last stack cells. The reader is invited to step through the operation of a
push instruction to see how the control sequencing avoids the use of intermediate
buffering.

4.2. Queue (FIFO)

4.3. Content Addressable Memory (CAM

44. The TransQueue (XQ) :

4.4.1. Implementation using a CAM

44.2, Implementation using Dual-Shift Comparators
4.5. Bidirectional Queue (2Q)

{To be written}
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5. Engineering the Methodology

We define a design level (or design space) to be a set of terms describing objects at
some level of detail and composition rules for putting them together. For digital
systems, the terms describe digital components, which may be primitive switches or
blocks of combinational logic depending on the level. Each level should deal a
coherent set of related issues. Systems constructed according to the composition
rules should be correct in some sense.

Table 1 summarizes our current experience with creating design levels for
designing digital systems. As described in Section I, the layout level is concerned
with the constraints imposed by the properties of silicon and the fabrication process.
The composition rules are the /ambda design rules. The CPS level describes circuits
in terms of pull-ups, pull-downs, and pass transistors. It is concerned with preserving
the digital character of the system [Bell81]. The CRL level is concerned with
clocking.

Table I. The partitioning of design concerns

Description Concerns Composition Examples

Level Rules of Bugs

Layout Physical dimensions ~ Lambda Rules Separation Errors

CPS Digital behavior Composition of Charge Sharing
PUEs, PDEs, and  Switching Levels
pass transistors Threshold drops

CRL Clocking Stage composition mixed clocks

unclocked feedback
LMA Event forking, joining, deadlock
Sequencing module composition data not ready

A key observation is that these design spaces partition the concerns of a designer.
They provide a systemmatic way of delaying the consideration of certain issues.
When we started fashioning the LMA level, we knew that we wanted to focus on the
behavioral and architectural aspects of digital systems. In the the LMA level,

(1) The chief behavioral notion is that behavior is described by a partially
ordered set of computational events. (The LMA model describes these in
terms of modules which define the events, and forks and joins which
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determine the sequencing.)

(2) The chief structural notions are the explicit indication of storage (registers)
and the explict connection of subsystems by data and control lines.

It is our belief that these notions usefully characterize digital architecture. Hence, in
the Section 4 the five LMA descriptions of stacks are not equivalent. They differ
precisely in their interconnection of cells, in the number of registers needed, and in
their performance as determined by the predictable patterns of control.

(3) The chief notions of correctness in the LMA model are (a) the linking of
data and control that insure that modules cannot begin until their data are
available and (b) the avoidance of deadlock in the use of shared modules.

Thus, LMA descriptions composed according to the rules are, in this specific sense,
correct. The notion of correctness is limited in each of the levels described in Table
I. The layout level descriptions are correct in that they can be fabricated; the CPS
descriptions are correct in that they have digital behavior; the CRL descriptions are
correct in that they have no clocking errors; the LMA descriptions are correct in that
they admit no deadlock and they unambiguously define which data are to be used in
each computation.

Within a description level, tradeoffs must be made between the coverage and
simplicity of the methodology. An example of this in the LMA level is the
specification of a select fork. The following possible criteria were considered in the
definition of the behavior of a select fork:

Selection Criteria
1. Outside selection by key
2. Self-selection by ready status
3. Priority or precedence rules

Synchronization Criteria
1. all at once
2. Individually when ready-

Termination Criteria

1. At least N activated
2. No more than N activated

The criteria incorporated into the LMA model were:

Selection Criterion
1. Outside selection by key
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Termination Criteria
1. Atleast 1 module activated.
2. No more than 1 module activated.

Other combinations offer increased coverage at the expense of the simplicity of the
LMA composition rules. For example, if we allow more than one module to be
selected by ready status, a select fork would yield an unpredictable or timing
dependent multiplication of tokens. This would routinely require the use of token
absorbers (see Section 2.3) to build modules satisfying the token conservation
principle. Such modules are relatively baroque; our attitude is that such modules are
possible, but they lie outside the coverage of the simpler designs, which we believe
are substatially easier to understand and to create.

In the engineering of norarions, our concern was with the verbosity of the
specifications and with the applicability of familiar idioms. The graphical notation
provided us with rich descriptions, but the graphical description of a real circuit
(even the stack examples) yields a veritable spaghetti of connections. A linear
notation based on the graphical notation, which names all of the connections
between modules, suffers the same problem. Furthermore, such a linear notation has
the interesting property that the lines can be sorted in any order without changing
the meaning; the meaning is determined solely by the connectivity. We found such
descriptions very hard to understand.

The proposed LMA programming language avoids these pitfalls as follows:

1. Most of the control lines can be elided using the composition rules about
fan-out and the convention that sequential statements correspond to
sequential executions.

We found that this convention works just as well for a multiple program counter
language as it does for a conventional single program counter language.

2. The use of indexed set notation and parameterization made it possible to
create generic modules,

3. By extending the meaning of the assignment statement, we were able to
express a variety of constructions (wiring, connections to buffers, connections
to registers).

These conventions made it possible to carry-over a set of programming idioms from
conventional programming languages -- lending a sense of familiarity to LMA
programs.

In general, we feel that we have captured a coherent set of concepts and notations
for describing digital architecture. Our next step is to experiment with these
notations and ideas, to stress them by running them against real problems and
examples. We are planning to do this in the context of a knowledge-based system
containing the composition rules. Such a system will be both an experimental design
aid, and a vehicle for testing design methodologies.
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6. Relationships to Other Work

{This section to be expanded in later drafts.} |
6.1.  Onthe Linked Module Formalism

The work reported here draws on ideas from both computer science and electrical
engineering. A wide variety of hardware description languages (See van Cleemput
[vanCleemput79] for a survey) have provided terminology for describing and
abstracting hardware. Our own work considers not only on how to describe
hardware, but also how to synthesize descriptions that are free of certain classes of
bugs.

Work on models of computation is also relevant. The work of Keller [Keller74]
anticipates our notions of forks and joins, and of speed independent modules.

Scitz’s work on selftimed systems [Seitz80a and Seitz80b) offers a state of the art analysis of such systems. Our [MA
modules, however, are intended only as an abstraction for specifying intended behavior. Implementation of LMA
descriptions may be in terms of synchronous systems.

The work on Petri nets [Peterson77] directly influenced our choice of tokens as a
means of characterizing control flow. MacQueen [MacQueen79] provides a thorough
review and bibliography of Petri nets and other computational models for distributed
computation. Descriptions of hardware systems should probably be somewhat more
specialized. For example, they need not admit the creation of processes (i.e.,
hardware does not usually creatc new hardware as it runs.)

Finally, work on the design of operating systems and the design of languages for
multi-processing has been relevant, especially with regard to the phenomena of
deadlock in the use of shared resources. A good tutorial for this material is Hansen
[Hansen73].

6.2. Toward a Science of Design

~ We view the systematic creation of design methodologies and experimentation
with them to be the core of our research. This memo is our second working paper
describing tradeoffs in creating methodologies (See [Bell81)).

Research into the design process is a somewhat soft science. Design as taught is a
branch of engineering, and design as practised is more akin to an art form than to a
science. Attempts to characterize design as a science of optimization (e.g., dynamic
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programming methods) have had rather narrow success, and no detectable impact on
the design of digital systems.

Simon [Simon81] has suggested ways of understanding design as a satisficing
process, that is, a process using limited resources of finding solutions that are good
enough. His observations about the role of hierarchical systems for coping with
complexity have been influential in artificial intelligence research for years. Our own
work complements this by seeking to understand how hierarchical systems can
partition the concerns of a designer.

Our experimental approach to studying the knowledge of design using a
knowledge-based computer system, has been strongly influenced by the work of
Feigenbaum [Feigenbaum?77] and his colleagues in the Heuristic Programming
Project at Stanford University. A survey of the work on expert systems is available
[Stefik81b].
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7. Status of this Document

This memo reports on work that is still in progress. Suggestions and criticisms
are solicited. Several sections of this memo are still to be written. An experimental
system based on these ideas is under construction. It will be some time before we
can evaluate these ideas in the light of experience with design of digital designs.

The ideas reported here have gone through several stages of refinement and
revision. The proposed methodology and notations are the result of the combined
efforts of both authors, The task of writing this memo has fallen mostly on Mark
Stefik. The figures were debugged and prepared by Steve Kaufman.

Several colleagues have contributed thoughts along the way. Dick Lyon
encouraged us to be precise about the description of the computational phases of
modules. The incorporation of preconditions and postconditions was inspired by the
suggestions of Nori Suzuki and Rod Burstall, and their use of guardians in their
Sakura language. The characterization of subsystems was the result of Harry
Barrow’s persistent offering of examples that could not be reasonably captured in the
formalism. The work has driven and shaped by collective thoughts of our
collaborators at Stanford University on the KB-VLSI project. Thanks also to Lynn
Conway for suggestions and encouragement, and for providing an environment in
which this effort could flourish.
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