
A Parallel Bit Map Processor Architecture for DA Algorithms 

by Tom Blank, Mark Stefik, and Willcm vanCleemput 
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Bit maps have been used in many Design Automation (DA) 
algorithms such as printed circuit board (PCB) layout and integrated 
circuit (IC) design rule checking ('DRC). The attraction of bit maps is 
that they provide a direct representation of two-dimensional images. 
The difficulty with large so:ale use of  bit maps (e.g., for DRC on VLSI) 
is that the large amounts of  data can consume impractical amounts of 
computation on sequential machines. 

This paper describes a processing archilecture that is specifically 
designed to operate on bit maps. It has an inherently two-dimensional 
construction and has a very large parallel processing capability. 

Also included in tiffs paper are descriptions of  algorithms that exploit 
the architecture. Algnrithms for routing, DRC, and bit vector 
manipulation are included, 

large amounts of data; a miss match between conventional word based 
computers and required bit operations on two dimensional data 
structures. 

It should be noted that bit map processing architectures have been 
proposed since 1958 [9] for image processing applications. Recently, 
machines have been reported by Reeves [6, 7] and l)nff[2, 3]. ltowever, 
in all the earlier work, a large scale implementation was problematic. 

We describe a physical chip design that can be integrated into a large 
scale bit processing architecture. The approach is to incorporate one 
processing element into each node of  a bit map. The scheme is called 
SAM for synchronous active memory. In the following sections, the 
operation of one SAM cell, tile overall SAM architecture, algorithms 
and future work arc described. 

2. Introduction 

As the size of design problems increases, the computational time 
rcquirecl by the suftwarc tools also increases. Unfortunately, many I)A 
programs have a nnn-linear run time dependence on the size of  tile 
design problem. Current size problems often require run times of  
several h{a;rs. For example, PCB routing for a 10 x 10 inch board with 
100 lC's and I)I~.C on a 200 x 200 rail integrated circuit require several 
hours of  CPU time on a medium-sized processor. 

There are a number of possible solutions to the size vs. execution 
time problem. The most obvious solution is to use faster and larger 
computers with the same programs. This ~q~proach is doomed to failure 
for two reasons: very large cost of large systems; tile problem size may 
increase beyond the capability of  the machine. Unfortunately, the 
speed of large mainframes is not increasing as fast as the increase in 
problem size and commensurate non-linear increase in execution time. 
Another possible solution is to build special purpose hardware that 
physically implements an algorithm. The I.ee routing algorithm is an 
example that has been implemented with dedicated hardware. 
However, this approach also has weaknesses: no flexibility to adapt to 
changing technology, large expense due to low volume of  the device 
and limited useful lifetime. 

Reasonable solutions to the size vs. execution problem are: develop 
better algorithms (i.e. algoriti)ms that have polynomial degree closer to 
one ); define better design methodologies (again giving better 
algorithms): identify heavily used (i.e. bottleneck) operations for many 
DA algorithms and develop hardware to implement the general 
operations. The hardware developed for multiple purposes is very 
different from special purpose hardware (such as a Lee router box) and 
its life expectancy is hmger. The longer life is attributed to its inherent 
flexibility which can adapt to changing technologies. Additionally, the 
cost o f  the device can be amortized over many applications. 

A bit map has been identified as a commonly used data structure for 
representing physical structnrcs (i.e. PCB or IC masks). Additionally, 
bit map operations have also been identified as a botdencck due to: 

3. A Bit processing element 

A SAM cell is composed of  seven major blocks connected as shown 
in figure 3-1. Each cell can be viewed as a completely independent one 
bit processor with the following attributes: 

• 16 c,ne bit registers; These can be viewed as layers of  sixteen 
different bit maps. 

• 20 (assembly level) instructions 

• Single operand instructions with the result stored into the 
one bit accumulator 

• Direct connection with nearest four neighbors 

• Connection with global OR output line 

• Connection with global input line 

• A cell must be externally enabled by both a row and 
column select line fur an instruction to be executed. 

The instruction set for one SAM cell is broken into four categories: 
boolean, load/store, read/write and neighbor instructions. Each is 
discussed separately in the following sections. A complete instruction 
set is given in figure 3-2. 

3.1.  Boolean Instructions 

All boolean functions of two bits are implemented. The accumulator 
always supplies one nperand with the other operand supplied from one 
of the 16 internal registers, tbc result is always stored in the 
acctunulator. For single operand instructions, the accumulator is both 
the source and destination. For all boolean operations, the result of the 
operation is also output to the global wired OR external output line. 
This feature is useful for doing an operation over an area in the bit map 
and testing the result. 
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Figure 3-1: SAM Cell Block Diagram 

BINARY ~ CODE OPERA'I ' IO~ 

Read~Write hlstructions 

00011 READ -- ExtDataOut : = Ace (ORed over region) 
10100 WRrI 'E  -- Ace : = ExtDataln 

Load/Store b2struetions 

100t0 STORE<bit> <bit) : = Acc 
00101 LOAD<bit)  Acc : = <bit> 

3.3. Read/Write Instructions 

These instructions move data between the accumulator of  selected 
SAM cells and the external SAM controller. In the context of  only one 
cell, P, ead takes data from the external data input line and puts it into 
the accumulator. Write places the contents of  the accumulator on the 
external data output line. This permits an external device to exchange 
data with a single cell. When more than one cell is enabled, the Write 
instruction actually gives the wired OR operation over the values of the 
selected accumulators as the output. 

3.4. Neighbor Instruction 

Neighbor Instructiotl 

10001 NEIB<bit> Acc : = M o N b r u +  M [NbrL+M2NbrD+ 
M3NbrR+M4Nbr  C 

(note: M0-M 4 refer to the mask bits. See Fig. 3-4) 

Boolean .Instructions 

00000 CLR -- 
00001 AND<bit )  
00010 GT<bit)  Acc : = 
00100 Ur<bit> Acc : = 
00110 XOR<bit> Acc : = 
001 l 1 OR<bit> Acc : = 
01000 NOR<bit> Acc : = 
01001 CMP<bit) Acc : = 
01010 NOT<bit> Acc : = 
01011 LE<bit> Acc : = 
01100 INV -- Acc : =  
01101 GE<bit> Acc : = 
01110 NAND<bi t )  Ace : = 
01111 SET --<bit) Acc : = 

Ace : = 0 
Ace : = Ace and <bit> 

Acc greater-than <bit) 
Acc less-than <bit> 
Aec xor <bit) 
Acc or <biO 
Acc nor <bit) 
Acc equals <bit> 
not <bit> 
Aec less-than-or-equals <bit> 
not Acc 
Acc greater-than-or-equals <bit> 
Aec nand <bit> 
1 

Figure 3-2: SAM Instruction Set 

3.2. Load/Store Instructions 

These insu'uctions move data between the accumulator and one of 
the cell's internal registers. The instructions are: move data from the 
accumulator to an internal register (Store) and move data from an 
internal register to the accumulator (Load). Store is the only instruction 
that modifies the value of  a register. 

The neighbor instruction provides the mechanism to exchange data 
from one SAM cell to its four orthogonal neighbors (See figure 3-3). 
The data exchange is only between the accumulators. A five bit mask is 
used to select which of the cells will be used. The data from the selected 
cells are combined using an OR operation and the result is stored in the 
accumulator. This operation is done simultaneously for all selected 

LEFT 

cells. 

uP F 

J 

F 
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Figure 3-3: SAM Neighbor Instruction 

The neighbor instruction is the most powerful instruction of  a SAM 
cell since it uses the inherent two dimensiotlal configt~ration of  the bit 
map. With this instruction, it is possible to transfer blocks of data (by 
enabling a region), up, down, right and left by a simple mask 
specification (see figure 3-4). The neighbor instruction is powerful for 
data movement  since the required execution time depends only on the 
distance moved not the amount  of data (assuming the bit map has been 
previously loaded). Additionally, more complicated operations, which 
combine data from different neighbors, can be done by selecting a mask 
with more than one neighbor selected. If all the mask bits are set, data 
propagates isotropically. 

3.5. Physical Implementation 

The practical realization of a SAM depends on the development of  a 
design for a single processor that is sufficiently small that it can be 
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Mask Bits 
NEIGHBOR 

EXAMPLES : U L D R C U - Upper 

Transfer UP 1 0 0 0 0 L - Left 

Transfer LEFT 0 1 0 0 0 D - Down 

Transfer DOWN 0 0 1 0 0 R - Right 

Transfer RIGHT 0 0 0 1 0 C - Cell 

Horizontal Transfer 0 1 0 1 1 

Vertical Transfer t 0 1 0 1 

Isotropic Transfer 1 1 1 1 1 

Figure 3-4: Masks lbr Neighbor Instruction 

replicated enough times to contain (or reasonably partition) a non- 
trivial sized problem. A prototype has been designed using an NMOS 
process [5] and is currently in the fabrication process. 

For the first SAM cell prototype, the masks for only one cell were 
designed. The cell size is approximately 900 x 900 microns (this does 
not include external connection pads). This size is based on a 
fabrication process which had a lambda of 2.5 microns (lambda is one 
half the minimum feature size of  the process). The design contained 
approximately 350 transistors in 165 logic gates (pass transistors were 
counted as a gate). The SAM cell mask design was done so that a step 
and repeat operation could be used to fabricate a larger array after the 
design is verified. 

Many architectural decisions and design observations were made that 
had a direct inlluence on the current size of  the design. Future 
prototypes will be able to use both the hardware and architectural 
information from the first chip. The following observations had a major 
impact on the prototype design: 

• l~cl~ SAM cell is greatty simplified by not having a stored 
program. All sequencing of operations is centrally 
controlled by the master which broadcasts instructions to 
the SAM array. Additionally, the master selects the regions 
in the array that are enabled to execute an instruction. The 
adoption of global control eliminates the need for 
complicated control logic and additional storage for 
instructions in the individual cells. 

• Single opcrand instructions were adopted due to the 
commensurate simplicity of the data paths and logical 
operations. 

• A fully static register bank (memory) was used. This permits 
easy testing of the prototype design. This choice had the 
largest impact on the size of the implementation since the 
sixteen register cells occupy over 60% of  the layout. 

• All boolean operations of  two variables are easily 
implemented with a four to one multiplexor by choosing 
the instruction codes pruperly. Additionally, no arithmetic 
instructions were implemented since all operations can 
broken into their boolean components. This at first 
inspection seems woefully inefficient; but, the vast 
parallelism of a SAM makes the operations on an entire bit 
map orders of  magnitude faster than conventional 
sequential machines. 

• For a large scale implementation, it is important to get as 
many SAM cells on each chip so that only a limited number 
of chips are needed. Since the number of  external chip 
connections is primarily a function of the number rows and 
columns on the chip, the minimal number of external 
connections was a design goal. Therefore, bi-directional 
data lines were incorporated between all neighbors. It 

increased the complexity of the internal circuitry in each 
node for a significant decrease in the pin out (See figure 3- 
5). 

• The required AND/OR logic of  the neighbor instruction 
was easily implemented with one NMOS gate. 

• The address lines used to select a register for a boolean 
operation are not used during a neighbor instruction. This 
permited a great savings in required lines by using the 
unused address lines as the neighbor instruction mask bits. 

Signal 

B i t  Addresses 
O p e r a t i o n  Codes 
P o w e r / G r o u n d  
C l o c k  
C o m m u n i c a t l o n s  L i n e s  

Row Select  
Column Select  
Neighbor C o n n e c t i o n s  

Number of Pins 

5 / c h i p  
5/chip  
2 / c h i p  
1/chip 
2 / c h i p  

1/row 
1 / c o l  umn 
2/row + 2/column 

Figure 3-5: SAM Pin Connections 

An important aspect of  the SAM cell is the maximum speed of  
operation. For NMOS, a performance measure is the propagation 
delay time of  two invcrters in series, called the "pair delay'. The NMOS 
process used for the prototype had a pair delay of  approximately 8 
nanoseconds. For a SAM cell, the speed limiting signal paths can be 
separated into two distinct groups: internal delay and external delay. 
The maximum internal delay is during boolean instructions where an 
operand fetch from the register set is made. The predicted delay is 100 
nanoseconds. External delay is when one SAM cell is communicating 
outside of its cell boundaries. For all instructions (when the cell is 
enabled) the accumulator value is transmitted to the wired OR data 
line. External time delay depends on the following factors: capacitance 
of the external data line, impedance of the cell pull down transistor and 
physical construction of the logical OR function through out the SAM 
array. 

4.  Bit  M a p  P r o c e s s i n g  Archi tecture  

There are two SAM architectures considered: a fully implemented 
SAM array where each bit map node is one SAM cell and a virtual 
SAM array where the logical bit space is larger than the physical 
implementation. Each is discussed separately. 

4.1. Full Hardware SAM array 

A complete hardware SAM implementation (one SAM cell per bit 
map node) is very attractive due to its tremendous parallel processing 
capability and speed (See figure 4-1). Additionally, the SAM array 
control and data requirements are simple. All data transfers between 
the Bit Map Processor and the conventional computer system are 
through either the one bit external data I/O line or fi'om the computer 
data bus into an edge register. The Bit Map Processor control simply 
regulates the data exchange and coordinates SAM. array instruction 
execution. All SAM instruction sequencing is done by a conventional 
compu ter system. 

There are a number of tradeoffs and problems with a fully 
implemented Bit Map Processor. Physical realizability is one of  the 
obvious problems. A SAM array 1K by 1K would require over 4096 
individual chips if each SAM array chip contained an array of  16 x 16 
processors. A 16 x 16 SAM array chip can be built if one SAM cell can 
be built in a 400 x 400 micron square and a .6 x .6 cm chip is used. The 
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Fi ure 4-1: Bit Processing Architecture using one.SAM Cell per Node 

prototype SAM cell (900 x 900 microns) can be reduced if a smaller 
geometry process is used and dynamic instead of static registers are 
used in each cell. Another difficulty of a 16 x 16 chip is that 111 pins 
are required. The instruction cycle time is a function of  internal cell, 
external cell, external chip and external board intcrconnections. To 
accommodate the longest delay path, the calculated instruction c yc l e  
time is 300 nanoseconds (using a hierarchical OR gate connection). 
Other architectural constraints are: a fixed bit map size (i.e. IK x 1K in 
the example), a fixed shape (i.e. square or rectangular) and a fixed 
number of registers in each cell (i.e. sixteen for the current SAM cell). 

4.2. Virtual SAM Architecture 

Another possible solution to the implementation problem is to relax 
the requirement that each bit map node have a dedicated processor. 
This allows one processing node to process many nodes of  a bit map. 
]"he complete architecture of  a 1K x 1K virtual bit map processor is 
shown in figure 4-2. The main component is a 32 x 32 array of SAM 
cells that have been modified as shown in figure 4-3. There are two 
changes from the previously described SAM cell. The accumulator and 
register bank are removed and replaced by a ]K and a 16K RAM, 
respectively. The external RAM attached to a SAM cell defines the 
allowable configurations of the virtual bit map; For example, using the 
memory components specified, the largest virtual bit map is 1K x 1K 
with 16 registers in each cell (this is identical to the full  hardware 
implementation). The minimum size map is 32 x 32 with 16K registers. 
(Note: the maximum bit map size is limited by the memory attached to 
the accumulator. I fa  16K RAM is used for the accumulator set, a 4K x 
4K virtual map with one register bit per cell may be configured). The 
only restriction on the allowed bit map shapes is that the smallest 
segment is 32 x 32 and only rectangles are allowed. 

The control of the virtual Bit Map Processor is composed of  seven 
primary components: Program control logic, Primary address control, 
Edge 1 - 4 control and the SAM cell array. The controllers handle the 
sequencing of  a SAM instruction over the virtual map segments on the 
physical 32 x 32 processors. For simple accumulator and register SAM 
instructions (i.e. booleans) the controllers broadcast the instruction and 
the address of the selected register and accumulator. The same 
instruction is then repeated over the different bit map segments until 
the entire virtual bit map has been processed. The primary address 
controller supplies the register and accumulator addresses based on the 
selected register in the instruction and the currently active segment. 

Local 
Program 
Store 

Program 
Control  
Logic 

CONVENTIONIAL COMPUTER SYSTEM 

Conventional I/O Channel  

VIRTUAL BIT MAP PROCESSOR 

~ 1  Edge Register  

R 
o E 
W 

R 
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e 

I 
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c 
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I Edge 2 i I Edge Register I 
I C°ntr°'lt Co,umnSe,ect 1 

I 

Figure 4-2: Virtual Bit Map Architecture 

Neighbor instructions are much more difficult since the values of the 
fnur orthogonal neighbors have to be supplied. For internally located 
cells, all neighbor values are contained in the current segment; 
however, cells located on the edge of the physical array require 
neighbor values that are contained in other segments. The problem is 
solved by splitting the edge cell accumulator set into two banks (three 
banks for the four corner cells). Each bank can be controlled by either 
the main address controller or the by the edge address controller. 
Multiple accumulator banks permit simultaneous access of  different 
segments. The final complication for the neighbor instruction is that the 
memory partitions must be folded so that the required neighbor values 
are located in the same accumulator set (See figure 4-4). Folding the bit 
map requires that the neighbor mask be modified depending on the 
currently active segment. 

I Register I 
> Bank 

Global Address Control  (16K bits) 

L 
D ..J Logical Unit D 

Neigh Unit 
R Local Control R 

SAM control 

Global Address Control  (1 K bits) 
ii 

Figure 4-3: Modified SAM Cell 

Another part of the virtual architectu re is a local program store. Since 
the execution time of  an instruction depends on a number of variables, 
it would be impractical to burden the conventional computer system 
with instruction sequencing. A SAM array program is simply 
downloaded from the conventional computer memory. The Bit Map 
Processor then signals the host when the program segment execution is 
complete. 
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Figure 4-4: Memory Partition 

The virtual bit map scheme has a number of  important advantages 
over the complete hardware SAM array implementation: 

• Easier physical implementation since fewer chips 

• Only K*(N/m) 2 slower than a complete hardware SAM 
implementation; N x N is the virtual array size; m x m is the 
hardware segment size; K is a constant less than one that is 
a function of the external cell delay due to the external OR 
function output (Note: ideally Ko:l/log(N/m)2). 

• Easy reconfiguration of  bit map size, shape and number of  
registers 

• Utilization of standard RAMs for the bulk storage 

The chip count for a 1K x 1K virtual array is approximately 2K chips 
if one chip is used for each accumulator set, register bank and for 32 
SAM cells on one chip; however, both accumulator and register 
memory can be shared between multiple SAM cells. A 16K by 4 bit 
chip can be used for four register banks. A 1K by 8 bit chip can be used 
for eight accumulator sets. Both changes reduce the chip count below 
500. The instruction cycle time is primarily determined by the memory 
cycle time since the physical SAM array and external delays are short. 
A faster cycle time can also he achieved using a cache memory scheme 
for both the accumulator set and register bank. A minor cycle time 
(only for the 32 x 32 segment) o f  100 nanoseconds is attainable since the 
array size is physically small (minimal external delay) and if the internal 
delay is reduced using the memory caching technique. The cycle time 
of  an N x N virtual array (using the 32 x 32 array) is 100ns * (N/32) 2. 

5. Algorithms for a Parallel Bit Map Architecture 

Many algorithms currently used in design automation are inherently 
parallel. The two most obvious examples are the l.ee Maze router [41, 
and the Soukup Global router [8]. Other examples are design rule 
checking, component placement and circuit extraction. Bit vector 
manipulations take advantage of  both the parallelism and bit handling 
nature of an active bit map. 

In the following sections, parts of  algorithms will be presented that 
demonstrate both the flexibility and power of  a SAM array. 

5.1.  Simple Boolean operat ion 

Figure 5-1, shows the simple boolean operation AND between two 
planes of a bit map. In the example, all the bit map cells are enabled. 
The external output data line (the wired OR of  all enabled cells) is set 
to a one after the statement execution. This is only One instruction. 

5.2 .  Simple Neighbor operation 

Figure 5-2, shows a simple neighbor operation whcn all the mask bits 
are set to 1 (lsotropic transfer). The logical result is that each cell takes 
the logical OR of  itself and its four orthogonal neighbors. All bit map 
cells are enabled. The physical result is that each object in the map is 
expanded by one cell (note: a four corner expand excludes all diagonal 
neighbors). Again, this is only one instruction. 

Accumulator 

LI.J 
i ~ b -  " 

I I I  
SAM Program: 

Accumulator 

I l l  I I I I  
ii 

i" .... 
I l l l l l  

Enable(all) 
SAMneighbor(all) 

Figure 5-2: Four Corner Expand 

Register I Accumulator 

~1~. , ~  " AND 
. . . . . .  

Accumulator 

I I I 

I I I  

Accumulator 

_...-~ ~'-:::"2"'~f' ~.:~. 

Figure 5-1: Boolean Example 

Accumulator . Accumulator 

I I  ! 

I I  ! I I  
Figure 5-3: Eight Corner Expand 

I I I I I I  

~ ~ " ~ "  .:::~ .. .......... 

I£i;li iiiii  l 
I I I I I  

SAM Program: 

Enable(all) 

SAMand(1) 

SAM Program: 

Enable(all) 

SAMneighbor(L,C,R) 

SAMneighbor(U,C,D) 
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Accumulator 

i l l t  l ' i t /  

I I I I I I I I  

Accumulator 

An expand that includes diagonals (an eight corner expand) can be 
done in two instructions: one horizontal transfer and one vertical 
transfer. A horizontal transfer puts the logical OR of itself and two 
horizontal neighbors into the accumulator. A vertical transfer puts the 
logical OR of  itself (which now contains the OR of itself and two 
horizontal neighbors) and two vertical neighbors into its accumulator. 
The logical result is the logical OR of itself and eight nearest neighbors 
(See figure 5-3). 

5.3 .  Simple Instruction Sequence:  'Shrink'  

Shrink, He inverse function of  expand, is done in three or four 
instructions: complement, expand (either four or eight corner expand) 
and complement (See figure 5-4). 

5 .4 .  Lee Router 

A conventional Lee router is composed of three phases: wavefront 
expansion, trace back, and map clearing. A typical Lee wave expansion 
is shown in figure 5-5 for a single layer where there are four values 
allowed in each bit map node: available (space), occupied (X), 
wavefruntl (1), and wavefront2 (2) [1]. The symbols 'S' and 'D' 
represent the source and destination of  the wave front and are not 
actually stored in the bit map. The return path (in the example) is 
found by following a 2112 sequence. 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
X 2 X 
X 22Z X 
X 22122 X 
X 2211122 X 
X 221121122 X 
X 22112221122 X 
X 2211221221122 X 
X 221122111221122 X 
X 22112211Sl122112D X 
X 221122111221122 X 
X 2211221221122 X 
X 22112221122 X 
X 221121122 X 
X 2211122 X 
X 22122 X 
X 222 X 
X 2 X 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Figure 5-5: Conventional Lee Router 

A program for a SAM array is given that implements the 
conventional Lee router. As in figure 5-5, there are four allowed values; 
but are represented using three bit planes. Register zero contains only a 
map of the obstructions. Register one contains the wavefrontl 
expansion and register two contains the wavefront2 expansion. All 
unoccupied bits are assumed available. The Lee router program is given 
in a Pascal like notation where each SAM instruction is specifically 
marked with the prefix SAM. The enable procedure selects the area 

Accumulator 

I I I I  
- " ~ "  " 

I I I I  

SAM Program: 

Enable(all) 

SAMinv 

Expand 

SAMinv 

Figure 5-4: Shrink 

within the SAM array to execute the broadcast instructions. Figure. 
shows the wave expansion steps of a simple routing. The 'x's repres¢ 
occupied bits in the map. 

AFTER 4 EXPANDS: 

X 

R1 = xxx 
X X  XX 

X X X  

X 

R2 = 

X 

XXX 

XX XX 

XX XX 

XX X XX 

XX XX 

XX XX 

XXX 

X 

AFTER 8 EXPANDS: x 
XXX 

X XX X X  

R1 = xxx R2 = xx xx  
X X  XX X X  X XX 

XX XX X X  X X X  X X  

XX X X X  XX XX X X  X X  

XX X X X  X X  XX XX XX XX 

XX XX XX XX XX XX X XX XX 

XX X X X  X X  XX XX XX X X  

XX X XX XX XX XX XX 

XX XX XX XXX XX 

XX XX XX X XX 

XXX XX XX 

X XX X X  

X X X  

X 

Figure 5-6: SAM Implementation of  Lee wavefront expansion 

Using the SAM instruction cycle times of 300ns (refer to section 4.1) 
for the 1K by 1K hardware implementation and lOOns per minor cyc]~ 
(refer to section 4.2) for the virtual bit map machine, the estimate,~. 
execution time of the Lee algorithm can be calculated. The examp • 
problem is for a printed circuit board routing where a 512 x 512 bit n. 
is required. There are 1000 traces with an average length of 200 gri 
The execution times for the SAM architectures are calculated 
computing the time for one 200 grid route and multiplying by the t~ 
number of traces. The constant mapinit (1-5 seconds) is the t: 
required to initially load the bit map pads and obstructions be; 
routing. The timing of a conventional computer is also shown 
comparison. 

SAM Architectures Execution Time 

1K x 1K hardware map .4 sec. 
32 x 32 v i r t ua l  array 15 sec. 
Conventional Computer 5 Hours 

+ mapinit 
+ mapinit 

Figure 5-7: Lee Routing Timing 
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{Lee Maze Router Main Program 

****  SAM reg is ter  uses ****  

RO - Obstructions 
R1 - Ones layer 
RZ - Twos layer  

x s t a r t , y s t a r t  - s ta r t i ng  locat ton 
xstop,ystop dest ina t ion  for  r o u t t n g }  

Begin (* MAIN *) 

{ * *  map I n i t i a l i z e  * * }  
SAMenable(all);  
SAM(clP); { c lear  layer } 
S A M e n a b l e ( x s t a r t , y s t a r t , x s t a r t , y s t a r t ) ;  
SAM(sett); { enter s ta r t i ng  seed } 
SAM(store,O); 
SAMenable(xmJn,ymtn,xmax,ymax); 
SAM(store,Z); { save  en t i re  layer  } 

{**  wave expansion ** }  
cnt := O; 
repeat 

step := cnt mod 4; 
SAM(nelb,a l l ) ;  
SAM(gt,O); 
t f  step = 1 then 

begtn SAM(gt,2); SAM(store,I) end; 
t f  step = 3 then 

begin SAM(gt,1); SAM(store,Z) end; 
cnt := cnt + 1; 

u n t i l  h i t t a rge t ( xs top , ys top ) ;  

{**trace back * * }  
xt := xstop; y l  := ystop; dt r  := O; 
SAMenab le (x l , y l , x t , y l ) :  
SAM(store,O); { put tn endpotnt } 
for ta rge t layer  := cnt-Z downLo 0 do 

begin 
step := ta rge t laye r  mod 4; 
chasemarkf rom(step,dJr ,x l ,y l ) ;  
end; 

End. (* MAIN *) 

5.5. Comments on Soukup's Global Router 

Soukup [8] presented a new philosophical approach to routing where 
all the traces are routed simultaneously (called GR1). Additionally, 
another algorithm was presented to connect problem traces (GR2) 
again using an approach where all traces are effected simultaneously. 
We will not present a SAM implementation but a number of comments 
and observations are appropriate. 

It is important to note that both global algorithms GRI and GR2 are 
identical with the exception of  priority assignment. The primitive 
operations of  both are: 

• Checking for local bottlenecks, 

• Verifying that all local bottlenecks are true bottlenecks. 
The standard Lee router can be used for this check. 'Dead 
space' is also reset during this phase. 

• Expansion of the wave front according to priorities and 
physical conditions. 

• Assign priorities to all cells according to algorithm rules. 

• Reduce wave front to a standard line route. 

functton h t t t a r g e t ( x , y : i n t e g e r ) : b o o l e a n ;  
{ t rue I f  the dest ina t ion  has been marked } 

begln 
SAMenable(x,y;x,y); 
SAM(readd); 
h l t t a rge t  := SAMflag; 
SAMenable(xmtn,ymtn,xmax,ymax); 
end; 

procedure chasemarkfrom(trgt layer : tnteger;  
vat d i r , x , y : l n t e g e r ) ;  

{ f inds the best path from the specif ied 
poin t .  I t  f i r s t  t r i e s  the same d i rec t ion  
then looks In the others } 

Label 1; 

vat 
t r y d t r :  in teger ;  
newdtr: in teger ;  
x r e l , y r e l :  integer; 

Begln 
For t r y d l r  := 0 to 3 do 

begln 
newdlr := ( t ryd l r+d l r )mod 4; 
case newdlr of 

O: begln xre l  := O; yre l  := I end; 
I :  begln xre l  :=- I ;  yre l  := 0 end; 
2: begin xre l  := O; yre l  :=- I  end; 
3: begin xre l  := 1; yre l  := 0 end 
end; {end case} 

SAMenable(x+xre l ,y+yre l ,x+xre l ,y+yre l ) ;  
t f  t r g t l a y e r  < Z then SAM(load,I) 

else SAM(load,2); 
I f  SAMflag then goto 1; { e x i t  t f  found} 
end; {end of for loop} 

1: { new locatton found } 
d l r  := newdtr; 
x := x + x re l ;  
y := y + ¥ re l ;  
SAM(store,O); { enter new point  } 
End; { end of chasebackmapk } 

With the exception of  priority assignment and seqnencing between 
the primitive operations, all the required operations can be easily 
implemented on a SAM array. This is due to the locality of information 
near each cell. 

5.6. IC Design Rule Checking 

Integrated circuit design rule checking is another type of  algorithm 
that is well suited to a SAM implementation. Many of  the typical 
geometrical operations used in I)RC like: expand, shrink, mergiflg of  
IC layers and intersection are single SAM instructions or simple 
sequences of  SAIVl instructions. Both expand and shrink have been 
mentioned in earlier sections. Merging is a simple bit map boolean OR 
between layers and intersection is an AND operation with area check. 

A very simple check is presented in figure 5-8 for the metal coverage 
of cuts. The design rule in the example requires that all contact cuts are 
covered by one grid unit of  metal in all directions. The test is composed 
of  three SAM instructions: expand (8 corner) all contact cuts and XOR 
with metal layer. Any design rule violations will have a non-zero 
accumulator. 
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+ + 
: : : .x .z .  

  iii] iiiiii+, :i! ::iiiii+d .ii #i 

Composite metal and cuts Expand cuts only 

I I  

I I  
Design rule violations 

SAM Program: 

R0- metal layer 
R1 - contact cut layer 

Enable(all) 

SAMIoad(1 ) 

Expand 

SAMxor(0) 

Figure 5-8: Design Rule Checking: Contact Cut Spacing 

The use of  a SAM does not increase the value of  a geometrical DRC. Allowed Bit Vector Values 
All the problems of  a bit map approach are still present: only spacing 
type checks, diagonal line problems and large bit map size; however, 0 - b i n a r y  ze  re  
SAM does decrease the execution time. With SAM, the time 1 - binary one 
dependence of many algorithms is completely data independent. For X - d o n ' t  care  
example, the contact coverage check only requires three SAM Vector example 1 
instructions (The initial time required to fill the bit map with the mask 
information is ignored.). 

Internal SAM Representation 

I0 - binary zero 
Ol - b i n a r y  one 
I I  - don' t  c a r e  
O0 - i l l e g a l  value 

XXO N XIO = XIO 
(11 11 10) AND (11 01 10) = 11 01 10 

5.7. Other DA algorithms 

5.7.1. Bit Vector operations 

There are a number of problems with the implementation of  bit 
vector operations on conventional word based computers. The two 
major problems are: length of  bit vectors (requiring many computer 
words) and the mapping of  standard bit vector operations into 
conventional computer operations. Standard bit vector operations 
inclutle: 

• complement 

• intersection: A f'l B 

• union: A U B 

• cover: A intersect B = A; means B covers A 

• sharp: A intersect (complement (B)) 

The use of  SAM, inherently designed to manipulate binary bits, would 
solve the standard computer word length problem. The mapping of  bit 
vector operations into SAM instructions is not a perfect match but the 
inherent gains of  parallelism completely over rides the difficulties. 
Figure 5-9 is an example of the intersection operation. 

6, C o n c l u s i o n s  and Futu re Work  

In the previous sections, a description of an active bit map element 
has been presented. Additionally, architectures have been proposed 
that can control a large array of active elements. Finally, algorithms that 
demonstrate the parallel processing power of a synchronous active 
memory (SAM) have been briefly shown. 

The future work in SAM consists o f  two primary areas: working on a 
complete physical implementation and the development (or 
modification) of algorithms. There are many options that are available 
tbr a SAM array on a chip. Possible technologies are ECL gate arrays, 
12L, CMOS and a VLSI chip in NMOS like the current prototype. For 
each technology, there is the corresponding tradeoff of  speed, density 
etc. Many choices ranging from the architecture to physical chip 
interconnect problems need to be addressed. 

Vectorexample2 

XO0 N 110 = 0 
(11 I0 10) AND (01 01 10) = 01 O0 10 

(the O0 b i t  denotes a null  in tersect ion)  

SAM instmctionsequence: 

SAM Register usage: 

RO - resu l t  low 
R1 - resu l t  high 
R2 - Vect 1 low 
R3 - Vect 1 high 
R4 - Vect 2 low 
R5 - Vect 2 high 

Begin 
enab le (a l l ) ;  
SAM(load,2); 
SAM(andd,4); 
SAM(store,O); 
SAM(load,3); 
SAM(andd,5); 
SAM(store,l); 
SAM(nor,O); 

{ s e l e c t  v e c t o r  region} 

{AND of vector ' low b i t s }  

{AND of vector high b i t s }  

{ look for  00} 
{accumulator is set in a l l  i l l e g a l  vectors} 
End. 

Figure 5-9: Bit Vector Intersection 

The development of  highly parallel algorithms, is also filled 
many options. The final architecture and physical size of the activ r 
map, will have an important impact. Developing algorithms that 
effectively partition a problem into the available bit map size 
connect properly into the next partition is a challenging pro[' 
Partitioning will also have a major impact on the amount of  data 
must be moved between the physical bit map and some large bac 
store or alternate data representation. 

The prototype chip was designed as a project by Blank and Stefil, 
the VLSI course at Stanford taught by Alan Bell in June 1980. 
application of  the architectures to DA problems was expm 
subsequently by Blank and vanCleemput. 
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