
A Parallel Bit Map Processor Architecture for DA Algorithms

by Tom Blank, Mark Stefik, and Willcm vanCleemput

1. Abstract

Stanford University and Xerox PARC
Stanford, California and Palo Alto, California

Bit maps have been used in many Design Automation (DA)
algorithms such as printed circuit board (PCB) layout and integrated
circuit (IC) design rule checking ('DRC). The attraction of bit maps is
that they provide a direct representation of two-dimensional images.
The difficulty with large so:ale use of bit maps (e.g., for DRC on VLSI)
is that the large amounts of data can consume impractical amounts of
computation on sequential machines.

This paper describes a processing archilecture that is specifically
designed to operate on bit maps. It has an inherently two-dimensional
construction and has a very large parallel processing capability.

Also included in tiffs paper are descriptions of algorithms that exploit
the architecture. Algnrithms for routing, DRC, and bit vector
manipulation are included,

large amounts of data; a miss match between conventional word based
computers and required bit operations on two dimensional data
structures.

It should be noted that bit map processing architectures have been
proposed since 1958 [9] for image processing applications. Recently,
machines have been reported by Reeves [6, 7] and l)nff[2, 3]. ltowever,
in all the earlier work, a large scale implementation was problematic.

We describe a physical chip design that can be integrated into a large
scale bit processing architecture. The approach is to incorporate one
processing element into each node of a bit map. The scheme is called
SAM for synchronous active memory. In the following sections, the
operation of one SAM cell, tile overall SAM architecture, algorithms
and future work arc described.

2. Introduction

As the size of design problems increases, the computational time
rcquirecl by the suftwarc tools also increases. Unfortunately, many I)A
programs have a nnn-linear run time dependence on the size of tile
design problem. Current size problems often require run times of
several h{a;rs. For example, PCB routing for a 10 x 10 inch board with
100 lC's and I)I~.C on a 200 x 200 rail integrated circuit require several
hours of CPU time on a medium-sized processor.

There are a number of possible solutions to the size vs. execution
time problem. The most obvious solution is to use faster and larger
computers with the same programs. This ~q~proach is doomed to failure
for two reasons: very large cost of large systems; tile problem size may
increase beyond the capability of the machine. Unfortunately, the
speed of large mainframes is not increasing as fast as the increase in
problem size and commensurate non-linear increase in execution time.
Another possible solution is to build special purpose hardware that
physically implements an algorithm. The I.ee routing algorithm is an
example that has been implemented with dedicated hardware.
However, this approach also has weaknesses: no flexibility to adapt to
changing technology, large expense due to low volume of the device
and limited useful lifetime.

Reasonable solutions to the size vs. execution problem are: develop
better algorithms (i.e. algoriti)ms that have polynomial degree closer to
one); define better design methodologies (again giving better
algorithms): identify heavily used (i.e. bottleneck) operations for many
DA algorithms and develop hardware to implement the general
operations. The hardware developed for multiple purposes is very
different from special purpose hardware (such as a Lee router box) and
its life expectancy is hmger. The longer life is attributed to its inherent
flexibility which can adapt to changing technologies. Additionally, the
cost o f the device can be amortized over many applications.

A bit map has been identified as a commonly used data structure for
representing physical structnrcs (i.e. PCB or IC masks). Additionally,
bit map operations have also been identified as a botdencck due to:

3. A Bit processing element

A SAM cell is composed of seven major blocks connected as shown
in figure 3-1. Each cell can be viewed as a completely independent one
bit processor with the following attributes:

• 16 c,ne bit registers; These can be viewed as layers of sixteen
different bit maps.

• 20 (assembly level) instructions

• Single operand instructions with the result stored into the
one bit accumulator

• Direct connection with nearest four neighbors

• Connection with global OR output line

• Connection with global input line

• A cell must be externally enabled by both a row and
column select line fur an instruction to be executed.

The instruction set for one SAM cell is broken into four categories:
boolean, load/store, read/write and neighbor instructions. Each is
discussed separately in the following sections. A complete instruction
set is given in figure 3-2.

3.1. Boolean Instructions

All boolean functions of two bits are implemented. The accumulator
always supplies one nperand with the other operand supplied from one
of the 16 internal registers, tbc result is always stored in the
acctunulator. For single operand instructions, the accumulator is both
the source and destination. For all boolean operations, the result of the
operation is also output to the global wired OR external output line.
This feature is useful for doing an operation over an area in the bit map
and testing the result.

18th Design Automation Conference Paper 43.1
0146.7123/81/0000-0837500.75~1981 IEEE 837

ADDRESS LINES EXTERNAL DATA INPUT
1

" >1 °"" I I co&°o?L
BANK ~ I '"

..... " ~ > MUX I ACCUMULATOR

U,L,D,R refer to the four orthogonal neighbors.

I ,

EXTERNAL DATA OUTPUT
>

> / ~ U
L
D
R

Figure 3-1: SAM Cell Block Diagram

BINARY ~ CODE OPERA'I ' IO~

Read~Write hlstructions

00011 READ -- ExtDataOut : = Ace (ORed over region)
10100 WRrI 'E -- Ace : = ExtDataln

Load/Store b2struetions

100t0 STORE<bit> <bit) : = Acc
00101 LOAD<bit) Acc : = <bit>

3.3. Read/Write Instructions

These instructions move data between the accumulator of selected
SAM cells and the external SAM controller. In the context of only one
cell, P, ead takes data from the external data input line and puts it into
the accumulator. Write places the contents of the accumulator on the
external data output line. This permits an external device to exchange
data with a single cell. When more than one cell is enabled, the Write
instruction actually gives the wired OR operation over the values of the
selected accumulators as the output.

3.4. Neighbor Instruction

Neighbor Instructiotl

10001 NEIB<bit> Acc : = M o N b r u + M [NbrL+M2NbrD+
M3NbrR+M4Nbr C

(note: M0-M 4 refer to the mask bits. See Fig. 3-4)

Boolean .Instructions

00000 CLR --
00001 AND<bit)
00010 GT<bit) Acc : =
00100 Ur<bit> Acc : =
00110 XOR<bit> Acc : =
001 l 1 OR<bit> Acc : =
01000 NOR<bit> Acc : =
01001 CMP<bit) Acc : =
01010 NOT<bit> Acc : =
01011 LE<bit> Acc : =
01100 INV -- Acc : =
01101 GE<bit> Acc : =
01110 NAND<bi t) Ace : =
01111 SET --<bit) Acc : =

Ace : = 0
Ace : = Ace and <bit>

Acc greater-than <bit)
Acc less-than <bit>
Aec xor <bit)
Acc or <biO
Acc nor <bit)
Acc equals <bit>
not <bit>
Aec less-than-or-equals <bit>
not Acc
Acc greater-than-or-equals <bit>
Aec nand <bit>
1

Figure 3-2: SAM Instruction Set

3.2. Load/Store Instructions

These insu'uctions move data between the accumulator and one of
the cell's internal registers. The instructions are: move data from the
accumulator to an internal register (Store) and move data from an
internal register to the accumulator (Load). Store is the only instruction
that modifies the value of a register.

The neighbor instruction provides the mechanism to exchange data
from one SAM cell to its four orthogonal neighbors (See figure 3-3).
The data exchange is only between the accumulators. A five bit mask is
used to select which of the cells will be used. The data from the selected
cells are combined using an OR operation and the result is stored in the
accumulator. This operation is done simultaneously for all selected

LEFT

cells.

uP F

J

F
•L•H• RIGHT

q DOWN

Figure 3-3: SAM Neighbor Instruction

The neighbor instruction is the most powerful instruction of a SAM
cell since it uses the inherent two dimensiotlal configt~ration of the bit
map. With this instruction, it is possible to transfer blocks of data (by
enabling a region), up, down, right and left by a simple mask
specification (see figure 3-4). The neighbor instruction is powerful for
data movement since the required execution time depends only on the
distance moved not the amount of data (assuming the bit map has been
previously loaded). Additionally, more complicated operations, which
combine data from different neighbors, can be done by selecting a mask
with more than one neighbor selected. If all the mask bits are set, data
propagates isotropically.

3.5. Physical Implementation

The practical realization of a SAM depends on the development of a
design for a single processor that is sufficiently small that it can be

Paper 43.1
838

Mask Bits
NEIGHBOR

EXAMPLES : U L D R C U - Upper

Transfer UP 1 0 0 0 0 L - Left

Transfer LEFT 0 1 0 0 0 D - Down

Transfer DOWN 0 0 1 0 0 R - Right

Transfer RIGHT 0 0 0 1 0 C - Cell

Horizontal Transfer 0 1 0 1 1

Vertical Transfer t 0 1 0 1

Isotropic Transfer 1 1 1 1 1

Figure 3-4: Masks lbr Neighbor Instruction

replicated enough times to contain (or reasonably partition) a non-
trivial sized problem. A prototype has been designed using an NMOS
process [5] and is currently in the fabrication process.

For the first SAM cell prototype, the masks for only one cell were
designed. The cell size is approximately 900 x 900 microns (this does
not include external connection pads). This size is based on a
fabrication process which had a lambda of 2.5 microns (lambda is one
half the minimum feature size of the process). The design contained
approximately 350 transistors in 165 logic gates (pass transistors were
counted as a gate). The SAM cell mask design was done so that a step
and repeat operation could be used to fabricate a larger array after the
design is verified.

Many architectural decisions and design observations were made that
had a direct inlluence on the current size of the design. Future
prototypes will be able to use both the hardware and architectural
information from the first chip. The following observations had a major
impact on the prototype design:

• l~cl~ SAM cell is greatty simplified by not having a stored
program. All sequencing of operations is centrally
controlled by the master which broadcasts instructions to
the SAM array. Additionally, the master selects the regions
in the array that are enabled to execute an instruction. The
adoption of global control eliminates the need for
complicated control logic and additional storage for
instructions in the individual cells.

• Single opcrand instructions were adopted due to the
commensurate simplicity of the data paths and logical
operations.

• A fully static register bank (memory) was used. This permits
easy testing of the prototype design. This choice had the
largest impact on the size of the implementation since the
sixteen register cells occupy over 60% of the layout.

• All boolean operations of two variables are easily
implemented with a four to one multiplexor by choosing
the instruction codes pruperly. Additionally, no arithmetic
instructions were implemented since all operations can
broken into their boolean components. This at first
inspection seems woefully inefficient; but, the vast
parallelism of a SAM makes the operations on an entire bit
map orders of magnitude faster than conventional
sequential machines.

• For a large scale implementation, it is important to get as
many SAM cells on each chip so that only a limited number
of chips are needed. Since the number of external chip
connections is primarily a function of the number rows and
columns on the chip, the minimal number of external
connections was a design goal. Therefore, bi-directional
data lines were incorporated between all neighbors. It

increased the complexity of the internal circuitry in each
node for a significant decrease in the pin out (See figure 3-
5).

• The required AND/OR logic of the neighbor instruction
was easily implemented with one NMOS gate.

• The address lines used to select a register for a boolean
operation are not used during a neighbor instruction. This
permited a great savings in required lines by using the
unused address lines as the neighbor instruction mask bits.

Signal

B i t Addresses
O p e r a t i o n Codes
P o w e r / G r o u n d
C l o c k
C o m m u n i c a t l o n s L i n e s

Row Select
Column Select
Neighbor C o n n e c t i o n s

Number of Pins

5 / c h i p
5/chip
2 / c h i p
1/chip
2 / c h i p

1/row
1 / c o l umn
2/row + 2/column

Figure 3-5: SAM Pin Connections

An important aspect of the SAM cell is the maximum speed of
operation. For NMOS, a performance measure is the propagation
delay time of two invcrters in series, called the "pair delay'. The NMOS
process used for the prototype had a pair delay of approximately 8
nanoseconds. For a SAM cell, the speed limiting signal paths can be
separated into two distinct groups: internal delay and external delay.
The maximum internal delay is during boolean instructions where an
operand fetch from the register set is made. The predicted delay is 100
nanoseconds. External delay is when one SAM cell is communicating
outside of its cell boundaries. For all instructions (when the cell is
enabled) the accumulator value is transmitted to the wired OR data
line. External time delay depends on the following factors: capacitance
of the external data line, impedance of the cell pull down transistor and
physical construction of the logical OR function through out the SAM
array.

4. Bit M a p P r o c e s s i n g Archi tecture

There are two SAM architectures considered: a fully implemented
SAM array where each bit map node is one SAM cell and a virtual
SAM array where the logical bit space is larger than the physical
implementation. Each is discussed separately.

4.1. Full Hardware SAM array

A complete hardware SAM implementation (one SAM cell per bit
map node) is very attractive due to its tremendous parallel processing
capability and speed (See figure 4-1). Additionally, the SAM array
control and data requirements are simple. All data transfers between
the Bit Map Processor and the conventional computer system are
through either the one bit external data I/O line or fi'om the computer
data bus into an edge register. The Bit Map Processor control simply
regulates the data exchange and coordinates SAM. array instruction
execution. All SAM instruction sequencing is done by a conventional
compu ter system.

There are a number of tradeoffs and problems with a fully
implemented Bit Map Processor. Physical realizability is one of the
obvious problems. A SAM array 1K by 1K would require over 4096
individual chips if each SAM array chip contained an array of 16 x 16
processors. A 16 x 16 SAM array chip can be built if one SAM cell can
be built in a 400 x 400 micron square and a .6 x .6 cm chip is used. The

Paper 43.1
839

Control

Logic

CONVENTIONAL COMPUTER SYSTEM

I I I
SAM Area Data. Bus

Instructions Select ion / I I
BIT MAP PROCESSOR

[Edge Register
m ~

I I
R I I
o E l t t
w : 1 1

e

I
| 1

e 11
c I I

11
t i i l
m _ _

I I I I I I I I I I

I I I I I I I I I !
i l l l l l l l

I l l l l l l
l l l l l l l l l l l

SAMCel lA r ray
I I I I I I I I I I I
I I I I I I I I I 1 1
I I I I I I I I I I I
I I I I I I I I I I I

I l l l l l
I l l l J l l l l l l

I Edge Register

I Column Select

m

I I I

Fi ure 4-1: Bit Processing Architecture using one.SAM Cell per Node

prototype SAM cell (900 x 900 microns) can be reduced if a smaller
geometry process is used and dynamic instead of static registers are
used in each cell. Another difficulty of a 16 x 16 chip is that 111 pins
are required. The instruction cycle time is a function of internal cell,
external cell, external chip and external board intcrconnections. To
accommodate the longest delay path, the calculated instruction c yc l e
time is 300 nanoseconds (using a hierarchical OR gate connection).
Other architectural constraints are: a fixed bit map size (i.e. IK x 1K in
the example), a fixed shape (i.e. square or rectangular) and a fixed
number of registers in each cell (i.e. sixteen for the current SAM cell).

4.2. Virtual SAM Architecture

Another possible solution to the implementation problem is to relax
the requirement that each bit map node have a dedicated processor.
This allows one processing node to process many nodes of a bit map.
]"he complete architecture of a 1K x 1K virtual bit map processor is
shown in figure 4-2. The main component is a 32 x 32 array of SAM
cells that have been modified as shown in figure 4-3. There are two
changes from the previously described SAM cell. The accumulator and
register bank are removed and replaced by a]K and a 16K RAM,
respectively. The external RAM attached to a SAM cell defines the
allowable configurations of the virtual bit map; For example, using the
memory components specified, the largest virtual bit map is 1K x 1K
with 16 registers in each cell (this is identical to the full hardware
implementation). The minimum size map is 32 x 32 with 16K registers.
(Note: the maximum bit map size is limited by the memory attached to
the accumulator. I fa 16K RAM is used for the accumulator set, a 4K x
4K virtual map with one register bit per cell may be configured). The
only restriction on the allowed bit map shapes is that the smallest
segment is 32 x 32 and only rectangles are allowed.

The control of the virtual Bit Map Processor is composed of seven
primary components: Program control logic, Primary address control,
Edge 1 - 4 control and the SAM cell array. The controllers handle the
sequencing of a SAM instruction over the virtual map segments on the
physical 32 x 32 processors. For simple accumulator and register SAM
instructions (i.e. booleans) the controllers broadcast the instruction and
the address of the selected register and accumulator. The same
instruction is then repeated over the different bit map segments until
the entire virtual bit map has been processed. The primary address
controller supplies the register and accumulator addresses based on the
selected register in the instruction and the currently active segment.

Local
Program
Store

Program
Control
Logic

CONVENTIONIAL COMPUTER SYSTEM

Conventional I/O Channel

VIRTUAL BIT MAP PROCESSOR

~ 1 Edge Register

R
o E
W

R

S
e

I
e

c

I I I " ' " " " I l l l I I

I I I , , , i , , , , , , , , , HE
I I I I I I I I I I I I I I I
I I I I I I I [I I I I I I I R

I I I I I I I I I I I I1.~~ I _ SAM Cel lArray
I I I I I I I I I I I i I I I I I I I I I I I I I I l i l i I I I I I I I

I l l ,
it I I I l l L , , , , , ,

I Edge 2 i I Edge Register I
I C°ntr°'lt Co,umnSe,ect 1

I

Figure 4-2: Virtual Bit Map Architecture

Neighbor instructions are much more difficult since the values of the
fnur orthogonal neighbors have to be supplied. For internally located
cells, all neighbor values are contained in the current segment;
however, cells located on the edge of the physical array require
neighbor values that are contained in other segments. The problem is
solved by splitting the edge cell accumulator set into two banks (three
banks for the four corner cells). Each bank can be controlled by either
the main address controller or the by the edge address controller.
Multiple accumulator banks permit simultaneous access of different
segments. The final complication for the neighbor instruction is that the
memory partitions must be folded so that the required neighbor values
are located in the same accumulator set (See figure 4-4). Folding the bit
map requires that the neighbor mask be modified depending on the
currently active segment.

I Register I
> Bank

Global Address Control (16K bits)

L
D ..J Logical Unit D

Neigh Unit
R Local Control R

SAM control

Global Address Control (1 K bits)
ii

Figure 4-3: Modified SAM Cell

Another part of the virtual architectu re is a local program store. Since
the execution time of an instruction depends on a number of variables,
it would be impractical to burden the conventional computer system
with instruction sequencing. A SAM array program is simply
downloaded from the conventional computer memory. The Bit Map
Processor then signals the host when the program segment execution is
complete.

Paper 43.1
840

X X

X X

X X

x l x

x x (- -

x x

x x - -

x x

- One physical processor

- - One physical bit map segment

Sixteen bit map segments
shown in virtual map

Figure 4-4: Memory Partition

The virtual bit map scheme has a number of important advantages
over the complete hardware SAM array implementation:

• Easier physical implementation since fewer chips

• Only K*(N/m) 2 slower than a complete hardware SAM
implementation; N x N is the virtual array size; m x m is the
hardware segment size; K is a constant less than one that is
a function of the external cell delay due to the external OR
function output (Note: ideally Ko:l/log(N/m)2).

• Easy reconfiguration of bit map size, shape and number of
registers

• Utilization of standard RAMs for the bulk storage

The chip count for a 1K x 1K virtual array is approximately 2K chips
if one chip is used for each accumulator set, register bank and for 32
SAM cells on one chip; however, both accumulator and register
memory can be shared between multiple SAM cells. A 16K by 4 bit
chip can be used for four register banks. A 1K by 8 bit chip can be used
for eight accumulator sets. Both changes reduce the chip count below
500. The instruction cycle time is primarily determined by the memory
cycle time since the physical SAM array and external delays are short.
A faster cycle time can also he achieved using a cache memory scheme
for both the accumulator set and register bank. A minor cycle time
(only for the 32 x 32 segment) o f 100 nanoseconds is attainable since the
array size is physically small (minimal external delay) and if the internal
delay is reduced using the memory caching technique. The cycle time
of an N x N virtual array (using the 32 x 32 array) is 100ns * (N/32) 2.

5. Algorithms for a Parallel Bit Map Architecture

Many algorithms currently used in design automation are inherently
parallel. The two most obvious examples are the l.ee Maze router [41,
and the Soukup Global router [8]. Other examples are design rule
checking, component placement and circuit extraction. Bit vector
manipulations take advantage of both the parallelism and bit handling
nature of an active bit map.

In the following sections, parts of algorithms will be presented that
demonstrate both the flexibility and power of a SAM array.

5.1. Simple Boolean operat ion

Figure 5-1, shows the simple boolean operation AND between two
planes of a bit map. In the example, all the bit map cells are enabled.
The external output data line (the wired OR of all enabled cells) is set
to a one after the statement execution. This is only One instruction.

5.2 . Simple Neighbor operation

Figure 5-2, shows a simple neighbor operation whcn all the mask bits
are set to 1 (lsotropic transfer). The logical result is that each cell takes
the logical OR of itself and its four orthogonal neighbors. All bit map
cells are enabled. The physical result is that each object in the map is
expanded by one cell (note: a four corner expand excludes all diagonal
neighbors). Again, this is only one instruction.

Accumulator

LI.J
i ~ b - "

I I I
SAM Program:

Accumulator

I l l I I I I
ii

i"
I l l l l l

Enable(all)
SAMneighbor(all)

Figure 5-2: Four Corner Expand

Register I Accumulator

~1~. , ~ " AND
.

Accumulator

I I I

I I I

Accumulator

_...-~ ~'-:::"2"'~f' ~.:~.

Figure 5-1: Boolean Example

Accumulator . Accumulator

I I !

I I ! I I
Figure 5-3: Eight Corner Expand

I I I I I I

~ ~ " ~ " .:::~

I£i;li iiiii l
I I I I I

SAM Program:

Enable(all)

SAMand(1)

SAM Program:

Enable(all)

SAMneighbor(L,C,R)

SAMneighbor(U,C,D)

Paper 43.1
841

Accumulator

i l l t l ' i t /

I I I I I I I I

Accumulator

An expand that includes diagonals (an eight corner expand) can be
done in two instructions: one horizontal transfer and one vertical
transfer. A horizontal transfer puts the logical OR of itself and two
horizontal neighbors into the accumulator. A vertical transfer puts the
logical OR of itself (which now contains the OR of itself and two
horizontal neighbors) and two vertical neighbors into its accumulator.
The logical result is the logical OR of itself and eight nearest neighbors
(See figure 5-3).

5.3 . Simple Instruction Sequence: 'Shrink'

Shrink, He inverse function of expand, is done in three or four
instructions: complement, expand (either four or eight corner expand)
and complement (See figure 5-4).

5 .4 . Lee Router

A conventional Lee router is composed of three phases: wavefront
expansion, trace back, and map clearing. A typical Lee wave expansion
is shown in figure 5-5 for a single layer where there are four values
allowed in each bit map node: available (space), occupied (X),
wavefruntl (1), and wavefront2 (2) [1]. The symbols 'S' and 'D'
represent the source and destination of the wave front and are not
actually stored in the bit map. The return path (in the example) is
found by following a 2112 sequence.

XX
X 2 X
X 22Z X
X 22122 X
X 2211122 X
X 221121122 X
X 22112221122 X
X 2211221221122 X
X 221122111221122 X
X 22112211Sl122112D X
X 221122111221122 X
X 2211221221122 X
X 22112221122 X
X 221121122 X
X 2211122 X
X 22122 X
X 222 X
X 2 X
XX

Figure 5-5: Conventional Lee Router

A program for a SAM array is given that implements the
conventional Lee router. As in figure 5-5, there are four allowed values;
but are represented using three bit planes. Register zero contains only a
map of the obstructions. Register one contains the wavefrontl
expansion and register two contains the wavefront2 expansion. All
unoccupied bits are assumed available. The Lee router program is given
in a Pascal like notation where each SAM instruction is specifically
marked with the prefix SAM. The enable procedure selects the area

Accumulator

I I I I
- " ~ " "

I I I I

SAM Program:

Enable(all)

SAMinv

Expand

SAMinv

Figure 5-4: Shrink

within the SAM array to execute the broadcast instructions. Figure.
shows the wave expansion steps of a simple routing. The 'x's repres¢
occupied bits in the map.

AFTER 4 EXPANDS:

X

R1 = xxx
X X XX

X X X

X

R2 =

X

XXX

XX XX

XX XX

XX X XX

XX XX

XX XX

XXX

X

AFTER 8 EXPANDS: x
XXX

X XX X X

R1 = xxx R2 = xx xx
X X XX X X X XX

XX XX X X X X X X X

XX X X X XX XX X X X X

XX X X X X X XX XX XX XX

XX XX XX XX XX XX X XX XX

XX X X X X X XX XX XX X X

XX X XX XX XX XX XX

XX XX XX XXX XX

XX XX XX X XX

XXX XX XX

X XX X X

X X X

X

Figure 5-6: SAM Implementation of Lee wavefront expansion

Using the SAM instruction cycle times of 300ns (refer to section 4.1)
for the 1K by 1K hardware implementation and lOOns per minor cyc]~
(refer to section 4.2) for the virtual bit map machine, the estimate,~.
execution time of the Lee algorithm can be calculated. The examp •
problem is for a printed circuit board routing where a 512 x 512 bit n.
is required. There are 1000 traces with an average length of 200 gri
The execution times for the SAM architectures are calculated
computing the time for one 200 grid route and multiplying by the t~
number of traces. The constant mapinit (1-5 seconds) is the t:
required to initially load the bit map pads and obstructions be;
routing. The timing of a conventional computer is also shown
comparison.

SAM Architectures Execution Time

1K x 1K hardware map .4 sec.
32 x 32 v i r t ua l array 15 sec.
Conventional Computer 5 Hours

+ mapinit
+ mapinit

Figure 5-7: Lee Routing Timing

Paper 43.1
842

{Lee Maze Router Main Program

**** SAM reg is ter uses ****

RO - Obstructions
R1 - Ones layer
RZ - Twos layer

x s t a r t , y s t a r t - s ta r t i ng locat ton
xstop,ystop dest ina t ion for r o u t t n g }

Begin (* MAIN *)

{ * * map I n i t i a l i z e * * }
SAMenable(all);
SAM(clP); { c lear layer }
S A M e n a b l e (x s t a r t , y s t a r t , x s t a r t , y s t a r t) ;
SAM(sett); { enter s ta r t i ng seed }
SAM(store,O);
SAMenable(xmJn,ymtn,xmax,ymax);
SAM(store,Z); { save en t i re layer }

{** wave expansion ** }
cnt := O;
repeat

step := cnt mod 4;
SAM(nelb,a l l) ;
SAM(gt,O);
t f step = 1 then

begtn SAM(gt,2); SAM(store,I) end;
t f step = 3 then

begin SAM(gt,1); SAM(store,Z) end;
cnt := cnt + 1;

u n t i l h i t t a rge t (xs top , ys top) ;

{**trace back * * }
xt := xstop; y l := ystop; dt r := O;
SAMenab le (x l , y l , x t , y l) :
SAM(store,O); { put tn endpotnt }
for ta rge t layer := cnt-Z downLo 0 do

begin
step := ta rge t laye r mod 4;
chasemarkf rom(step,dJr ,x l ,y l) ;
end;

End. (* MAIN *)

5.5. Comments on Soukup's Global Router

Soukup [8] presented a new philosophical approach to routing where
all the traces are routed simultaneously (called GR1). Additionally,
another algorithm was presented to connect problem traces (GR2)
again using an approach where all traces are effected simultaneously.
We will not present a SAM implementation but a number of comments
and observations are appropriate.

It is important to note that both global algorithms GRI and GR2 are
identical with the exception of priority assignment. The primitive
operations of both are:

• Checking for local bottlenecks,

• Verifying that all local bottlenecks are true bottlenecks.
The standard Lee router can be used for this check. 'Dead
space' is also reset during this phase.

• Expansion of the wave front according to priorities and
physical conditions.

• Assign priorities to all cells according to algorithm rules.

• Reduce wave front to a standard line route.

functton h t t t a r g e t (x , y : i n t e g e r) : b o o l e a n ;
{ t rue I f the dest ina t ion has been marked }

begln
SAMenable(x,y;x,y);
SAM(readd);
h l t t a rge t := SAMflag;
SAMenable(xmtn,ymtn,xmax,ymax);
end;

procedure chasemarkfrom(trgt layer : tnteger;
vat d i r , x , y : l n t e g e r) ;

{ f inds the best path from the specif ied
poin t . I t f i r s t t r i e s the same d i rec t ion
then looks In the others }

Label 1;

vat
t r y d t r : in teger ;
newdtr: in teger ;
x r e l , y r e l : integer;

Begln
For t r y d l r := 0 to 3 do

begln
newdlr := (t ryd l r+d l r)mod 4;
case newdlr of

O: begln xre l := O; yre l := I end;
I : begln xre l :=- I ; yre l := 0 end;
2: begin xre l := O; yre l :=- I end;
3: begin xre l := 1; yre l := 0 end
end; {end case}

SAMenable(x+xre l ,y+yre l ,x+xre l ,y+yre l) ;
t f t r g t l a y e r < Z then SAM(load,I)

else SAM(load,2);
I f SAMflag then goto 1; { e x i t t f found}
end; {end of for loop}

1: { new locatton found }
d l r := newdtr;
x := x + x re l ;
y := y + ¥ re l ;
SAM(store,O); { enter new point }
End; { end of chasebackmapk }

With the exception of priority assignment and seqnencing between
the primitive operations, all the required operations can be easily
implemented on a SAM array. This is due to the locality of information
near each cell.

5.6. IC Design Rule Checking

Integrated circuit design rule checking is another type of algorithm
that is well suited to a SAM implementation. Many of the typical
geometrical operations used in I)RC like: expand, shrink, mergiflg of
IC layers and intersection are single SAM instructions or simple
sequences of SAIVl instructions. Both expand and shrink have been
mentioned in earlier sections. Merging is a simple bit map boolean OR
between layers and intersection is an AND operation with area check.

A very simple check is presented in figure 5-8 for the metal coverage
of cuts. The design rule in the example requires that all contact cuts are
covered by one grid unit of metal in all directions. The test is composed
of three SAM instructions: expand (8 corner) all contact cuts and XOR
with metal layer. Any design rule violations will have a non-zero
accumulator.

Paper 43.1
843

+ +
: : : .x .z .

 iii] iiiiii+, :i! ::iiiii+d .ii #i

Composite metal and cuts Expand cuts only

I I

I I
Design rule violations

SAM Program:

R0- metal layer
R1 - contact cut layer

Enable(all)

SAMIoad(1)

Expand

SAMxor(0)

Figure 5-8: Design Rule Checking: Contact Cut Spacing

The use of a SAM does not increase the value of a geometrical DRC. Allowed Bit Vector Values
All the problems of a bit map approach are still present: only spacing
type checks, diagonal line problems and large bit map size; however, 0 - b i n a r y ze re
SAM does decrease the execution time. With SAM, the time 1 - binary one
dependence of many algorithms is completely data independent. For X - d o n ' t care
example, the contact coverage check only requires three SAM Vector example 1
instructions (The initial time required to fill the bit map with the mask
information is ignored.).

Internal SAM Representation

I0 - binary zero
Ol - b i n a r y one
I I - don' t c a r e
O0 - i l l e g a l value

XXO N XIO = XIO
(11 11 10) AND (11 01 10) = 11 01 10

5.7. Other DA algorithms

5.7.1. Bit Vector operations

There are a number of problems with the implementation of bit
vector operations on conventional word based computers. The two
major problems are: length of bit vectors (requiring many computer
words) and the mapping of standard bit vector operations into
conventional computer operations. Standard bit vector operations
inclutle:

• complement

• intersection: A f'l B

• union: A U B

• cover: A intersect B = A; means B covers A

• sharp: A intersect (complement (B))

The use of SAM, inherently designed to manipulate binary bits, would
solve the standard computer word length problem. The mapping of bit
vector operations into SAM instructions is not a perfect match but the
inherent gains of parallelism completely over rides the difficulties.
Figure 5-9 is an example of the intersection operation.

6, C o n c l u s i o n s and Futu re Work

In the previous sections, a description of an active bit map element
has been presented. Additionally, architectures have been proposed
that can control a large array of active elements. Finally, algorithms that
demonstrate the parallel processing power of a synchronous active
memory (SAM) have been briefly shown.

The future work in SAM consists o f two primary areas: working on a
complete physical implementation and the development (or
modification) of algorithms. There are many options that are available
tbr a SAM array on a chip. Possible technologies are ECL gate arrays,
12L, CMOS and a VLSI chip in NMOS like the current prototype. For
each technology, there is the corresponding tradeoff of speed, density
etc. Many choices ranging from the architecture to physical chip
interconnect problems need to be addressed.

Vectorexample2

XO0 N 110 = 0
(11 I0 10) AND (01 01 10) = 01 O0 10

(the O0 b i t denotes a null in tersect ion)

SAM instmctionsequence:

SAM Register usage:

RO - resu l t low
R1 - resu l t high
R2 - Vect 1 low
R3 - Vect 1 high
R4 - Vect 2 low
R5 - Vect 2 high

Begin
enab le (a l l) ;
SAM(load,2);
SAM(andd,4);
SAM(store,O);
SAM(load,3);
SAM(andd,5);
SAM(store,l);
SAM(nor,O);

{ s e l e c t v e c t o r region}

{AND of vector ' low b i t s }

{AND of vector high b i t s }

{ look for 00}
{accumulator is set in a l l i l l e g a l vectors}
End.

Figure 5-9: Bit Vector Intersection

The development of highly parallel algorithms, is also filled
many options. The final architecture and physical size of the activ r
map, will have an important impact. Developing algorithms that
effectively partition a problem into the available bit map size
connect properly into the next partition is a challenging pro['
Partitioning will also have a major impact on the amount of data
must be moved between the physical bit map and some large bac
store or alternate data representation.

The prototype chip was designed as a project by Blank and Stefil,
the VLSI course at Stanford taught by Alan Bell in June 1980.
application of the architectures to DA problems was expm
subsequently by Blank and vanCleemput.

Paper 43.2
844

R e f e r e n c e s

1. Breuer, Melvin A. Design AuWmat.ion of DigitalSystems. Prentice-
Hall Inc., 1972.

2. Duff, M. J. B. CLIP 4: A Large Scale Integrated Circuit Array
Parallel Processor. Proc. 1978 Pattern Recognition and Image
Processing Conf., Pattern Recognition and Image Processing,
Nov., 1978, pp. 728-733.

3. Duff, M. J. B. A User's Look at Parallel Processing. Proc. 1978
Pattern Recognition and Image Processing Conf., Pattern Recognition
and Image Processing, Nov., 1978, pp. 1072-1075.

4. Lee, C. Y. "An Algorithm for Path Connections and Its
Applications." IRE Trans. Electron. Computers EC-IO (Sept. 1961),
346-365.

5. Mead, Carver A. and Conway, Lynn A. Introduction to VLSI
System~; Addison-Wesley, 1980.

6. Reeves, Anthony P. and Rindfuss, R. The Base 8 Binary Array
Processor. Proc. 1979 Pattern Recognition and Image Processing Conf.,
Pattern Recognition and Image Processing, Aug., 1979, pp. 250-255.

7. Reeves, Anthony P. "A Systematically Designed Binary Array
Processor." IEEE Trans. on Computers C-29, 4 (April 1980), 278-287.

8. Soukup, J. Global Router. 16th Design Automation Conference
Proc., IEEE Computer Society and ACM, June, 1979, pp, 481-484.

9. Unger, S. H. A Computer Oriented toward Spatial Problems.
Proceedings of the IRE, IRE, Oct., 1958, pp. 1744-1750.

Paper 43.1
845

