
AUTOMATION & CONTROL.

PROSPECTS FOR EXPERT
SYSTEMS IN CAD

by Mark J. Stefik and Johan do KIeer

A new breed ofcomputer systems—expert systems—is now emerging from artificial inteffigence researchand is being used in applications normally thought
to reqwre human specialists for their solution For
example, expert systems have been used to solve prob-
lems such asequipment diagnosis,medical diagnosis and
therapy, experiment planning in genetics, and computer
configuration—problems that do not yield to numerical
or statistical techniques. Expertsystems gain theirpower
by the useof “expert knowledge,” recorded in a knowl-
edge base, which enablesprograms to mimic the reasoning
of human experts.

Mark J. Stefik is a member of the research staff at
Xerox Corp, Palo Alto Research Center, 3333 Coyote
Hill Rd Palo Alto, CA 94304. Dr Stefik works in the
Knowledge Systems Area. He has a PhD in computer
science from Stanford University.

Johan de Kleer is a member of the research staff at
the Xerox Palo Alto Research Center’s Cognitive and
Instructional Sciences Group. Dr de Kleer has a PhD
from the Massachusetts Institute of Technology’s
Artificial Intelligence Laboratory.

Although widespread
use of expert systems
in solving complex
CAL) problems is
several years away,
artificial intelligence
concepts are being
applied in experi-
mental systems for
tomorrow’s knowl-
edge based design
assistance.

In applying expert systems to design tasks, the idea is
to pit knowledge against complexity, using expert
knowledge to whittle complexity down to a manageable
scale Expert systems will eventually be applied in many
design areas, but an important example is their use in
digital system design, particularly in computer aided
design (CAD).
Although there are no expert systems commercially

available for electronic system design as yet, work is
proceeding at several research centers For instance,
computer scientists at Digital Equipment Corp (DEc) are
developing expert systems for several applications,
including digital design. Oneexample is an experimental
expert system for determining transistor size in inte-
grated circuits, given circuit parameters suchas loadand
capacitance. In conjunction with researchers at Carnegie-
Mellon University in 1978, DECbegan activity on expert
systems to develop a knowledge based program called
XCON for configuring vA.X-li/780s. This program is now
used to configure every vA.x that is shipped.
For more than a decade, the Heuristic Programming

Project at Stanford University has pioneered anddevel-
oped expert systems. Eurisko is an artificial intelligence
(At) program used to search for mathematical concepts
and configure naval fleets in competition games.
Recently, Eurisko was used to search for useful

COMPUTER DESIGNIApriI 21, 1983 65

~ ~4_~J

microcircuit structures made possible by multilayer
fabrication technology (Fig 1). The program has
discovered several novel devices.
Researchers at the Massachusetts Institute of Tech-

nology Artificial Inteffigence Laboratory have been
creating and experimenting with engineering Al pro-

grams for manyyears. Two examplesare the EL and SYN
programs that help a designer analyze and synthesize
analog circuits. Key to these systems is the idea that the
possible values for parameters describing circuits are
represented and manipulated in terms of constraints.
Fig 2 shows an example of the kind of problem that EL
can solve.
At Xerox Palo Alto Research Center and Stanford

University, researchers are developing a prototype
expert system called Pallaclio. The key idea is that
designers should design not only circuits, but also
knowledge. Knowledge in Palladio is expressed in a
knowledge representation language called Loops (see
Fig 3). Using Palladio, a designer will interact with
previously designed circuit fragments and rules taken
from knowledge bases. While working on an individual
design, a designer can discover gaps and errors in the
knowledge base by applying it to his own design. The
designer can create personal versions and modifications
to the knowledge bases, whichcan later be incorporated.
Palladio is intended to foster experimentation with
design methodologies.
Related work is proposedor underwayat the Japanese

5th Generation Computer Project, the Institute for
Information Sciences, Lincoln Labs, and Symbolics.

The technology
One method for developing an expert system involves a
collaboration between a specialist (the expert) and a
computer scientist (the knowledge engineer). The expert
provides sample problems and the knowledge engineer

provides a programming framework, includinga knowl-
edge representation language. The knowledge engineer
interviews the expert as he solves the sample problems
and helps him to articulate the knowledge he is using.
Together they define the scope of the expert system and
enter the expert’s knowledge into a knowledge base,
often in terms of if-then rules. The resulting program is
given hypothetical tasks. Differences between the
expert’s results and the program are identified, and the
knowledge base is updated.
Developing an expert system generally takes several

man-years. For a project to succeed, the expert and the
knowledge engineer must become familiar with each
other’s field. During this process, abody of knowledge is
articulated and formalized. Often the necessaryformal!-
zation ofknowledge leads to acrisper anddeeper under-

FIg 2 Asimplified example that can be solved by EL
“Before analysis” (a) shows an electrical circuit whose
components are known, but whose voltages and currents
need to be analyzed. Analysis begins by assigning the symbol
e to the unknown voltage at the upper right corner of the
ladder. Other values are derived by stepwise application of
Ohm’s and Kirchoff’s laws to produce the “after analysis”
diagram (b).

standing by the expert of his field. Sometimes the
formalization leads to knowledge and methods of
reasoning that have not been used previously.
Although this depiction of an expert system’s con-

struction andorganizationis oversimplified, it illustrates
the kinds of issues the expert system builder must face
andthe technologythat must be applied. The knowledge
engineer’s task is to encode the expert’s knowledge to be
effectively used by a computer. This task is difficult
because the expert is rarely articulate about the knowl-,
edge. Such difficulties are addressed by expert systems
technology.
Debugging a knowledge base provides a vehicle for

formalizing an expert’s often tacit knowledge. Through-
out expert systemdevelopment, the knowledge atcertain

Fig 1 illustration of a microcircuitdevice discovered by
Eurisko. This device can be used to simultaneously compute
NAND and OR. The device handles silicon volume efficiently
since It can be packed In the planeand vertically. Eurisko
uses a technique called heuristic search to generate plausible
devices and find the interesting ones.

Ri R3 R5
5Q 5Q 52

eV

i~v R2. 84 R6
- 102 1OQ 5Q

BEFORE ANALYSIS
(a)

Ri 83 R5
8ev 4ev SQ 2eV eV

4e/5 A 2e/5 A e/5 A

+
iov R2 R4 86
- 1OQ 1OQ 52

Ze/5 A e/5 A e/5 A

AFTER ANALYSIS
(b)

66 COMPUTER DESIGNIApriI 21, 1983

places is incompleteand incorrect.This is apparentwhen
a human expert’s conclusions differ from the expert
system’s. Identifyingwhich piece ofknowledge is absent
or incorrect is difficult.
Transparency is an important property of expert

systems. Transparency means that the knowledge an
expert systemuses should bemadevisible to its users. In
particular, the user can view and often modify the
knowledge base. Moreimportant, thesystem, in arriving
at a recommendation, maintains an audit trail of the
steps and pieces of knowledge used. Hence, the culprit
piece of knowledge is easily identified. (Such audit trails
also provide explanations for its recommendations,
therebyhelping users to developconfidence in an expert
system.) These mechanisms for user feedback allow the
knowledge base to continue to grow long after the
knowledge engineer has left.
In an application, knowledge can include facts,

theorems, heuristics, equations, rules of thumb,
assumptions, strategies, tactics, probabilities, advice,
and causal laws. To manage such diverse forms of
knowledge, At has developed a wide variety of
knowledge representation and inference schemes. A
knowledge representation scheme is a way to codify
knowledge; an inference scheme is a way to use knowl-
edge to arrive at new knowledge. One of the first deci-
sions a knowledge engineer must make is the choice of
knowledge representation and inference schemes.

A good starting place is the vocabulary and descrip-
tion of those things that the expert system will reason
about. Forexample, an expertsystem about chip design
would include a vocabulary of transistors used as
switches, restoring logic, clocks, and steering logic. One
popular approach is to defme such things in terms of
objects (Fig 4). Most knowledge representation lan-
guages come with special facilities for instantiating,
combining, and specializing object descriptions.
Often the knowledge that goes into an expert system is

decision-making knowledge that can be expressed in
terms ofif-then rules (Table 1). These rules indicate that
certain actions can be takenif certain kinds ofsituations
arise. Most rule based systems contain hundreds of
rules, each representinga “chunk” of knowledge about
a particular field. Rules can be used to represent both
inferences and hEuristics.
Each rule in a knowledge base represents the knowl-

edge behind a single decision. Organizing the rules to
work collectively on problems is an important taskfor a
knowledge engineer. As this is an area of active research,
there is more than one approach. One of the simplest
strategies is to have an interpreter scan the rules to find
onewhoseantecedentsmatch assertions in thedatabase.
In more sophisticated systems, rules are organized into
networks that determine when rules get applied. Such
networks can be organized to apply rules when certain
data are changed, or to try rules whencertain goals are
indicated. Inferences are statements about what facts.
follow from given conditions; heuristics are rules of
thumb that guide the search for solutions.’
The current technology ofbuilding expertsystems has

weak points, some ofwhich require substantially more
research. Forexample, an expert, like agood designer, is
distinguished from a mediocre one not only by the
knowledge possessed about the field, but by intuition,
taste, and common sense. Unfortunately, these are
difficult to recognize, let alone formalize As a conse-
quence, most current expert systems lack breadth and
common sense. That is not to saythat they cannot solve
difficult problems requiring sophisticated expertise.
Rather, when posed slightly different problems than
they were designed for, theycan fail in surprising ways.
Al is only recently facing these issues squarely, and it

will be some time before one sees anything even approxi-.
mating broad human expertise. NevErtheless, a great

Fig 3 Example of a set ofrules expressed In the Loops
language. Rules like these can provide heuristics for assigning
directions and levels to “wires” In a switch representation of
adrcult.

68 COMPUTER OESIGNIApnI 21 • 1983

TABLE I
Sample If-Then Rules

The XCON System (configuring VAX systems)

IF: The current active context is selecting a
box and a module to put in it

The next module in the optimal sequence
is known

The number of system unitsof space that
the module requires is known

At least that much space Is available in
some box

That box does not contain more modules
than some other box on a different
unibus

THEN: Try to put thatmàdule in that box
TheMYCIN System (medical diagnosis and therapy)
IF: Th~site of the culture is blood

The portal of entry of the organism Is GI
The patient is a compromised host

~THEN:It is definite (1.0) that bacteroidel isan organism forwhich
therapy should cover

The PROSPECTOR System (mineral exploration)
IF: Volcanic rocks in the region are contemporaneous with the

intrusive system (coeval volcanic rocks)
THEN: (800, 1) The level of erosion ii favorable for a porphyry

copper deposit

deal of technologycan be of immediate practical use in
expert systems to solve problems that require a signi-
ficantamount ofexpertise or creativity.

Design as search
In artificial intelligence, many problem solving systems
are based on the formulation of problem solving as
search In this formulation, a description of a desired
solution is called a goal, and the set of possible steps
leading from initial conditions to possible solutions is
the space to be searched. Problem solving is carried out
by searching for sequences that lead to solutions that
satisfy a goal.
Often, rules in expertsystems canbe viewed as heuris-

tics for generating and pruning candidate solutions.
Search is at the heartof a reasoning system, and failure
to organize itproperly can result in problem solvers that
are inefficient, naive, or unreliable. The simplest
approachis tosearch a solution spaceexhaustively (ie, to
search it in a way that will find all possible solutions).
This is appropriate only if the spaceofpossiblesolutions
is quite small, or if powerful pruning heuristics are
available for quickly eliminatingmost ofthe space from
consideration. Another approach is to use heuristics for
plausible generation (ie, to guide the search to themost
promising avenues).
Stanford University’s Eurisko is an example of an Al

program that uses heuristic search. Ithasbeen applied to
the task ofinventing new 3-dimensional microelectronic
devices that can be fabricated using laser recrystalliza-
tion techniques. Eurisko’s exploration is carried out by
generating a device configuration, computing its

input/output behavior, parsing this into a functionality
that it recognizes, and then evaluating the device against
known comparable devices.
Two different solution space characterizations have

been tried in Eurisko. In the first experiments, . the
solution space was characterized in terms of abutted
regions ofdoped and undoped semiconductors. Devices
were analyzed at the level of charged carriers moving
under electric field effects. Many well-known primitive
deviceswere synthesized quickly, such as themetal oxide
semiconductor field effect transistor, the junction diode,
and the bipolar transistor.
In the next experiments, a level describing circuits ‘in

termsof tileswas tried. Inthe tilemodel, each regionis a
three-space cube of approximately the same size. A
device is a lattice of tiles in a particular 3-dimensional
configuration. Fig 1 is an example ofa device described
in terms of tiles. Initial tile level experiments were done
using exhaustive search. Basic elements supplied
included the logical operations, . ffipflops, stack cells,
and a few others. Thousands ofhours ofruns with this
version ofEurisko convinced the experimenters that the
“hit rate” for good devices was below one in a billion.
In the next set ofexperiments, Eurisko used heuristic

search rather than exhaustive search. In the previous
experiment, a new device was synthesized every 0.9 s.
Now, with a hundred heuristics guiding the generation
process, it took about 30stoproduce each devicedesign
(using aXerox 11(k personal scientific information pro-
cessor). However, the frequencyofvaluablenewdevices
rose to 1 in 10. Much of the power came from a sym-
metrizing heuristic.
Eurisko’s success suggests that computErs, can play

active ~creativeroles in the design process. Although
large circuit design is still a distant possibility, a new
symbiotic relationship is emerging betweendesigner and
machine. The designer can be free from concern abouta
particular device’s structure, and instead concern him-
selfwith heuristics for guiding the computer program’s
search for interesting designs. The computer can thus
explore the possibilities based on the heuristics and
present alternatives to the designer for evaluation.

Gaining leverage through Abstraction
Coping with design details is a challenge. While failure
to attend to them leads todisaster, focusingon themin a
project’s early stages can blind a designer to the overall
picture. For example, a digital systems designer can
become bogged down in his approach to systemarchitec-
ture if he initially tries to contend with the dErails of
every transistor. Instead, the approach shoUld makebig
design steps to get the whole picture, then tend to the
details systematically..
In softwarepractice, programming languages provide

an abstract level of description for programs that allow
biggersteps thanmachine instructions. The sameidea of
using formal languageshas beenproposed forhardware.
Fig S illustrates three architectural approaches to

designing a hardware stack. In a high level architectural
language like LinkedModule Abstraction (LMA), which
emphasizes storage and communication features,

70 COMPUTER OESIGNIAprII 21. 1983

descriptions are concise. Furthermore, minor architec-
tural variations often correspond to minor changes in
the descriptions. The ‘pointer stack (a) corresponds to the,
usual software implementation. Information is stored in
a register array. An index register (the pointer) contains
the topofthe stack’s address. Push and pop instructions
increment and decrement thepointer. The rovingmarker
stack (b) uses amark bit associatedwith each storage cell
to indicate the top of the stack. In a push or pop
instruction all cells receive the command, but only the
one with the mark bit set performs the operation. It
combines a register array for data storage with a shift
register for marker storage. In the buffered stages stack
(c), the top of the stack is always the leftmost cell and all

Fig 5 Some alternative designs for a stack: pointer stack (a),
roving marker stack (b), and buffered stages stack (c). When
specifications for these different stacks are written in a
language that emphasizes storage and communications
features, the description is much shorter than one written In
terms of device layouts. Furthermore, minor architectural
variations often correspond to minor changes In the
descriptions.

FIg 6 Introducingconstraints in a design. In this figure, the
layout level description (b) is an implementation of the
swltches4evei description (a). implementation is only
partially specified since the designer chooses only to
introduce constraints about connections to power and
ground, rather than deciding exactly how to route the wires
to make the connections.

data in the stack move simultaneously. Intermediate
stages buffer the data as they move between cells.
Ideas of languages and big steps can be iterated to

yield anordered set of languages providing intermediate
abstractions. (See Table2.) Languagesserve to partition
design concerns, and each successive description of a
system surfaces a newlevel of details to consider. Using
the languages in design can be helpful to a designer if
decisions that are made at a more abstract level do not
need to be revised in a more detailed language. A
designer who systematically carries a design through
several implementations in different languages is guided
byan “invisible hand” that determines thekindsof deci-
sions made at each step.
Invention and language experimentation for describing

abstractions is not unique to expert systems. For
example, using multiple languages to describe hardware
has been tried many times. The main point is that such
languages can enable big steps in roughing out adesign.
Since the languages divide up a designprocess, they also
provide a framework in an expert system for organizing
knowledge according to sets ofconcerns.

Representing constraints and dependencies
Exploratory design often requires making significant
changes late in thedesign cycle.This is inconvenientwith
current designtools, which do not capture thedependen-
cies among decisions. Tomake a change, designers often
must alter largeportions ofa designthatare disturbed by
a seemingly minor change.
In Al research, it is useful in such problems to

represent explicit dependencies and constraints. A
dependency is asituation whereone quantitydepends on
others. This is analogous to the algebraic distinction

INPUT ___________________ OUTPUT
L CONNECTIONS

SL-INVERTER-1
(a)

CONSTRA:NT I

INPUT

~EY

R~R~

(a)

LL-INVERTER-i

IT ~

4 I 1
(b)

Ic)

72 COMPUTER DESIGNIApriI 21, 1983

TABLE 2
Synth.sls Languages forP~’.mo

Description Level Concerns Terms Composition Rules BugsAvoided

Linked - Event Modules Token Deadtock
module sequencing Forks conservation Data not
abstraction Joins Fork/jOin rules reedy
(LMA) Buffers

Clocked ClOcking Stages: Connection Mixed clock
registers 2-Phase Register transfer of stages bugs
and logic - Transfer functions Unclocked
(CRL) - feedback
Clocked - Digital Pull-ups Connection Charge
primitive behavior Pull-downs of switch , sharing
switches - Pass transistors networks Switching
(CPS) - Ratio rules levels

Layout Physical Colored - Lambda Spacing
dimensions rectangles - rules ‘ errors

between dependent and independent variables Depen- rent is From thepointofviewofbias stability, theexact
dencies can be used in a design to represent situations value is irrelevant Other constraints can be imposed to
where the system could automatically make changes in determine its value. -

one part ofa design to reflect changes made in another Using constraints tocharacterizepartial specifications
part A constraint is a situation where several quantities can be especially useful for representing interface con-
are interrelated Unlike dependencies, a constraint does tracts between parts of a design, especially when dif-
not distinguish between dependent and independent ferent people design the parts A design system that
quantities In Al programs, constraints are coupled includes themeans for communication between designers
with knowledge for propagating and satisfying sets of could provide support for negotiating changes to inter-
constraints faces Such a system wouldhelp mediatethe tension be-
EL is an example of an A! system that represents and tweendefininginterfaces earlytodivide the labor, versus

manipulates constraints As an aid to designers analyzing revising interfaces later as a design is fleshed out it
analog circuits, EL computes electrical parameters of a would make it easier for designers and managers to see
circuit using circuit behavior laws, such as Ohm’s law when interface contracts were violated, and also to
and Kirchoff’s current law EL’s knowledge about the weigh theeffect ofproposedchanges
values of voltages and currents at different parts of a
circuit is represented as symbolic constraints Reasoning with heurIstics
Muchof EL’Spower derives from the ability to reason Animportantbut sometimes unrecognized characteristic

with constraints by propagating them algebraically of designing is the necessity ofmaking guesses along the
through a circuit description Forexample, using Ohm’s way This follows from the absence of a complete
lawconstraintscanbepropagatedinthreeways First,if synthetic design theory in most applications To cope
the voltage across the resistor is known, and the resis- with the lack of a theory, designers resort to heuristic
tance is known, the current through it can be assigned search They begin projects without knowing exactly
Second, if the voltage across the resistor is known, and what is possible or what they want In the beginning, a
the current through it is known, the resistance can be designer typically sets approximate goals As he works
assigned Andthird,ifthecurrentthroughtheresistoris top down, he explores the entailments of the design
known, and the resistance is known, the voltage across decisions, as he works bottom up, he gains information
the resistor can be assigned about what is possible and can adjust the goals This
Constraints are an important vehicle for representing amounts to a dialecticbetween what is desired and what

partial specifications (Fig 6) For example, constraints is possible (ie, between goals and possibilities)
can describerequirements for parts ofa structurewhose Heuristic reasoning is needed to compensate for the
implementation is yet to be worked out The SYN pro- lack of a complete theory Designers guess, but only
gram provides an example of this in an A! system Sm when they have to Somebad guesses are inevitable This
was applied to the task of circuit synthesis (ie, deter- creates an incentive to find ways to revise decisions
mining theparameters ofthe parts ofa network) Like EL, efficientlywhen guesses do notwork out In A! systems,
Sm usesconstraints for representing assertions about a dependency and constraint records are valuable in sys-
circuit. Much of a constraint’s power is that it allows a tems that reasonheuristically, then revise decisions. This
designer to specify only part ofa circuit, eg, imposing a can be illustrated by examples from the EL system In
constraint that the bias current be 10°F.ofthe transistor analyzing circuits, EL follows a heuristic approach from
currentdoesnot completely determinewhat thebias cur- electrical engineering called the method of assumed

74 COMPUTER DE$IGUIApnI-21, 1983

*

states. This method uses a piecewise linear approxima- knowledge available (through a computer surrogate) to
lion for complicated devices. It also requiresmaking an consult with other designers.
assumption specifying a linear region for device opera- For example, much of the success of university VLSI
tion. Forexample, ELhas two possible states for diodes design courses canbe attributedto the developmentofa
(on and off) and three states for transistors (active, network infrastructure for implementing chips quickly
cutoff, and saturated). Once a state is assumed, EL can and economically. Extensions of this work to include
use tractable linear expressions for the propagation packaging and boards may help accelerate the growing
analysis as before. participation of computer scientists and others inter-
After making an assumption, EL must check whether ested in experimenting with the silicon medium for

the assumed states are consistent with the voltages and building computer systems.
currentspredicted forthe devices. Incorrect assumptions
are detected by means of a contradiction. When this Future prospects
happens, some assumptions need to be changed. Assessing the potential impact ofexpert systems in CAD,

it is interesting to look for limiting factors. Onecritical
factor is the number ofpeoplewith experience building

An infrastructurefor groups of expert systems. There are fewer than 200 people in the
- ,~ • ~ ~ United States with experience in expert systems, and~..eszgners0 creae an aracu1a.&. an!.. only a fraction of these have a substantial interest inpermanent body of knowledge is a key design or electronics. As a field, artificial intelligence in

idea in expert systems. general and expert systems in particular seem t? be longon ideas and short on manpower. To maximize its
impact, it is essential for Al to simplify itsmethods and

Intelligent contradiction processing involves deter- to export its ideas.
mining which assumptions to revise. This is where the It is reasonable to ask whether expert systems for
dependency records come in. EL uses these records to design will emerge gradually from the more traditional
save justifications for each of its 1-step deductions. work outside the expert system community. Certainly,
These justifications enable EL to identify the assump- work on silicon compilersis a step in the right direction.
lions behind a contradiction. Knowing what informa- However, several fundamental principles for building
lion in the analysis is dependent on contradictory expert systems are missing in both the silicon compiler
assumptions enables EL to focusits attention in revising work and the traditional CAD systems and methods.
the analysis. First it decides which asumptions to These include the use of explicit representations for
withdraw, then it can gracefully withdraw those knowledge (eg, as rules), explicit representations for
additional decisions that are dependent on the original goals and constraints, and infrastructure for adding
bad assumptions. Contradictions are remembered so knowledge to aknowledge base and debugging a knowl-
that choice combinations found to be inconsistent are edge base.
not tried again. There are several encouraging signs, however. For

instance, several largecompanieswith an interest In elec-
Accumulating design experience tronics and design, including Fairchild, Hewlett-
Currently, much of the design knowledge is informal Packard, Schlumberger, and Texas Instruments, have
and not written down. Expert designers carry in their recently organized artificial intelligence laboratories.
heads the knowledge gained from experience, such as Also powerful personal workstations supporting
special rules ofthumband particularelegant solutions to appropriate A! languages (eg, LISP), programming euvi-
specialproblems. This knowledge buildsup as designers ronments, and graphics are now available from Lisp
search for solutions to particular design problems. Machine Inc (LMI), Symbolics, and Xerox. Finally,
However, when a designer leaves or forgets, thisknowl- knowledge representation languages tailored for expert
edge can be lost, systems are emerging: Loops (Xerox), MRS (Stanford
A key idea for expert systems for design is to provide University), and OPS5 (Carnegie-Mellon University).

an infrastructure for groups of designers to create not Researchin these laboratories is likely to lead to new
only designs, but also an articulated and permanent insights. On balance, more examples of prototypical
body ofknowledge. For example, a designerofbit-serial expert systems for assisting designers in the next two or
signalprocessors couldcreate a collection ofparameter- three years are expected, but the widespread use of
ized components(at some level ofabstraction) that carry expert systems in design is several years away.
out partofa signal processing task, a body ofcomposi-
tion rules for combining these components, and a body Please rate the value of this article to you by
ofimplementation rules that capture some ofthecritical circling the appropriate number in the “Editorial
tradeoffs in mapping these devices into silicon. When Score Box” on the Inquiry Card.
such knowledge is saved in a knowledge base, it would
enable other designers, less expert in bit-serial proces- High 707 Average 708 Low 709
sors, to use the library of parts and rules. Community ______________________________________
use of such knowledge would also provide the expert Photo on p65 Lc of the inter LISP-D/Loopsprogrwnmlng
with feedback about thecorrectnessand completenessof environment u~dat Xerox PARC to createexpert systems
his knowledge base. In effect, the designer makes his for VLSI system design.

76 COMPUTER OfliSilApril 21, 1983

