
COhlPUTiNG PRACTICES

Edgar H. Sibley
Panel Editor

Based on a review of some actual expert-system projects, guidelines are
proposed for choosing appropriate applications and managing the
development process.

EXPERT SYSTEMS: PERILS AUD PROMISE

DANIEL G. BOBROW, SANJAY MITTAL, and MARK J. STEFIK

By virtue of their flamboyant quality, the expres-
sions artificial intelligence (Al) and expert systems have
helped contribute to an expanding wave of activity
and unrealistic expectations about the state of the
art. Taking a long, hard look at those expectations,
this article contrasts them with the results of some
actual case studies and proposes both a more realis-
tic view of the practice of building expert systems
and some guidelines for choosing appropriate appli-
cations.

The term expert system refers to computer pro-
grams that apply substantial knowledge of specific
areas of expertise to the problem-solving process.
The term expert is intended to imply both narrow
specialization and competence, where success of the
system is often due to this narrow focus. Just as
human experts have varying levels of expertise, so
too do computer systems. Although, in general, ex-
pert systems have less breadth of scope and flexibil-
ity than human experts, and for this reason are
sometimes criticized for creating unrealistic expecta-
tions, we find it more productive to ask about the
level and range of expertise of a given program (i.e.,
how well does it do on a specific set of tasks), rather
than struggling with the imprecise boundary of what
constitutes “expert.”

01966 ACM OOOl-0782/86/0900-0880 759

In some circles, the terms knowledge-based systems
or knowledge systems are used instead of expert system
[lo] to focus attention on the knowledge the systems
carry, rather than the question of whether or not
such knowledge constitutes expertise. These terms
also imply the use of technology for explicit repre-
sentation of knowledge. But, once again, the bound-
ary between explicit and implicit representation is
imprecise in that knowledge can be represented ex-
plicitly to different degrees and can take different
forms.

High-level performance can be achieved without
explicit representation of knowledge as in an auto-
pilot [%I; one might even ask whether a C-Compiler
or a payroll program constitutes an expert system.
Clearly they both embody knowledge: in the one
case, of a language and computer and, in the other,
of accounting and taxes. When constructed with
conventional programming techniques, both would
have a very limited range of capabilities. However, it
is also possible to build either as a knowledge-based
system. One might then ask the AI payroll system
hypothetical questions, such as the net difference in
taxes if you added two more deductions. In their
usual embodiments, systems like these are generally
designed with built-in commitments as to how the
knowledge embedded in them is to be used, that is,
to have “compiled out” [built into the programs) lim-

000 Communications of the ACM September 1986 Volume 29 Number 9

Computing Practices

ited input/output behavior. To use this same knowl-
edge to generate tax advice, in the case of the pay-
roll system, would require recoding the system for
that purpose. For this reason, the term knowledge-
bused is generally reserved for systems that have ex-
plicit knowledge bases and some flexibility in the
use of that knowledge.

In this article, we examine primarily knowledge-
based expert systems: systems that achieve expert-
level performance using explicit representations of
knowledge. For purposes of brevity, we will refer to
them simply as expert systems.

APPROACHES TO BUILDING
EXPERT SYSTEMS
Depending on the extent and depth of the explicit
representation of knowledge, we can delineate three
different approaches to expert-system development:
the low road, the middle road, and the high road [6].

The low road involves direct symbolic program-
ming, usually in the Lisp programming language. It
takes advantage of new low-cost AI machines with
flexible programming environments enhanced by
user interfaces that exploit window systems on large
displays. These environments support a style of pro-
gram development called “exploratory program-
ming” [28] in which there is incremental, parallel
development of program specification and imple-
mentation-an appropriate style for applications
where the primary concern is efficiency and the re-
quired knowledge base is small and does not need to
be changed very frequently.

The low road was used for the early expert sys-
tems (e.g., Dendral [19]), which combined AI tech-
niques for heuristic search with Lisp capabilities for
symbolic manipulation. Dendral generated and
tested hypotheses about chemical structures and
spectroscopic data. It needed to be efficient because
the search space of possible solutions is very large;
moreover, programming it directly into procedures
was practical since the knowledge used for inter-
preting spectral data is fairly static.

The high road, on the other hand, involves build-
ing a system that contains explicit representation of
fairly complete knowledge of some subject matter,
and can use that knowledge for more than one pur-
pose. A system is called “deep” when its knowledge
represents the principles and theories underlying
the subject; a consequence of this depth is that such
systems often require long chains of reasoning from
first principles to practical results.

Sophie [ll] is a high-road system that performs
diagnostic reasoning and qualitative simulation, and
can reason from first principles about how physical
devices work. For many classes of devices, Sophie

can determine the behavioral states that the devices
will traverse for a given set of inputs. When the
actual output of a device does not agree with the
predicted output, the program uses the same funda-
mental knowledge to generate hypotheses about
which parts of the device may be broken.

The ultimate goal of high-road systems is a knowl-
edge processing capability that is general enough to
span domains-an ability to apply general principles
and commonsense reasoning to the articulation and
testing of general facts and principles, and to experi-
ment with processing and reasoning about these
facts. Given current computers and compilation
techniques, high-road systems are usually too slow
for real-world (large-scale) applications, since they
take only very small steps toward the solution of big
problems; currently they are used only for research.

Middle-road systems, not surprisingly, fit squarely
between these two extremes. They also involve ex-
plicit representation of knowledge, but though some
direct programming may be used, most of the inter-
esting behavior of the system is governed by knowl-
edge that is articulated by experts and represented
explicitly in a knowledge base. Canned problem-
solving tactics rather than first principles are most
often the rule.

Knowledge engineers working with experts often
use knowledge-engineering tools and hybrid lan-
guages [15, 171 for this purpose. The technology fa-
cilitates the representation, reorganization, and de-
bugging of programs expressed as interacting pieces
of knowledge. A key characteristic of middle-road
systems is that they are sharply focused on a single
task and incorporate knowledge specialized for the
task, but the explicit representations often do not
specify the limitations of that knowledge.

A well-known example of a middle-road expert
system is the Mycin system for medical diagnosis
and prescription [7], Mycin contains rules that asso-
ciate symptoms with diseases, for which it can also
evaluate and prescribe treatment. Mycin, like most
expert systems, is called a shallow system because
most of its reasoning chains are short. It has no phys-
iological model of disease or health, no model of
how diseases cause symptoms, and no model of how
treatment can help cure diseases. For most applica-
tions, the middle road is the most effective approach
now available for building expert systems.

Expert systems are no panacea for achieving the
impossible or even the very difficult. A mere incli-
nation to have an expert system is no guarantee that
one can be built. Identifying a need-“We need an
expert who can make money on the stock market”
or “It would be great to have a program to transform
a functional circuit specification to an optimal inte-

September 1986 Volume 29 Number 9 Communications of the ACM aa1

Computing Practices

grated circuit layout”-does not suffice to determine
an appropriate task for an expert system.

Instead, there are a number of fundamental issues
and requirements that must be considered. In the
balance of this article, we present three successful
projects as case studies. We then generalize from
these examples to present guidelines for choosing
appropriate applications and developing successful
systems.

CASE STUDIES

The Rl System for Configuring Vaxen
In 1978, the Digital Equipment Corporation and a
group headed by John McDermott at Carnegie-
Mellon University started a joint project to build an
expert system that could aid in the configuration of
VAX computers. As McDermott [Zl] describes it, the
rule-based configurer Rl received a customer’s pur-
chase order and then determined what if any substi-
tutions and additions were needed to make the or-
der consistent and complete. It produced a number
of diagrams showing the spatial and logical relation-
ships among the 90 or so components that typically
constitute a VAX-11 computer system.

Rl was the fourth attempt at automating the con-
struction of complete configuration descriptions for
DEC computers [2O]. At least part of the reason the
three earlier attempts failed was that their imple-
mentation technology did not allow knowledge to be
expressed explicitly. They were built with stan-
dard programming technology, which made it hard
to understand the interactions between pieces of the
system and to change and augment the system as
additional knowledge was gained.

Knowledge Representation. Rl is a rule-based system
that uses the OPS-5 programming language 1141 built
in Lisp. In Rl, a typical rule (rendered here in
pseudo-English) might look like this:

IF: The most current active context is
putting the unibus modules in the
backplane in some box

AND it has been determined which
modu.le to try to put in a backplane

AND . . .

THEN: Enter the context of verifying
panel space for a multiplexer

The rule consists of a series of conditions to be
tested (the IF parts), followed by actions to be taken
provided the IF part is true. The conditions test
such things as the state of the problem-solving pro-
cess, availability of parts, and connectivity of the
configuration.

The first prototype, tested in early 1980, contained
roughly 750 such rules, which interacted with a
database describing some 4000 parts that could be
used in configuring a VAX system. This prototype
was far from perfect, and over 50 person-years of
effort were invested in developing Rl into the cur-
rent DEC product known as XCON [2]. During that
time, the system grew from 700 rules to about 3500.

The completed system (which is still being changed
and updated today) configures not only the VAX sys-
tems, which were originally chosen for the configu-
ration problem, but the much more complicated
PDP-11 family.

Evolution. In light of its unchallenged success to-
day, it is perhaps hard to believe that Rl was almost
canceled three times. The uncertainty among people
within DEC was based on a misconception about the
nature of expert-system technology. Basically, the
term expert systetn encouraged very high expecta-
tions, while the Rl prototype continued to make
mistakes: It was not an “instant expert.” However,
such an expectation is not appropriate for any sys-
tem, or even a person new at a job. No matter how
well trained a new employee is, new knowledge
must be acquired and older knowledge restructured,
and this takes time.

Ensuring proper development of an expert system
after the prototype stage requires building the pro-
cess in the organization that is to use it. In the case
of Rl, a group monitored the problems, which were
categorized as follows:

l incorrect component description in the database,
l incorrect configuration knowledge,
l incomplete configuration knowledge,
l an error in the data input to the system, and
l a confusion by the person reporting the problem

(essentially, a nonproblem).

For each of the first four problems, a specific person
was assigned responsibility for obtaining the appro-
priate data and modifying the system. This might
mean redesigning a set of rules when required by
interactions with previous rules, or rewriting in-
structions, or changing the user interface in response
to errors in the input data.

Of the 2500 rules added to the original system,
somewhat less than 40 percent were used to make
major refinements in the knowledge. Another
10 percent made minor refinements to improve out-
put, while about 35 percent provided additional
functionality to deal with new system types. A large
core of configuration knowledge in the original sys-
tem was specific to the VAX 780, while the current
system (XCON) deals as well with the much more
complicated PDP-11 family. Finally, about 15 per-

082 Communications of the ACM September 1986 Volume 29 Number 9

Comprrtillg Practires

cent of the new rules were added to extend the
definition of the configuration task to include things
like laying out cables or floor layout of racks. (Lay-
out was a new capability added to the system.) The
moral of this story is, of course, that expert systems
must be extended and changed over time-a task that is
made simpler by using explicit knowledge program-
ming.

The RI team also had to define the delivery vehi-
cle for the Rl system. Since the original OPS-5 im-
plementation in Lisp was considered too slow to be
used for production jobs, DEC reimplemented OPS-5
in Bliss, making it much faster. Nonetheless, the Lisp
environment still provided much better tools for de-
bugging, so that now changes to the system are re-
portedly done in the Lisp environment and then
transferred to the Bliss production system. Today,
with the high-performance, low-cost, personal Lisp
machines currently available, such reengineering of
the delivery engine might not have been necessary.

The current Rl/XCON system configures over
97 percent of the orders received for VAX-11 sys-
tems. It has significantly reduced the time needed to
configure an order and has produced more accurate
configurations, both of which benefits have brought
significant monetary advantage since customers pay
for machines after they start working. Incorrectly
configured orders cause significant delay if it is nec-
essary to wait for additional parts. A further unex-
pected benefit for most orders is that configurations
are created in a much more consistent style using Rl
than when configured by the group technical edi-
tors. This has allowed fine-tuning the factory to han-
dle a more stereotypical order.

In terms of the human side of this equation,
Rl/XCON has meant that the technical editors em-
ployed at DEC have a higher productivity. Given
this tool to amplify their capabilities, they not only
produce more, but are also more satisfied because
they now concentrate on the interesting problems
rather than the dreary, day-to-day repetitive tasks
that consumed their time before. Rl/XCON repre-
sents a real success story for expert-system technol-
ogy, for the company, for its employees, and for cus-
tomers.

What about maintaining the system? Although the
encoding of XCON’s knowledge in production rules
was supposed to make it easier to manage the
knowledge base, the cost of XCON’s maintenance is
still high, but very worthwhile given the economic
benefits derived from it. Furthermore, the notion of
declarative knowledge representations is open-
ended, in the sense that it will accommodate
changes to the knowledge base. Current research at
Carnegie-Mellon is aimed at reducing maintenance

costs still further through the creation of higher
level “shells” that actively support the process of
knowledge acquisition and testing. New prototype
versions of the configuration system are now being
reengineered using these shells.

The Pride System for Mechanical Design
Pride [25] is an expert system developed at Xerox to
assist engineers designing paper transports inside
copying and duplicating machines. It is a joint effort
begun in early 1984 between the Xerox Palo Alto
Research Center (PARC) and the Xerox Reprograph-
ics Business Group (RBG). The first prototype was
ready for testing in early 1985. Since then the sys-
tem has been tested extensively on past and current
design cases, and a support group is being created
within the RBG to gradually take over further devel-
opment and testing.

Problem Domain. The first stage of the Pride project
consisted of analyzing the problem-solving behavior
of a group of experts working on the design of paper
transports [z]. From this exercise, it became clear
that knowledge was distributed among many differ-
ent experts, and that these experts showed varying
degrees of specialization based on the technology
used (e.g., pinch roll versus belt versus vacuum
transport technologies).

Other kinds of specializations were based on vari-
ations in design specifications (e.g., precisely regis-
tering paper or building a recirculating document
handler). Depending on the volume of copies to be
produced per month, there are differences based on
trade-offs and cost considerations. Other specializa-
tions relate to different parts of the design task: ma-
terial selection, jam clearance, cost analysis, or de-
sign and analysis. Some engineers generate perfectly
plausible designs, but are unable to analyze the de-
signs to determine whether the designs meet the
requirements, or predict performance problems;
others primarily analyze other engineers’ designs.

Finally, there is a difference in the depth of
knowledge: Some engineers know only standard ap-
proaches, whereas others can provide reasoned argu-
ments about the trade-offs involved in different de-
sign decisions. The differences in expertise become
more apparent in nonstandard designs or nonstan-
dard problems.

It became apparent to technical managers that the
existing engineering expertise from the engineering
research division was often not used by the design
engineers in the applied divisions. Moreover, design
engineers often did not have adequate access to
techniques for analyzing the designs they created,
even though the techniques were often available
either in research publications or as computer pro-

September 1986 Volume 29 Number 9 Communications of fhe ACM 883

Computing Practices

grams. Therefore, two chief purposes of Pride were
to facilitate the necessary knowledge transfer and pro-
vide a single framework for creating and testing a
design. Toward this latter end, the project has al-
ways had two consulting domain experts: one in the
design of paper transports and the other in the anal-
ysis and simulation of mechanical systems.

Representation of Knowledge i12 Pride. A designer’s as-
sistant rather than an “automated designer,” Pride
reflects the reality that, at every stage of its develop-
ment, some design knowledge and criteria will be
missing from the knowledge base. On the other
hand, the task of exploring a large design space-
maintaining the dependencies between different
parts of the design, systematically checking con-
straints and applying analyses, and maintaining al-
ternate designs-is overwhelming in its detail. The
design engineer and the Pride system are expected
to work as a team: Together, they can explore a
larger design space in a shorter time than either
could working alone.

try decreasing the driver width). The first advice
might not be possible if rollers of that size are not
available, or if a larger width would cause parts to
rub together. The system applies advice in explora-
tion of a large design space using a set of goal objects
that represent a design plan for the transport. When
constraints are violated and the advice does not lead
to an acceptable modification of a design parameter,
the system gets additional guidance from the
designer.

Testing and Current Status. To operate successfully
as a design assistant, Pride must support the process
of exploration by an engineer: It must be able to
both generate design alternatives and to verify that
designs satisfy constraints. The system’s ability to
check constraints systematically is especially valua-
ble when the design space is complex and when
designs are optimized by different groups of
engineers.

Pride’s knowledge of design is organized in a ge-
neric design plan. The plan includes goals-what
part of the design is being done (e.g., “design the
paper path”); methods-how to make some design
decision (e.g., “the width of a drive roll is typically
25 mm and can go up in increments of 1”); con-
straints-checks and requirements on the decisions
made at a certain design goal (e.g., “the width of the
idler must be 2 1.2 times the width of the driver”);
and calculations-derivation of values from other de-
sign parameters. These primitives are represented as
objects in Loops [4, 331. For example, a simple con-
straint might be represented as the following:

Pride’s design verification ability has been tested
on designs from ongoing projects where the system
applies a set of analyses and constraints in the
knowledge base to designs created by engineers. In
one test, Pride found flaws in a design, helped pin-
point the source of the problems, and proposed a
new design that avoided those problems. The knowl-
edge base has now been successfully tested on many
paper transport problems from past and current
copier projects.

type SingleConstraint
description “Idler width >1.2 times driver width”
applywhen (>(defRollerPair idler width) 50 mm)

;when to apply

mustsatisfy YES ;could be an optimizer

paraconstrained (defRollerPair idler width)
;focus on idler width

predicate GreaterThan
testExpression (TIMES 1.2

(defRollerPair driver width))
advice (Increase(defRollerPair idler width))

Although the current knowledge base contains
only some of the copier technologies used by engi-
neers, it has most of the knowledge for designing
paper transports using those technologies. A devel-
opment group has been created to acquire the
knowledge for other technologies during the coming
months. It is expected that Pride will begin to see
operational use in 1986.

The Dipmeter Advisor
The history of the dipmeter advisor for petroleum
exploration [31] is similar to that of the VAX con-
figurer Rl. A feasibility study in the Schlumberger
research laboratories was started in 1978, and the
initial prototype was ready for testing in 1980. It was
built on the DEC 2020 in 245 kilobytes of Lisp code

(Decrease(defRollerPair driver width)
interacting with another program of 450 kilobytes
written in VAX Fortran. This initial implementation

This simplified presentation of a single constraint proved too slow and unwieldy-a system that slows
indicates how the object groups different aspects of the expert doing his or her job has only negative
the constraint and makes them accessible. In addi- value. A reimplementation was completed in 1983

tion to the textual comment and the parsed expres- using Interlisp-D on a Xerox 1100, a personal com-
sion for the constraint, it provides advice about what puter whose high-speed display allowed develop-
to do if the constraint is not satisfied (e.g., try in- ment of a user interface that was much more at-
creasing the idler width, if possible, or if not, then tuned to rapid interaction with the expert.

884 Communications of the ACM September 1986 Volume 29 Number 9

Conlputiq Practices

Problem Domain. To determine as early as possible
whether an oil well will contain oil or be a dry hole,
oil explorers lower specialized logging instruments
into the borehole; these instruments provide infor-
mation about the geology of the subsurface forma-
tions being pierced.

As consultants to the oil industry, Schlumberger
provides instrumentation and data analysis (e.g., of
the data logs taken at different depths). One such
instrument, the “dipmeter,” measures the inclina-
tion or tilt of the rock strata penetrated by a bore-
hole. The dipmeter advisor developed by Schlum-
berger mimics the analysis of an expert using these
data: Analysis programs process the signal, and iden-
tification and classification rules use this analysis in
an expert-system environment.

Knowledge Representation. The dipmeter interpreta-
tion problem requires alternating stages of signal
analysis and expert interpretation. After the signal
analysis creates objects describing parts of the bore-
hole, rules similar in structure to those for Rl are
used to extend the description; the rules use both
the results of signal analysis and other information,
such as the geology of the undersea formation.

User Interface. Well-log analysts look at output from
strip recorders showing the data progression for var-
ious depths in the well. The interface to the dipme-
ter system preserves the visual features of such dis-
plays, augmented by summary information, as
shown in Figure 1. The multiple columns provide an
overview of the data that is comparable, and proba-

This figure shows the user midway through a stratigraphic portion of the log expanded two columns to the left. Radical
analysis. On the far right side is a log of the dipmeter datti. shifts in focus are obtained by moving the elevator. Other
The black “elevator box” to the left of that column shows the logs and summary information are shown on the left.

September 1986 Volume 29 Number 9 Communications of the ACM 005

FIGURE 1. Dipmeter lntetface

Compufiq Practices

bly superior to, the long rolls of paper tacked up on
the walls of experts’ offices. A critical feature of the
interface is the ease in moving from one portion of
the data to another with a smooth scrolling opera-
tion: In fact, Schlumberger claims they can scroll the
paper on the screen at 57 miles an hour-an un-
usual metric for a display system.

Much care was devoted to the user interface, as
can be seen in the distribution of code given in
Table I, which shows how important the interface is.
For a knowledge-based system, one might have ex-
pected that most of the space would be devoted to
the explicit knowledge and inference engine re-
quired to manipulate it. However, together, explicit
knowledge and inference engine consume only
about 30 percent of the total memory. Implicit
knowledge for feature detection makes up another
13 percent, while by far the largest identifiable por-
tion, 4.2 percent, is devoted to the interface. This is
not atypical: In other systems we know, such as
Pride, one-third to one-half of the code is devoted to
the user interface.

CRITERIA AND STAGES
FOR EXPERT SYSTEMS
The success of expert-system development depends
to a very great measure on an appropriate selection
of applications [27]. In this section, we consider
some of the most important criteria for choosing pro-
jects and outline the major developmental stages
once a project is under way.

Criteria for Problem Selection

Value of Solving the Problem. Choose the application
carefully. The problem that is being approached
must be worth solving. One way of confirming this is
to determine whether management is willing to
commit the necessary human and material re-
sources. Since it may take tens of person-years to
make a system real, as in the Rl example, the value
of the solution must be substantial. We are told that
Rl/XCON now repays its development cost every
few months.

Alternative Solutions. Non-AI solutions to the same
problem are a real possibility. A vivid illustration of
the value of considering alternative solutions comes
from the Darn project at Xerox [241-a prototype

TABLE I. Distribution of Memory in the Dipmeter Advisor

inference engine
Knowledge base 22
Feature detection x3%
User Interface 42%
Support environment 1fP-h

expert system built to aid in the diagnosis and repair
of a computer disk subsystem. The disk diagnosis
and repair process was a complicated one, requiring
a large number of tests to take into account the
many possible failure modes, including electronic
failures of several controller boards. According to
technicians’ records, diagnosing and repairing disk
problems for this unit were consuming 30-50 per-
cent of the resources of the repair group.

After working three months on the prototype, ex-
ternal factors caused a three-month hiatus in the
project. When it was resumed, the Darn system pro-
totype was no longer of value because this particular
disk and controller had been phased out-as a result
of all the problems-and replaced by a new disk
with a single circuit board. In the case of a suspected
disk failure, the single board was easily replaced; if
the replacement did not solve the problem, the disk
itself would be sent back to the manufacturer. This
new disk strategy had so reduced the time required
to fix disk problems that aid from an expert system
was no longer of significant value, making the
knowledge base specific to the original disk obsolete.

Test Cases. Another critical resource in the success-
ful development of an expert system is a good set of
test cases by which to extract knowledge from the
experts. By watching experts actually solve prob-
lems, rather than just having them describe how they
do it, it is possible to understand the real process
that goes on and the actual knowledge that is used.
A suite of test cases can also be used for testing
implementations as they reach different stages in
development.

Asking potential users early about test cases also
provides valuable clues as to the real feasibility and
value of a proposed system. One does not easily get
test cases for problems that occur only once every
six months, and there probably would not be enough
commonality between cases. Moreover, where solu-
tion methods are radically different for each prob-
lem, too much knowledge is probably required in
the system. For example, after we were asked to
consider producing an expert system to design de-
vice controllers and briefly exploring the domain, it
became apparent to us that each device controller
was unique in its requirements, and therefore the
project was rejected. One might say that expert-
system technology is suitable for automating tasks
that are fairly routine and mundane, not exotic and
rare.

Task Difficulty. There are other rules of thumb that
should be applied to tasks being considered as
expert-system domains. A suitable task is probably
one that would take an expert an hour or two, not
counting the time spent on mechanical tasks like

888 Communications of the ACM September 1986 Volume 29 Number 9

Computing Practices

making sketches or filling in forms. Tasks that take
only a few minutes of expert time can probably be
solved by simpler technology, or may not be worth
automating at all; tasks that require more than a few
hours of expertise are probably too difficult and un-
bounded in terms of the knowledge they require.
Unless the longer tasks are iterations of a much
shorter one, done several times in the same session,
the longer tasks are generally too complex.

Another warning sign is a predominance of com-
monsense knowledge, formalization of which is just
now being explored in the AI community. Unless
very specific forms of this knowledge can be iso-
lated, this is a tar pit that should be avoided. In
general, problems that are known to require English-
language understanding, complicated geometric or
spatial models, complex causal or temporal relations,
or understanding of human intentions are not good
candidates for the current state of the art in expert
systems.

Expert Help. A good indicator as to whether a prob-
lem is appropriate for expert-system implementation
is the availability of one or more human experts
who deal with the problem routinely as part of their
job and therefore have the knowledge and experi-
ence to understand what the real problems are and
to choose appropriate test cases. These experts
should be available to work on the project for a
significant portion of their time and must be able
to articulate what they are doing when solving a
problem.

The choice of experts is critical. Since an expert-
system project requires dedication and long-term
commitment, an expert who is only mildly inter-
ested in the problem is not the best choice; rather,
the expert should have a strong vested interest in
obtaining a solution. The expert must also under-
stand what the problem is and have actually solved
it quite often. It is not enough to have somebody
with a theory about how cases like this should be
handled or some good ideas about a new way to do
things, or even an “eager and bright” beginner who
will learn. A final trap that knowledge engineers
sometimes fall into is believing, after working with
the experts for some time, that they have become
experts in the problem area.

Knowledge Engineering. A knowledge engineer inter-
views the experts and develops both an appropriate
framework for the system and the initial representa-
tion for the knowledge. Both interviewing and devel-
oping representations are arts that require training,
and experts cannot be expected to be their own
knowledge engineers.

Expert knowledge is usually articulated around
specific cases, where the analysis of expert knowl-

edge often deepens the experts’ own understanding
of what they do. Smith on the dipmeter advisor pro-
ject reports that one of the most useful outputs of
this endeavor was a comprehensive document con-
taining the rules, figures, and justifications for the
dipmeter advisor knowledge.

However, to make knowledge useful in a system,
one cannot just “extract” the knowledge from the
expert; one must structure it in such a way that it
bears on the whole range of expected cases. Working
with the expert, the knowledge engineer must de-
fine the depth of representation, the expected limits
of the system’s explicit knowledge, the conditions
under which the knowledge becomes inapplicable,
etc. Knowledge is an artifact, worthy of design.

Stages in the Development of Expert Systems
An expert system generally goes through a number
of developmental stages: identification, conceptual-
ization, prototyping, creating user interfaces, testing
and redefinition, and knowledge-base maintenance.
Each stage requires different sets of individual tal-
ents and resources. Although the process has many
similarities to classical systems analysis, the empha-
sis in this case is on the use of AI technology to
capture and apply the appropriate knowledge.

Identification. At this stage, a critical mass might
consist of one or two knowledge engineers and a
group of experts who can identify problems ame-
nable to solution through expert-system technology.
Five to 10 test cases should be collected for later use.
When the expertise is distributed among several ex-
perts, the interviewing process should expose their
relative specializations and also the degree of con-
sensus in solution methods.

After determining that the availability of experts
and test cases is sufficient to warrant further ex-
ploration, one must develop a clear understanding of
what is meant by success: This means identifying
the actual users of the proposed system, some de-
tailed examples of the problems to be posed, and
acceptable solutions that might be generated.

Conceptualization. Once the domain has been iden-
tified, the next step is conceptualizing and formaliz-
ing the knowledge. Initial knowledge acquisition ses-
sions should start with a single expert who can dem-
onstrate by working on several examples what it
means to solve a particular problem. Having devel-
oped some sense of what the problem is, the knowl-
edge engineers can begin to articulate in a semifor-
mal language what they believe is going on in the
problem-solving sessions.

A useful next step for knowledge engineers is sim-
ulating the solving of one or more of the test cases
by following the semiformal prescription. The expert

September 1986 Volume 29 Number 9 Communications of the ACM 087

Computing Practices

will quickly notice steps that have been left out or
are incorrectly formulated. At first, each case will
reveal important things that have been left out. The
contents of the semiformal knowledge base will
evolve from this testing as it becomes clear that ter-
minology must be more precise and as exceptions
appear to the initially simple rules.

After several rounds of simulation by knowledge
engineers and critiquing by the single expert, it is
often useful to bring in other experts who can be
observed solving one or more of the same problems
from the suite of test cases. This will help identify
any particular expert idiosyncrasies in the problem-
solving process, and determine whether there is one
style or a multiplicity of problem-solving styles. In
the case of the dipmeter advisor, it was learned late
in the development of the system that the expert for
the initial knowledge base had a very different style
than a number of other experts in the community.
Using multiple experts in the early knowledge ac-
quisition sessions can prevent this kind of surprise.

In the Pride project, the initial knowledge acquisi-
tion sessions led to the creation of a “design knowl-
edge document.” This document outlined the differ-
ent stages in the design, the dependencies between
the stages, and a detailed rendering of the various
pieces of knowledge (rules, procedures, constraints,
etc.). Before the first line of code was written, this
document had evolved to over 20 closely typed
pages with over 100 pages of appendixes containing
detailed mathematical analyses, charts, tables, and
figures.

This document played a crucial role in defining
and verifying the knowledge that was eventually in-
corporated in the Pride system. It was circulated
among the experts, and errors and omissions were
corrected. It was then used experimentally by the
knowledge engineers to solve new design problems
by strictly following the document. This helped
make explicit some of the knowledge that had been
implicitly applied by the experts.

Prototyping. In an expert system, many problems
are not revealed until actual implementation since,
unlike classical software projects, the exact specifi-
cations of what can be done, and how, are not
known. Recognizing this, one should build a proto-
type system fully expecting to throw away virtually
all this code and start again. The prototype should
be made to work on the core of the problem, using a
detailed typical example as its focus, and should in-
clude experiments with user interfaces. One should
expect the cycles of prototyping to alternate with the
development of useful packages, tools, and interface
ideas.

An implementation technology must be chosen for
the prototype. There are fundamental choices to be
made between off-the-shelf problem solvers (some of
which are built around rule-oriented programming)
and building a special-purpose system in a knowl-
edge programming language that incorporates object..
oriented programming, logic programming, or pro-
gramming with frames. Other factors to be consid-
ered are the programming environment and the
availability of consulting help with the tools. When
using a commercially available implementation en-
vironment, it is appropriate to ask questions about
the types of expert systems that have been built
before and the levels of support that are available
from the vendor for people building systems for the
first time.

User Interfaces. One of the most important and
time-consuming stages in the development of an ex-
pert system is the creation of a suitable user inter-
face-particularly one that matches what users of
the noncomputer system have been accustomed to.

A good example of a well-matched, well-defined
user interface is that used by Oncocin, an expert
system for cancer treatment therapy management
developed at Stanford University [18, 301. The
Oncocin interface in effect replaced a paper form
designed for use on the ward. The form contained
sketches of the human figure for indicating body
locations, and many lines for sequential entries re-
lated to each visit and treatment. The computer in-
terface for Oncocin mimics many of the important
features of the form so that doctors need not learn a
whole new way of looking at their case data when
using the system. It generates new lines for addi-
tional visits only on request (thereby shortening the
form for inspection purposes) and allows specialized
input techniques that make it easier for the doctor to
enter data quickly and accurately. Together, these
features helped considerably in promoting accep-
tance of the system.

The Pride system, on the other hand, presents two
different (albeit related) user interfaces: The first is a
goal browser (Figure 2) that lays out the design pro-
cess as a network of different goals, and displays
their status; the display is dynamically updated by
the system as the exploration of the design space
proceeds. The browser allows more detailed query of
the goal structure through menu interaction on the
screen: It allows the user to edit, undo, advise, and
reexecute goals.

The second interface is the Active Design Docu-
ment or “electronic design notebook” given in
Figure 3, on page 890. It resembles in appearance the
kind of report engineers typically prepare at the end

808 Communications of the ACM September 1986 Volume 29 Number 9

Computing Practices

sehzcf me proper

This browser shows the relationships between various
goals-links to the right reflect explicitly known dependen-
cies between goals. Boxes around the goals indicate

FIGURE 2.

of a design cycle to record the major design deci- at user locations to help tune the user interface and
sions and analyses. However, the electronic version extend the knowledge base as new problems are
encapsulated in Pride also allows the user to view found and easier ways to interact with the system
the design as it unfolds, to affect its course, and, in are suggested. When this plan is complete, one can
future versions, to obtain explanations and modify more easily evaluate the cost of the resources re-
the design. quired versus the value of solving the problem.

Testing and Redefinition. Once the prototype system
has reached the stage where it is possible to go
through the initial test problems from beginning to
end, it becomes important to start testing the system
with friendly users. This will sometimes reveal new
problems that can cause a rethinking of what the
entire project is supposed to accomplish.

In most cases, a second version of the prototype
system will be built, and sometimes even a third
version, since, in the process of building the system,
the knowledge representation and inference proce-
dures can be changed. Feedback from solving
real problems often forces reimplementation-a
cycle that is very characteristic of knowledge
programming.

SOFTWARE TECHNIQUES AND THE
KNOWLEDGE OF EXPERTS
In this section, we compare the AI programming en-
vironments-which have contributed to the flurry of
activity in expert systems-with the techniques and
languages of more conventional programming, show-
ing how the differences derive from different as-
sumptions about the kinds of problems for which
they are intended.

Knowledge-Base Maintenance. After friendly users
have tried the system, a plan must be made for a
large software project: The plan must provide for
testing, development, transfer, and maintenance of
the knowledge base. A process must be put in place

The Fallibility of Expert Systems
Public opinion about AI is schizophrenic, ranging
from “It will never work” to “It might cost me my
job!” This range of attitude reflects a collective con-
fusion about AI, where the very words themselves-
artificial intelligence-raise questions about the na-
ture of intelligence and the capabilities of machines

[121.
Adding to the confusion are two well-known

mathematical results that are popularly misunder-

whether a tried goal has succeeded, has failed, is sus-
pended, or is running now.

Goal Browser

September 1986 Volume 29 Number 9 Communications of the ACM a89

Computing Practices

c~oNTEmTs

spccifirationr
Design Spccifirations

Paper Sizes

Paper Wrights and Curls

Paper Path

Obstrwtionr

SQpentS

Loratim ofthe Roll stations

Location of the Roll Stationi;

Details of Roll Stations

Details of Roll Stations

Bill cd Matrrids

Main Drive Motor Pulley

sprrifiratious

This figure shows the table of contents and one page of the
Pride elactronic design notebook. Inputs from the user, and
outputs from the design and analysis are both sho.w~J $21
these pages. By making this look like the hardacopy report,

it is easy for designers to find their way around. By allowing
input through the document, the users can obtain control the
same way they see results.’

FIGURE 3. Active Design Document

stood as implying that computers cannot achieve kinds of problems. In this sense, the popular misin-
humanlike intelligence. In the 193os, Kurt Godel’s terpretation of computing theories is very much like
“incompleteness theorem” and Alan Turing’s the popular misconception about theories from phys-
“incomputability” theorem [z] showed that there its, where relativity and the uncertainty principles
are well-defined problems that cannot be solved by are often incorrectly interpreted as implying that
any computational procedure. These theorems everything is relative and nothing is certain.
relate to the enumeration of mathematical sentences In the theoretical work underlying AI, a major
in self-referential systems and involve the demon- theme has been trying to understand how a compu-
stration that no program can infallibly determine tationally limited machine can behave intelligently
whether all computer programs will eventually halt at all. This has led to models of resource-limited
(i.e., be solved). reasoning (e.g., [M]) and to models of belief and

However, neither the halting problem nor the in- knowledge (e.g., [IS]). This work is generally re-
computability results go very far in demonstrating garded by AI researchers and cognitive psychologists
the limitations of computers vis-a-vis humans: We as providing computational insights into the kinds of
do not really know the limits of people for the same mental processes carried out by humans.

890 Communications of the ACM September 1986 Volume 29 Number 9

Computing Practices

In pragmatic work on expert systems, it is com-
monly believed that knowledge is the key to intelli-
gence. Indeed, the slogan “knowledge is power,” at-
tributed to Feigenbaum, is almost a guiding principle
for work in knowledge engineering. It changes the
emphasis from a search for general mechanisms of
intelligence to the development of techniques for
knowledge acquisition and representation.

Software Techniques
Broadly speaking, conventional programming prac-
tice offers two schools of thought [16] about tech-
niques for developing reliable and predictable pro-
grams. One approach is to develop specification lan-
guages and validation procedures, where programs
can be annotated with specifications like the type of
input values and invariants that are intended to hold
at different points in program execution. The task of
the programmer or specification processor then be-
comes ensuring that the program satisfies the speci-
fications.

Unfortunately, the challenge in most expert-
system applications lies elsewhere, that is, in getting
the specifications right in the first place, rather than
simply checking the correspondence between speci-
fications and programs. This brings us back to the
phrase exploratory programming, which is often used
to characterize AI programming environments.
These environments are intended to shorten the
time of the development cycle in which parts of a
program are entered, tested, debugged, and modi-
fied. A systematic analysis of the costs and benefits
of a prototyping approach is beyond the scope of this
article, but results and criteria have been reported
elsewhere (e.g., in [I]].

The notion of a development cycle brings us to a
second school of thought in programming practice-
software engineering, a discipline that grew out of
the experience of software vendors trying to deliver
products. Although there is no single dominating ap-
proach for managing the program “life cycle,” the
general principles include the process of obtaining
feedback from clients at several different stages and
respect for the notion that a program is seldom fin-
ished, meaning that it is necessary to plan for con-
tinued maintenance and service as requirements
change.

A development cycle for building expert systems
(e.g., [8]) is usually described in terms that are some-
what foreign to traditional software engineering
practice: AI people, for example, talk about “knowl-
edge acquisition” and “knowledge bases.” Over the
past two to three years, AI companies have gained
considerable experience in delivering expert systems
to customers. Teknowledge, one of the AI companies

that delivers expert systems, used to include the
following as a closing slide in their presentations
about expert systems:

“Knowledge engineering is more than software engi-
neering.”

Recently, an additional line has been added:

“(But not much more.)”

This reflects, perhaps, a fresh convergence of think-
ing and experience.

Because tools are so important in the development
of expert systems, providing tremendous amplifica-
tion in the programming arena, many companies are
now selling expert-system environments. However,
it is important to remember that these tools them-
selves are not expert systems. Moreover, vendors
sometimes overstate the power of the tools and un-
derestimate the work required to create systems that
are able to solve real problems. Despite the almost
religious zeal that exists among sellers of various
systems, it is important also to recognize that a sin-
gle knowledge representation formalism is usually
not sufficient for complete problems [3]. “Everything
can be expressed in logic” or “Everything can be
expressed in rules” is like saying “Everything can be
expressed in English.” While these statements may
have a certain element of truth to them, this kind of
statement obscures the practical issues of knowledge
representation, such as “Can the knowledge be ex-
pressed concisely in symbols (or pictures)?” and
“Can it be organized so that it can be changed
easily?” A good environment will provide a number
of different, complementary, and integrated formal-
isms to allow easy description of different kinds of
knowledge.

The Knowledge of Experts
To better appreciate the limitations and enabling
conditions for building expert systems, we describe
here some basic intuitions guiding the field.

l Many problems can be solved by applying large
amounts of appropriately structured knowledge.

l People become experts at something by starting
with some basic knowledge. By applying that
knowledge to solve problems, they create new
knowledge structures more appropriate to the
problems.

l Where task-specific knowledge structures exist,
they can be documented by suitably questioning
or otherwise testing the experts in relation to cer-
tain specific problems. Knowledge thus extracted
can then be represented in a computer program
and manipulated by some inference engine or

September 1986 Volume 29 Number 9 Communications of the ACM 891

Computing Practices

problem-solving framework to solve similar prob-
lems in much the same way as do the experts from
whom the knowledge was obtained in the first
place.

Given these intuitions, there are some basic rules
of thumb that govern the acquisition of expert
knowledge.

Expert Knowledge Is Expensive. A commitment of
considerable time from knowledgeable people is es-
sential to the development of expert systems. Usu-
ally, the people who make the best experts are the
ones most highly valued by their own organizations
and therefore in some respects the least accessible.
In the case of Caduceus, a system for medical diag-
nosis developed by Harry Pople and Jack Meyers
[26], one of the top diagnosticians in internal medi-
cine in the United States, the success of the system
is a direct result of the process put in place by
Meyers to create and test a high-quality knowledge
base. Meyers made use of his top medical students to
gather the knowledge.

Among the experts behind Dendral (an early ex-
pert system described more fully on p. 881) were
Joshua Lederberg, a Nobel-prize winning geneticist,
and Carl Djerassi, a world-class expert on mass spec-
tral analysis. For its day-to-day development, Den-
dral also consumed the talents of several profes-
sional chemists and computer scientists.

The point of these examples is that getting the
attention of knowledgeable people for the period of
time necessary to build expert systems represents a
very tangible and not inconsiderable cost. However,
the willingness and availability of experts to par-
ticipate directly and strongly in the project are
prerequisites for success.

Expert Knowledge Is (usually) Not in Textbooks. One
trap awaiting the unwary is the expectation that
textbook knowledge is the right stuff for incorporat-
ing into an expert system. Textbooks are not bad or
incorrect; the problem is the great deal of practical
material-obvious to an expert-that never finds its
way into textbooks. Most textbook knowledge is too
idealized: For applications of real interest, only an
expert knows the messy but necessary details of real
problems and the unpublished rules of thumb.

Furthermore, textbooks are often not designed to
teach either problem-solving skills or knowledge
structuring techniques, both of which seem to be
essential to the expert. For example, prior to the
development of Dendral, chemistry books gave ex-
amples of the interpretation of mass spectral data,
but never said how to systematically enumerate the
set of possible molecules. In fact, developing Dendral

required the construction of some sophisticated
mathematical theories not previously known.

Most textbooks try to provide the fundamentals of
the subject matter. In the process of becoming an
expert, people learn to use various elements of text-
book knowledge to create knowledge structures that
are more suitable for problem solving. Experts use
these specialized knowledge structures in the com-
mon cases and tend to reason from fundamentals
only in the difficult and unusual cases,

Expert Knowledge Has to Be Acquired Incrementally and
Tested. Expert knowledge is not acquired all at
once: The process of building an expert system spans
several months and sometimes several years. In the
course of this development, it is typical to expand
and reformulate the knowledge base many times. In
the beginning, this is because choosing the terminol-
ogy and ways of factoring the knowledge base is
subject to so much experimentation. In the middle
phases, cases at the limits of the systems capabilities
often expose the need to reconsider basic categories
and organization. Approaches viable for a small
knowledge base and simple test cases may prove im-
practical as larger problems are attempted.

The need to modify and change the knowledge
base provides an enormous incentive to use and cre-
ate knowledge programming tools. Most knowledge
programming development systems provide a suite
of tools for browsing and summarizing a knowledge
base, tracing and explaining chains of reasoning, in-
strumenting program state, and graphing program
structure. These tools make it simpler to both “put
knowledge in its place” and to understand how
changing a particular piece of knowledge will affect
the overall behavior of a system. Tools for analyzing
and reorganizing expert systems are essential for de-
veloping “middle-road” systems.

Even so, expert systems take time to build. Toy
programs for a small demonstration can be built
quickly-often in just a few months using current
technology. However, for large-scale systems with
knowledge spanning a wide domain, the time
needed to develop a system that can be put in the
field can be measured in years, not months, and in
tens of worker-years, not worker-months.

Expert Knowledge Is Sometimes Distributed. Experi-
ence with systems that have survived the feasibility
demonstration stage suggests that reliance on any
single expert can either create blind spots in the
knowledge base or result in a system that will not
have users.

Problem solving often takes place in a community
where many different experts pool their expertise.
The medical domain, for example, has institutional-

a92 Communications of the ACM September 1986 Volume 29 Number 9

Computing Practices

ized specialties such as pathology, radiology, gyne-
cology, and internal medicine, for which there are
separate training and certification requirements.
Furthermore, a protocol has developed for referring
patients to another specialist when the problem
reaches the limits of any particular expert’s
knowledge.

Collectively, these observations point to the need
for creating community knowledge bases that inte-
grate expertise from many different sources. The
MDX system [9] was an early effort at integrating
different kinds of expertise (diagnosis, pathology,
radiology) in the same system. The Pride system in-
tegrates design and analysis knowledge. However,
we are just beginning to understand how to cope
with a single expert, and much more work is needed
before community knowledge bases can be easily
crafted.

Thoughts on the Futures of Expert Systems
One of the dreams of the expert-system community
is to eventually have knowledge bases created and
maintained by their users rather than by knowledge
engineers-a dream that reflects certain financial
realities. The maintenance cost for expert systems is
substantial. Once the initial thrill of a prototype sys-
tem and a fancy interface wears off, some projects
come abruptly to an end as the expense of develop-
ing them further and maintaining them is assessed
all too belatedly.

Although the dream of community knowledge
bases is well beyond the current state of the art,
work on expert-system shells is leading in that di-
rection [32]. An expert-system shell is an environ-
ment designed to support applications of a very simi-
lar nature and represents an intermediate point be-
tween specific applications and general-purpose
knowledge engineering environments. Shells could
be built for such applications as diagnosis, design,
planning, scheduling, and a variety of specialized
office tasks. Shells contain several things that knowl-
edge engineering tools do not: prepackaged represen-
tations for important concepts, inference and repre-
sentation tools tuned for efficient and perspicuous
use in the application, specialized user interfaces,
generic knowledge for related applications, and spe-
cialized tools for acquiring and testing knowledge for
the application.

A shell for a planning application would have rep-
resentations that integrate time with possible worlds
and beliefs; user interfaces for describing plans and
alternatives; generic categories for things like time,
tasks, and serially reusable resources; and some ge-
neric domain knowledge like the fact that an agent
can be in only one place at a time. Shells provide the

ability to share and standardize knowledge in larger
communities than single expert-system projects.

Advanced shells are just beginning to appear in
the research laboratories. They are a first step to-
ward what may be the ultimate promise of expert
systems: the creation of a medium for the wide-
spread production, consumption, and distribution
of human knowledge [32].

CONCLUSIONS
The expression expert system has been used as a
buzzword for funding and a flag to wave for all sorts
of projects. In this article, we have tried to capture
some of the relevant experience with systems that
clearly fit our model, rather than trying to define
precisely what is or is not an expert system. The
emphasis here has been on the explicit representa-
tion of knowledge in a system, rather than system
performance. Therefore, no matter how “clever”
a C-Compiler is, we would not call it an expert sys-
tem if it were not built in this style (although one
could imagine a C-Compiler built that way). Expert
systems need not be rule based or contain a theorem
prover (e.g., Pride) and can be built in any language
(e.g., Pascal or C), although it is easier where lan-
guage and environment readily support the conver-
sion of user’s intent into programs [5]. Since building
an expert system is a large software project, standard
software engineering analyses are useful in under-
standing the scope and nature of the job.

Expert systems are neither the answer to all ques-
tions nor the answer to none. One can build expert
systems for appropriate problems-ones that are val-
ued, bounded, routine, and knowledge intensive-
provided experts are available who are articulate,
patient, and committed to a project for at least the
initial phases. One should also ensure that appropri-
ate hardware and software are available to the de-
velopers. Finally, if the initial prototyping is success-
ful, it is important to determine whether manage-
ment is willing to commit the resources it will take
to make the demonstration system into a useful
system for everyday use.

Acknowledgments. We would like to thank Peter
Denning and Reid Smith for comments on earlier
drafts of this article.

REFERENCES
1. Alavi, M. An assessment of the prototyping approach to information

systems development. Commun. ACM 27, 6 (June 1964), 556-563.
A comparison between a life-cycle approach and a prototyping
approach to system development.

2. Bachant, J.. and McDermott. J. Rl revisited: Four years in the
trenches. AZ Msg. 5, 3 (Fall 1984), 21-32. A cogent summary of the
building of one of the best-known expert systems.

September 1986 Volume 29 Number 9 Communications of the ACM 893

Computing Practices

3.

4.

5.

6.

7.

8.

Bobrow, DC. If Prolog is the answer. what is the question?, or what
it takes to support AI programming paradigms. IEEE Trans. Softw.
Eng. SE-II, 11 (Nov. 1985), 1401-1408. A critique of different pro-
gramming styles used to support AI programming.
Bobrow, DC., and Stefik, M. The Loops Manual. AI Systems, Xerox
Corporation, Palo Alto. Calif., 1984. A description of a multipara-
digm system used in expert-system development.
Bobrow, D.G., and Stefik, M. Perspectives on artificial intelligence
programming. Science V231,4741 (Feb. 28, 1986), 951. An account of
the programming styles and environments that are used to develop
systems in the AI community.
Brown, J.S. The low road, the middle road, and the high road. In The
AZ Business, P.H. Winston and K. Prendergast, Eds. MIT Press, Cam-
bridge, Mass., 1984. Alternative approaches to the development of
intelligent systems: their advantages and pitfalls.
Buchanan. B., and Shortliffe, E.H. Rule Based Expert Programs: The
MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley, Reading, Mass., 1984. An account of 10 years’ ex-
perience developing rule-based expert systems, using the MYCIN
medical diagnosis system as the primary example.
Buchanan, B., Barstow, D.. Bechtel, R., Bennett, J., Clancey, W.,
Kulikowski, C.. Mitchell, T., and Waterman, D.A. Constructing an
expert system. In Building Expert Systems, F. Hayes-Roth, D.A. Water-
man, and D.B. Lenat, Eds. Addison-Wesley, Reading, Mass., 1983.
An account of the developmental stages of an expert system.

9. Chandrasekaran. B.. and Mittal, S Conceptual representation of
medical knowledge for diagnosis by computer: MDX and related
systems. In Advances in Computers, Vol. 22, M.C. Yovits. Ed. Aca-
demic Press, New York, 1983, pp. 218-295. An approach to parti-
tioning medical knowledge, and how this approach was used in
building a diagnostic system.

10. Davis, R. Knowledge based systems. Science V231, 4741 (Feb. 28,
1986). 957. A general review of the concepts and current status of
building knowledge-based systems.

11. de Kleer, J. How circuits work. In Qualitative Reasoning about Physi-
cal Systems, D.G. Bobrow. Ed. MIT Press, Cambridge, Mass., 1985,
pp. 205-280. A description of a qualitative reasoner that uses con-
straints to build models of how circuits do and do not work.

12. Denning, P.J. The science of computing. Am. Sci. 74, 1 (Jan. 1985).
18-20. Nontechnical overview intended to explain expert systems to
general scientists.

13. Fagin, R.. and Halpern, J.Y. Belief, awareness, and limited reasoning:
Preliminary report. In Proceedings of the 9th International Joint Confer-
ence on Artificial Intelligence. 1985, pp. 491-501. The theoretical
foundations underlying the formalization of commonsense under-
standing of differences such as belief and knowledge.

14. Forgy, CL. The OPS5 user’s manual. Tech. Rep., Dept. of Computer
Science, Carnegie-Mellon Univ., Pittsburgh, Pa., 1980. The manual
describing one of the primary languages used in expert-system
development (and used in the Rl system).

15. Friedland, P. Special section on architectures for knowledge-based
systems. Commun. ACM 28, 9 (Sept. 1985), 902-903. Introduction to a
special issue on programming techniques for building knowledge-
based systems.

16. Goldberg, A. About this issue (special issue on the software
development process). Comput. Surv. 14, 3 (Sept. 1982), 319-320. An
overview of the life cycle of program development.

17. Kunz. J., Kehler. T., and Williams. M. Applications development
using a hybrid AI development system. AZ Msg. 5, 3 (Fall 1984),
41-54. Describes a commercially available multiparadigm tool
useful for expert-system development.

18. Lane. CD., Walton, J.D., and Shortliffe, E.H. Graphical access to a
medical expert system: 11. Design of an interface for physicians
(Memo KSL-85-15). Methods Znf. Med. 25 (1986). Describes the devel-
opment of the user interface for the Oncocin system.

19. Lindsay, R.K.. Buchanan, B., Feigenbaum, E., and Lederberg, J.
Applications of Artificial Zntelligence for Organic Chemistry. Kaufman,
Los Altos, Calif., 1985. The history of the Dendral project, one of the
earliest AI expert systems.

20. McDermott, J. RI: The formative years. AZ Mng. V2, 2 (Spring 1981),
21-29. An easy-to-read description of the trials and tribulations of
moving an expert system from a university to business environ-
ment.

21. McDermott, J. Rl: A rule-based configurer of computer systems.
Artif. Zntelt. 19, 1 (Jan. 1982), 39-88. Technical description of the first
commercially successful expert system for building configuration
descriptions of computer systems.

22. Minsky, M.L. Computation: Finite and Znfinite Machines. Prentice-Hall,
Englewood Cliffs, N.J., 1967. A good basic text on the formal proper-
ties of different classes of machines and the theoretical limitations
of computation.

23.

24.

25.

26.

27.

26.

29.

30.

31.

32.

33.

34.

Mittal, S., and Dym, C. Knowledge acquisition from multiple ex-
perts. AZ Mag. 7, 2 (Summer 1985), 32-36. Describes the approach
used in the Pride project for integrating expertise from multiple
experts.
Mittal. S., Bobrow. D.G., and de Kleer, J. DARN: A community mem-
ory for a diagnosis and repair task. Xerox ISL Lab. Rep., Xerox
Corporation, Palo Alto, Calif., 1985. An approach to building a
knowledge base that will aid people doing hardware repair.
Mittal, S., Dym, C.. and Morjaria, M. Pride: An expert system for the
design of paper handling systems. In Applications of Knowledge-Based
Systems to Engineering Analysis and Design, C.L. Dym. Ed. American
Society of Mechanical Engineers, New York, 1985. A general de-
scription of Pride, an expert system that aids in the design of paper
handling systems.
Pople, H.E. CADUCEUS: An experimental expert system for medical
diagnosis. In The AZ Business, P. Winston and K. Prendergast, Eds.
MIT Press, Cambridge, Mass., 1984. Describes the genesis of a medi-
cal diagnostic system that is based on the knowledge of one of the
best internal medicine specialists in the United States.
Prerau, D.S. Selection of an appropriate domain for an expert sys-
tem. AZ Msg. 7, 2 (Summer 1985), 26-30. An account of the criteria
used to select expert-system tasks in GTE laboratories.
Sheil, B. Power tools for programmers. In Znteractive Programming
Environments, Barstow et al., Eds. McGraw-Hill, New York, 1984,
pp. 19-30. A description of the need for tools that support the
exploratory program process.
Shore, J. The Sachertorte Algorithm. Viking Press, New York, 1985. A
nontechnical book describing programming and computers.
Shortliffe, E.H., Scott, AC., Bischoff, M.B., Campbell, A.B., van
Melle, W., and Jacobs, C.D. ONCOCIN: An expert system for oncol-
ogy protocol management. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence. Menlo Park, 1981, pp. 876-881.
A good example of how a well-designed user interface facilitates
expert-system acceptance.
Smith, R. On the development of commercial expert systems. AZ
Mag. V5, 3 (Fall 1984), 21-34. A description of the development of
the dipmeter advisor, an expert system for geologic analysis.
Stefik, M. The next knowledge medium. AZ Mag. 7, 1 (Spring 1986),
34-46. An account of the limited impact of AI so far and the possi-
bilities and hurdles involved in creating more widespread participa-
tion in a computer-based knowledge medium.
St&k, M., and Bobrow, D.G. Object-oriented programming: Themes
and variations. Al Mag. 6, 4 (Winter 1986), 40-62. A general over-
view of the different approaches to object-oriented programming.
Winograd, T. Extended inference modes in reasoning by computer
systems. Artif. Intell. 13 (Winter 1980), 5-26. A very readable ac-
count of the need to extend conventional approaches to reasoning to
expand the capabilities of AI systems.

CR Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing]: Requirements/Specifications-languages, methodologies, tools; D.2.2
[Software Engineering]: Tools and Techniques--user interfaces; 1.2.1
[Artificial Intelligence]: Applications and Expert Systems; 1.2.4 [Artifi-
cial Intelligence]: Knowledge Representation Formalisms and Methods;
K.6.1 [Management of Computing and Information Systems]: Project
and People Management-fife cycle, staffing, system analysis and design

General Terms: Design, Languages, Management
Additional Key Words and Phrases: case studies in AI, knowledge-

based systems, knowledge programming

Received 11/85; accepted 4/86

Authors’ Present Address: Daniel G. Bobrow, Sanjay Mittal, and Mark J.
Stefik. Intelligent Systems Laboratory, Xerox Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto. CA 94304.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Communications of the ACM September 1986 Volume 29 Number !?

