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proposed for choosing appropriate applications and managing the 
development process. 

EXPERT SYSTEMS: PERILS AUD PROMISE 
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By virtue of their flamboyant quality, the expres- 
sions artificial intelligence (Al) and expert systems have 
helped contribute to an expanding wave of activity 
and unrealistic expectations about the state of the 
art. Taking a long, hard look at those expectations, 
this article contrasts them with the results of some 
actual case studies and proposes both a more realis- 
tic view of the practice of building expert systems 
and some guidelines for choosing appropriate appli- 
cations. 

The term expert system refers to computer pro- 
grams that apply substantial knowledge of specific 
areas of expertise to the problem-solving process. 
The term expert is intended to imply both narrow 
specialization and competence, where success of the 
system is often due to this narrow focus. Just as 
human experts have varying levels of expertise, so 
too do computer systems. Although, in general, ex- 
pert systems have less breadth of scope and flexibil- 
ity than human experts, and for this reason are 
sometimes criticized for creating unrealistic expecta- 
tions, we find it more productive to ask about the 
level and range of expertise of a given program (i.e., 
how well does it do on a specific set of tasks), rather 
than struggling with the imprecise boundary of what 
constitutes “expert.” 
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In some circles, the terms knowledge-based systems 
or knowledge systems are used instead of expert system 
[lo] to focus attention on the knowledge the systems 
carry, rather than the question of whether or not 
such knowledge constitutes expertise. These terms 
also imply the use of technology for explicit repre- 
sentation of knowledge. But, once again, the bound- 
ary between explicit and implicit representation is 
imprecise in that knowledge can be represented ex- 
plicitly to different degrees and can take different 
forms. 

High-level performance can be achieved without 
explicit representation of knowledge as in an auto- 
pilot [%I; one might even ask whether a C-Compiler 
or a payroll program constitutes an expert system. 
Clearly they both embody knowledge: in the one 
case, of a language and computer and, in the other, 
of accounting and taxes. When constructed with 
conventional programming techniques, both would 
have a very limited range of capabilities. However, it 
is also possible to build either as a knowledge-based 
system. One might then ask the AI payroll system 
hypothetical questions, such as the net difference in 
taxes if you added two more deductions. In their 
usual embodiments, systems like these are generally 
designed with built-in commitments as to how the 
knowledge embedded in them is to be used, that is, 
to have “compiled out” [built into the programs) lim- 
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ited input/output behavior. To use this same knowl- 
edge to generate tax advice, in the case of the pay- 
roll system, would require recoding the system for 
that purpose. For this reason, the term knowledge- 
bused is generally reserved for systems that have ex- 
plicit knowledge bases and some flexibility in the 
use of that knowledge. 

In this article, we examine primarily knowledge- 
based expert systems: systems that achieve expert- 
level performance using explicit representations of 
knowledge. For purposes of brevity, we will refer to 
them simply as expert systems. 

APPROACHES TO BUILDING 
EXPERT SYSTEMS 
Depending on the extent and depth of the explicit 
representation of knowledge, we can delineate three 
different approaches to expert-system development: 
the low road, the middle road, and the high road [6]. 

The low road involves direct symbolic program- 
ming, usually in the Lisp programming language. It 
takes advantage of new low-cost AI machines with 
flexible programming environments enhanced by 
user interfaces that exploit window systems on large 
displays. These environments support a style of pro- 
gram development called “exploratory program- 
ming” [28] in which there is incremental, parallel 
development of program specification and imple- 
mentation-an appropriate style for applications 
where the primary concern is efficiency and the re- 
quired knowledge base is small and does not need to 
be changed very frequently. 

The low road was used for the early expert sys- 
tems (e.g., Dendral [19]), which combined AI tech- 
niques for heuristic search with Lisp capabilities for 
symbolic manipulation. Dendral generated and 
tested hypotheses about chemical structures and 
spectroscopic data. It needed to be efficient because 
the search space of possible solutions is very large; 
moreover, programming it directly into procedures 
was practical since the knowledge used for inter- 
preting spectral data is fairly static. 

The high road, on the other hand, involves build- 
ing a system that contains explicit representation of 
fairly complete knowledge of some subject matter, 
and can use that knowledge for more than one pur- 
pose. A system is called “deep” when its knowledge 
represents the principles and theories underlying 
the subject; a consequence of this depth is that such 
systems often require long chains of reasoning from 
first principles to practical results. 

Sophie [ll] is a high-road system that performs 
diagnostic reasoning and qualitative simulation, and 
can reason from first principles about how physical 
devices work. For many classes of devices, Sophie 

can determine the behavioral states that the devices 
will traverse for a given set of inputs. When the 
actual output of a device does not agree with the 
predicted output, the program uses the same funda- 
mental knowledge to generate hypotheses about 
which parts of the device may be broken. 

The ultimate goal of high-road systems is a knowl- 
edge processing capability that is general enough to 
span domains-an ability to apply general principles 
and commonsense reasoning to the articulation and 
testing of general facts and principles, and to experi- 
ment with processing and reasoning about these 
facts. Given current computers and compilation 
techniques, high-road systems are usually too slow 
for real-world (large-scale) applications, since they 
take only very small steps toward the solution of big 
problems; currently they are used only for research. 

Middle-road systems, not surprisingly, fit squarely 
between these two extremes. They also involve ex- 
plicit representation of knowledge, but though some 
direct programming may be used, most of the inter- 
esting behavior of the system is governed by knowl- 
edge that is articulated by experts and represented 
explicitly in a knowledge base. Canned problem- 
solving tactics rather than first principles are most 
often the rule. 

Knowledge engineers working with experts often 
use knowledge-engineering tools and hybrid lan- 
guages [15, 171 for this purpose. The technology fa- 
cilitates the representation, reorganization, and de- 
bugging of programs expressed as interacting pieces 
of knowledge. A key characteristic of middle-road 
systems is that they are sharply focused on a single 
task and incorporate knowledge specialized for the 
task, but the explicit representations often do not 
specify the limitations of that knowledge. 

A well-known example of a middle-road expert 
system is the Mycin system for medical diagnosis 
and prescription [7], Mycin contains rules that asso- 
ciate symptoms with diseases, for which it can also 
evaluate and prescribe treatment. Mycin, like most 
expert systems, is called a shallow system because 
most of its reasoning chains are short. It has no phys- 
iological model of disease or health, no model of 
how diseases cause symptoms, and no model of how 
treatment can help cure diseases. For most applica- 
tions, the middle road is the most effective approach 
now available for building expert systems. 

Expert systems are no panacea for achieving the 
impossible or even the very difficult. A mere incli- 
nation to have an expert system is no guarantee that 
one can be built. Identifying a need-“We need an 
expert who can make money on the stock market” 
or “It would be great to have a program to transform 
a functional circuit specification to an optimal inte- 
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grated circuit layout”-does not suffice to determine 
an appropriate task for an expert system. 

Instead, there are a number of fundamental issues 
and requirements that must be considered. In the 
balance of this article, we present three successful 
projects as case studies. We then generalize from 
these examples to present guidelines for choosing 
appropriate applications and developing successful 
systems. 

CASE STUDIES 

The Rl System for Configuring Vaxen 
In 1978, the Digital Equipment Corporation and a 
group headed by John McDermott at Carnegie- 
Mellon University started a joint project to build an 
expert system that could aid in the configuration of 
VAX computers. As McDermott [Zl] describes it, the 
rule-based configurer Rl received a customer’s pur- 
chase order and then determined what if any substi- 
tutions and additions were needed to make the or- 
der consistent and complete. It produced a number 
of diagrams showing the spatial and logical relation- 
ships among the 90 or so components that typically 
constitute a VAX-11 computer system. 

Rl was the fourth attempt at automating the con- 
struction of complete configuration descriptions for 
DEC computers [2O]. At least part of the reason the 
three earlier attempts failed was that their imple- 
mentation technology did not allow knowledge to be 
expressed explicitly. They were built with stan- 
dard programming technology, which made it hard 
to understand the interactions between pieces of the 
system and to change and augment the system as 
additional knowledge was gained. 

Knowledge Representation. Rl is a rule-based system 
that uses the OPS-5 programming language 1141 built 
in Lisp. In Rl, a typical rule (rendered here in 
pseudo-English) might look like this: 

IF: The most current active context is 
putting the unibus modules in the 
backplane in some box 

AND it has been determined which 
modu.le to try to put in a backplane 

AND . . . 

THEN: Enter the context of verifying 
panel space for a multiplexer 

The rule consists of a series of conditions to be 
tested (the IF parts), followed by actions to be taken 
provided the IF part is true. The conditions test 
such things as the state of the problem-solving pro- 
cess, availability of parts, and connectivity of the 
configuration. 

The first prototype, tested in early 1980, contained 
roughly 750 such rules, which interacted with a 
database describing some 4000 parts that could be 
used in configuring a VAX system. This prototype 
was far from perfect, and over 50 person-years of 
effort were invested in developing Rl into the cur- 
rent DEC product known as XCON [2]. During that 
time, the system grew from 700 rules to about 3500. 

The completed system (which is still being changed 
and updated today) configures not only the VAX sys- 
tems, which were originally chosen for the configu- 
ration problem, but the much more complicated 
PDP-11 family. 

Evolution. In light of its unchallenged success to- 
day, it is perhaps hard to believe that Rl was almost 
canceled three times. The uncertainty among people 
within DEC was based on a misconception about the 
nature of expert-system technology. Basically, the 
term expert systetn encouraged very high expecta- 
tions, while the Rl prototype continued to make 
mistakes: It was not an “instant expert.” However, 
such an expectation is not appropriate for any sys- 
tem, or even a person new at a job. No matter how 
well trained a new employee is, new knowledge 
must be acquired and older knowledge restructured, 
and this takes time. 

Ensuring proper development of an expert system 
after the prototype stage requires building the pro- 
cess in the organization that is to use it. In the case 
of Rl, a group monitored the problems, which were 
categorized as follows: 

l incorrect component description in the database, 
l incorrect configuration knowledge, 
l incomplete configuration knowledge, 
l an error in the data input to the system, and 
l a confusion by the person reporting the problem 

(essentially, a nonproblem). 

For each of the first four problems, a specific person 
was assigned responsibility for obtaining the appro- 
priate data and modifying the system. This might 
mean redesigning a set of rules when required by 
interactions with previous rules, or rewriting in- 
structions, or changing the user interface in response 
to errors in the input data. 

Of the 2500 rules added to the original system, 
somewhat less than 40 percent were used to make 
major refinements in the knowledge. Another 
10 percent made minor refinements to improve out- 
put, while about 35 percent provided additional 
functionality to deal with new system types. A large 
core of configuration knowledge in the original sys- 
tem was specific to the VAX 780, while the current 
system (XCON) deals as well with the much more 
complicated PDP-11 family. Finally, about 15 per- 

082 Communications of the ACM September 1986 Volume 29 Number 9 



Comprrtillg Practires 

cent of the new rules were added to extend the 
definition of the configuration task to include things 
like laying out cables or floor layout of racks. (Lay- 
out was a new capability added to the system.) The 
moral of this story is, of course, that expert systems 
must be extended and changed over time-a task that is 
made simpler by using explicit knowledge program- 
ming. 

The RI team also had to define the delivery vehi- 
cle for the Rl system. Since the original OPS-5 im- 
plementation in Lisp was considered too slow to be 
used for production jobs, DEC reimplemented OPS-5 
in Bliss, making it much faster. Nonetheless, the Lisp 
environment still provided much better tools for de- 
bugging, so that now changes to the system are re- 
portedly done in the Lisp environment and then 
transferred to the Bliss production system. Today, 
with the high-performance, low-cost, personal Lisp 
machines currently available, such reengineering of 
the delivery engine might not have been necessary. 

The current Rl/XCON system configures over 
97 percent of the orders received for VAX-11 sys- 
tems. It has significantly reduced the time needed to 
configure an order and has produced more accurate 
configurations, both of which benefits have brought 
significant monetary advantage since customers pay 
for machines after they start working. Incorrectly 
configured orders cause significant delay if it is nec- 
essary to wait for additional parts. A further unex- 
pected benefit for most orders is that configurations 
are created in a much more consistent style using Rl 
than when configured by the group technical edi- 
tors. This has allowed fine-tuning the factory to han- 
dle a more stereotypical order. 

In terms of the human side of this equation, 
Rl/XCON has meant that the technical editors em- 
ployed at DEC have a higher productivity. Given 
this tool to amplify their capabilities, they not only 
produce more, but are also more satisfied because 
they now concentrate on the interesting problems 
rather than the dreary, day-to-day repetitive tasks 
that consumed their time before. Rl/XCON repre- 
sents a real success story for expert-system technol- 
ogy, for the company, for its employees, and for cus- 
tomers. 

What about maintaining the system? Although the 
encoding of XCON’s knowledge in production rules 
was supposed to make it easier to manage the 
knowledge base, the cost of XCON’s maintenance is 
still high, but very worthwhile given the economic 
benefits derived from it. Furthermore, the notion of 
declarative knowledge representations is open- 
ended, in the sense that it will accommodate 
changes to the knowledge base. Current research at 
Carnegie-Mellon is aimed at reducing maintenance 

costs still further through the creation of higher 
level “shells” that actively support the process of 
knowledge acquisition and testing. New prototype 
versions of the configuration system are now being 
reengineered using these shells. 

The Pride System for Mechanical Design 
Pride [25] is an expert system developed at Xerox to 
assist engineers designing paper transports inside 
copying and duplicating machines. It is a joint effort 
begun in early 1984 between the Xerox Palo Alto 
Research Center (PARC) and the Xerox Reprograph- 
ics Business Group (RBG). The first prototype was 
ready for testing in early 1985. Since then the sys- 
tem has been tested extensively on past and current 
design cases, and a support group is being created 
within the RBG to gradually take over further devel- 
opment and testing. 

Problem Domain. The first stage of the Pride project 
consisted of analyzing the problem-solving behavior 
of a group of experts working on the design of paper 
transports [z]. From this exercise, it became clear 
that knowledge was distributed among many differ- 
ent experts, and that these experts showed varying 
degrees of specialization based on the technology 
used (e.g., pinch roll versus belt versus vacuum 
transport technologies). 

Other kinds of specializations were based on vari- 
ations in design specifications (e.g., precisely regis- 
tering paper or building a recirculating document 
handler). Depending on the volume of copies to be 
produced per month, there are differences based on 
trade-offs and cost considerations. Other specializa- 
tions relate to different parts of the design task: ma- 
terial selection, jam clearance, cost analysis, or de- 
sign and analysis. Some engineers generate perfectly 
plausible designs, but are unable to analyze the de- 
signs to determine whether the designs meet the 
requirements, or predict performance problems; 
others primarily analyze other engineers’ designs. 

Finally, there is a difference in the depth of 
knowledge: Some engineers know only standard ap- 
proaches, whereas others can provide reasoned argu- 
ments about the trade-offs involved in different de- 
sign decisions. The differences in expertise become 
more apparent in nonstandard designs or nonstan- 
dard problems. 

It became apparent to technical managers that the 
existing engineering expertise from the engineering 
research division was often not used by the design 
engineers in the applied divisions. Moreover, design 
engineers often did not have adequate access to 
techniques for analyzing the designs they created, 
even though the techniques were often available 
either in research publications or as computer pro- 
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grams. Therefore, two chief purposes of Pride were 
to facilitate the necessary knowledge transfer and pro- 
vide a single framework for creating and testing a 
design. Toward this latter end, the project has al- 
ways had two consulting domain experts: one in the 
design of paper transports and the other in the anal- 
ysis and simulation of mechanical systems. 

Representation of Knowledge i12 Pride. A designer’s as- 
sistant rather than an “automated designer,” Pride 
reflects the reality that, at every stage of its develop- 
ment, some design knowledge and criteria will be 
missing from the knowledge base. On the other 
hand, the task of exploring a large design space- 
maintaining the dependencies between different 
parts of the design, systematically checking con- 
straints and applying analyses, and maintaining al- 
ternate designs-is overwhelming in its detail. The 
design engineer and the Pride system are expected 
to work as a team: Together, they can explore a 
larger design space in a shorter time than either 
could working alone. 

try decreasing the driver width). The first advice 
might not be possible if rollers of that size are not 
available, or if a larger width would cause parts to 
rub together. The system applies advice in explora- 
tion of a large design space using a set of goal objects 
that represent a design plan for the transport. When 
constraints are violated and the advice does not lead 
to an acceptable modification of a design parameter, 
the system gets additional guidance from the 
designer. 

Testing and Current Status. To operate successfully 
as a design assistant, Pride must support the process 
of exploration by an engineer: It must be able to 
both generate design alternatives and to verify that 
designs satisfy constraints. The system’s ability to 
check constraints systematically is especially valua- 
ble when the design space is complex and when 
designs are optimized by different groups of 
engineers. 

Pride’s knowledge of design is organized in a ge- 
neric design plan. The plan includes goals-what 
part of the design is being done (e.g., “design the 
paper path”); methods-how to make some design 
decision (e.g., “the width of a drive roll is typically 
25 mm and can go up in increments of 1”); con- 
straints-checks and requirements on the decisions 
made at a certain design goal (e.g., “the width of the 
idler must be 2 1.2 times the width of the driver”); 
and calculations-derivation of values from other de- 
sign parameters. These primitives are represented as 
objects in Loops [4, 331. For example, a simple con- 
straint might be represented as the following: 

Pride’s design verification ability has been tested 
on designs from ongoing projects where the system 
applies a set of analyses and constraints in the 
knowledge base to designs created by engineers. In 
one test, Pride found flaws in a design, helped pin- 
point the source of the problems, and proposed a 
new design that avoided those problems. The knowl- 
edge base has now been successfully tested on many 
paper transport problems from past and current 
copier projects. 

type SingleConstraint 
description “Idler width >1.2 times driver width” 
applywhen (>(defRollerPair idler width) 50 mm) 

;when to apply 

mustsatisfy YES ;could be an optimizer 

paraconstrained (defRollerPair idler width) 
;focus on idler width 

predicate GreaterThan 
testExpression (TIMES 1.2 

(defRollerPair driver width)) 
advice (Increase(defRollerPair idler width)) 

Although the current knowledge base contains 
only some of the copier technologies used by engi- 
neers, it has most of the knowledge for designing 
paper transports using those technologies. A devel- 
opment group has been created to acquire the 
knowledge for other technologies during the coming 
months. It is expected that Pride will begin to see 
operational use in 1986. 

The Dipmeter Advisor 
The history of the dipmeter advisor for petroleum 
exploration [31] is similar to that of the VAX con- 
figurer Rl. A feasibility study in the Schlumberger 
research laboratories was started in 1978, and the 
initial prototype was ready for testing in 1980. It was 
built on the DEC 2020 in 245 kilobytes of Lisp code 

(Decrease(defRollerPair driver width) 
interacting with another program of 450 kilobytes 
written in VAX Fortran. This initial implementation 

This simplified presentation of a single constraint proved too slow and unwieldy-a system that slows 
indicates how the object groups different aspects of the expert doing his or her job has only negative 
the constraint and makes them accessible. In addi- value. A reimplementation was completed in 1983 

tion to the textual comment and the parsed expres- using Interlisp-D on a Xerox 1100, a personal com- 
sion for the constraint, it provides advice about what puter whose high-speed display allowed develop- 
to do if the constraint is not satisfied (e.g., try in- ment of a user interface that was much more at- 
creasing the idler width, if possible, or if not, then tuned to rapid interaction with the expert. 
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Problem Domain. To determine as early as possible 
whether an oil well will contain oil or be a dry hole, 
oil explorers lower specialized logging instruments 
into the borehole; these instruments provide infor- 
mation about the geology of the subsurface forma- 
tions being pierced. 

As consultants to the oil industry, Schlumberger 
provides instrumentation and data analysis (e.g., of 
the data logs taken at different depths). One such 
instrument, the “dipmeter,” measures the inclina- 
tion or tilt of the rock strata penetrated by a bore- 
hole. The dipmeter advisor developed by Schlum- 
berger mimics the analysis of an expert using these 
data: Analysis programs process the signal, and iden- 
tification and classification rules use this analysis in 
an expert-system environment. 

Knowledge Representation. The dipmeter interpreta- 
tion problem requires alternating stages of signal 
analysis and expert interpretation. After the signal 
analysis creates objects describing parts of the bore- 
hole, rules similar in structure to those for Rl are 
used to extend the description; the rules use both 
the results of signal analysis and other information, 
such as the geology of the undersea formation. 

User Interface. Well-log analysts look at output from 
strip recorders showing the data progression for var- 
ious depths in the well. The interface to the dipme- 
ter system preserves the visual features of such dis- 
plays, augmented by summary information, as 
shown in Figure 1. The multiple columns provide an 
overview of the data that is comparable, and proba- 

This figure shows the user midway through a stratigraphic portion of the log expanded two columns to the left. Radical 
analysis. On the far right side is a log of the dipmeter datti. shifts in focus are obtained by moving the elevator. Other 
The black “elevator box” to the left of that column shows the logs and summary information are shown on the left. 
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bly superior to, the long rolls of paper tacked up on 
the walls of experts’ offices. A critical feature of the 
interface is the ease in moving from one portion of 
the data to another with a smooth scrolling opera- 
tion: In fact, Schlumberger claims they can scroll the 
paper on the screen at 57 miles an hour-an un- 
usual metric for a display system. 

Much care was devoted to the user interface, as 
can be seen in the distribution of code given in 
Table I, which shows how important the interface is. 
For a knowledge-based system, one might have ex- 
pected that most of the space would be devoted to 
the explicit knowledge and inference engine re- 
quired to manipulate it. However, together, explicit 
knowledge and inference engine consume only 
about 30 percent of the total memory. Implicit 
knowledge for feature detection makes up another 
13 percent, while by far the largest identifiable por- 
tion, 4.2 percent, is devoted to the interface. This is 
not atypical: In other systems we know, such as 
Pride, one-third to one-half of the code is devoted to 
the user interface. 

CRITERIA AND STAGES 
FOR EXPERT SYSTEMS 
The success of expert-system development depends 
to a very great measure on an appropriate selection 
of applications [27]. In this section, we consider 
some of the most important criteria for choosing pro- 
jects and outline the major developmental stages 
once a project is under way. 

Criteria for Problem Selection 

Value of Solving the Problem. Choose the application 
carefully. The problem that is being approached 
must be worth solving. One way of confirming this is 
to determine whether management is willing to 
commit the necessary human and material re- 
sources. Since it may take tens of person-years to 
make a system real, as in the Rl example, the value 
of the solution must be substantial. We are told that 
Rl/XCON now repays its development cost every 
few months. 

Alternative Solutions. Non-AI solutions to the same 
problem are a real possibility. A vivid illustration of 
the value of considering alternative solutions comes 
from the Darn project at Xerox [241-a prototype 

TABLE I. Distribution of Memory in the Dipmeter Advisor 

inference engine 
Knowledge base 22 
Feature detection x3% 
User Interface 42% 
Support environment 1fP-h 

expert system built to aid in the diagnosis and repair 
of a computer disk subsystem. The disk diagnosis 
and repair process was a complicated one, requiring 
a large number of tests to take into account the 
many possible failure modes, including electronic 
failures of several controller boards. According to 
technicians’ records, diagnosing and repairing disk 
problems for this unit were consuming 30-50 per- 
cent of the resources of the repair group. 

After working three months on the prototype, ex- 
ternal factors caused a three-month hiatus in the 
project. When it was resumed, the Darn system pro- 
totype was no longer of value because this particular 
disk and controller had been phased out-as a result 
of all the problems-and replaced by a new disk 
with a single circuit board. In the case of a suspected 
disk failure, the single board was easily replaced; if 
the replacement did not solve the problem, the disk 
itself would be sent back to the manufacturer. This 
new disk strategy had so reduced the time required 
to fix disk problems that aid from an expert system 
was no longer of significant value, making the 
knowledge base specific to the original disk obsolete. 

Test Cases. Another critical resource in the success- 
ful development of an expert system is a good set of 
test cases by which to extract knowledge from the 
experts. By watching experts actually solve prob- 
lems, rather than just having them describe how they 
do it, it is possible to understand the real process 
that goes on and the actual knowledge that is used. 
A suite of test cases can also be used for testing 
implementations as they reach different stages in 
development. 

Asking potential users early about test cases also 
provides valuable clues as to the real feasibility and 
value of a proposed system. One does not easily get 
test cases for problems that occur only once every 
six months, and there probably would not be enough 
commonality between cases. Moreover, where solu- 
tion methods are radically different for each prob- 
lem, too much knowledge is probably required in 
the system. For example, after we were asked to 
consider producing an expert system to design de- 
vice controllers and briefly exploring the domain, it 
became apparent to us that each device controller 
was unique in its requirements, and therefore the 
project was rejected. One might say that expert- 
system technology is suitable for automating tasks 
that are fairly routine and mundane, not exotic and 
rare. 

Task Difficulty. There are other rules of thumb that 
should be applied to tasks being considered as 
expert-system domains. A suitable task is probably 
one that would take an expert an hour or two, not 
counting the time spent on mechanical tasks like 
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making sketches or filling in forms. Tasks that take 
only a few minutes of expert time can probably be 
solved by simpler technology, or may not be worth 
automating at all; tasks that require more than a few 
hours of expertise are probably too difficult and un- 
bounded in terms of the knowledge they require. 
Unless the longer tasks are iterations of a much 
shorter one, done several times in the same session, 
the longer tasks are generally too complex. 

Another warning sign is a predominance of com- 
monsense knowledge, formalization of which is just 
now being explored in the AI community. Unless 
very specific forms of this knowledge can be iso- 
lated, this is a tar pit that should be avoided. In 
general, problems that are known to require English- 
language understanding, complicated geometric or 
spatial models, complex causal or temporal relations, 
or understanding of human intentions are not good 
candidates for the current state of the art in expert 
systems. 

Expert Help. A good indicator as to whether a prob- 
lem is appropriate for expert-system implementation 
is the availability of one or more human experts 
who deal with the problem routinely as part of their 
job and therefore have the knowledge and experi- 
ence to understand what the real problems are and 
to choose appropriate test cases. These experts 
should be available to work on the project for a 
significant portion of their time and must be able 
to articulate what they are doing when solving a 
problem. 

The choice of experts is critical. Since an expert- 
system project requires dedication and long-term 
commitment, an expert who is only mildly inter- 
ested in the problem is not the best choice; rather, 
the expert should have a strong vested interest in 
obtaining a solution. The expert must also under- 
stand what the problem is and have actually solved 
it quite often. It is not enough to have somebody 
with a theory about how cases like this should be 
handled or some good ideas about a new way to do 
things, or even an “eager and bright” beginner who 
will learn. A final trap that knowledge engineers 
sometimes fall into is believing, after working with 
the experts for some time, that they have become 
experts in the problem area. 

Knowledge Engineering. A knowledge engineer inter- 
views the experts and develops both an appropriate 
framework for the system and the initial representa- 
tion for the knowledge. Both interviewing and devel- 
oping representations are arts that require training, 
and experts cannot be expected to be their own 
knowledge engineers. 

Expert knowledge is usually articulated around 
specific cases, where the analysis of expert knowl- 

edge often deepens the experts’ own understanding 
of what they do. Smith on the dipmeter advisor pro- 
ject reports that one of the most useful outputs of 
this endeavor was a comprehensive document con- 
taining the rules, figures, and justifications for the 
dipmeter advisor knowledge. 

However, to make knowledge useful in a system, 
one cannot just “extract” the knowledge from the 
expert; one must structure it in such a way that it 
bears on the whole range of expected cases. Working 
with the expert, the knowledge engineer must de- 
fine the depth of representation, the expected limits 
of the system’s explicit knowledge, the conditions 
under which the knowledge becomes inapplicable, 
etc. Knowledge is an artifact, worthy of design. 

Stages in the Development of Expert Systems 
An expert system generally goes through a number 
of developmental stages: identification, conceptual- 
ization, prototyping, creating user interfaces, testing 
and redefinition, and knowledge-base maintenance. 
Each stage requires different sets of individual tal- 
ents and resources. Although the process has many 
similarities to classical systems analysis, the empha- 
sis in this case is on the use of AI technology to 
capture and apply the appropriate knowledge. 

Identification. At this stage, a critical mass might 
consist of one or two knowledge engineers and a 
group of experts who can identify problems ame- 
nable to solution through expert-system technology. 
Five to 10 test cases should be collected for later use. 
When the expertise is distributed among several ex- 
perts, the interviewing process should expose their 
relative specializations and also the degree of con- 
sensus in solution methods. 

After determining that the availability of experts 
and test cases is sufficient to warrant further ex- 
ploration, one must develop a clear understanding of 
what is meant by success: This means identifying 
the actual users of the proposed system, some de- 
tailed examples of the problems to be posed, and 
acceptable solutions that might be generated. 

Conceptualization. Once the domain has been iden- 
tified, the next step is conceptualizing and formaliz- 
ing the knowledge. Initial knowledge acquisition ses- 
sions should start with a single expert who can dem- 
onstrate by working on several examples what it 
means to solve a particular problem. Having devel- 
oped some sense of what the problem is, the knowl- 
edge engineers can begin to articulate in a semifor- 
mal language what they believe is going on in the 
problem-solving sessions. 

A useful next step for knowledge engineers is sim- 
ulating the solving of one or more of the test cases 
by following the semiformal prescription. The expert 
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will quickly notice steps that have been left out or 
are incorrectly formulated. At first, each case will 
reveal important things that have been left out. The 
contents of the semiformal knowledge base will 
evolve from this testing as it becomes clear that ter- 
minology must be more precise and as exceptions 
appear to the initially simple rules. 

After several rounds of simulation by knowledge 
engineers and critiquing by the single expert, it is 
often useful to bring in other experts who can be 
observed solving one or more of the same problems 
from the suite of test cases. This will help identify 
any particular expert idiosyncrasies in the problem- 
solving process, and determine whether there is one 
style or a multiplicity of problem-solving styles. In 
the case of the dipmeter advisor, it was learned late 
in the development of the system that the expert for 
the initial knowledge base had a very different style 
than a number of other experts in the community. 
Using multiple experts in the early knowledge ac- 
quisition sessions can prevent this kind of surprise. 

In the Pride project, the initial knowledge acquisi- 
tion sessions led to the creation of a “design knowl- 
edge document.” This document outlined the differ- 
ent stages in the design, the dependencies between 
the stages, and a detailed rendering of the various 
pieces of knowledge (rules, procedures, constraints, 
etc.). Before the first line of code was written, this 
document had evolved to over 20 closely typed 
pages with over 100 pages of appendixes containing 
detailed mathematical analyses, charts, tables, and 
figures. 

This document played a crucial role in defining 
and verifying the knowledge that was eventually in- 
corporated in the Pride system. It was circulated 
among the experts, and errors and omissions were 
corrected. It was then used experimentally by the 
knowledge engineers to solve new design problems 
by strictly following the document. This helped 
make explicit some of the knowledge that had been 
implicitly applied by the experts. 

Prototyping. In an expert system, many problems 
are not revealed until actual implementation since, 
unlike classical software projects, the exact specifi- 
cations of what can be done, and how, are not 
known. Recognizing this, one should build a proto- 
type system fully expecting to throw away virtually 
all this code and start again. The prototype should 
be made to work on the core of the problem, using a 
detailed typical example as its focus, and should in- 
clude experiments with user interfaces. One should 
expect the cycles of prototyping to alternate with the 
development of useful packages, tools, and interface 
ideas. 

An implementation technology must be chosen for 
the prototype. There are fundamental choices to be 
made between off-the-shelf problem solvers (some of 
which are built around rule-oriented programming) 
and building a special-purpose system in a knowl- 
edge programming language that incorporates object.. 
oriented programming, logic programming, or pro- 
gramming with frames. Other factors to be consid- 
ered are the programming environment and the 
availability of consulting help with the tools. When 
using a commercially available implementation en- 
vironment, it is appropriate to ask questions about 
the types of expert systems that have been built 
before and the levels of support that are available 
from the vendor for people building systems for the 
first time. 

User Interfaces. One of the most important and 
time-consuming stages in the development of an ex- 
pert system is the creation of a suitable user inter- 
face-particularly one that matches what users of 
the noncomputer system have been accustomed to. 

A good example of a well-matched, well-defined 
user interface is that used by Oncocin, an expert 
system for cancer treatment therapy management 
developed at Stanford University [18, 301. The 
Oncocin interface in effect replaced a paper form 
designed for use on the ward. The form contained 
sketches of the human figure for indicating body 
locations, and many lines for sequential entries re- 
lated to each visit and treatment. The computer in- 
terface for Oncocin mimics many of the important 
features of the form so that doctors need not learn a 
whole new way of looking at their case data when 
using the system. It generates new lines for addi- 
tional visits only on request (thereby shortening the 
form for inspection purposes) and allows specialized 
input techniques that make it easier for the doctor to 
enter data quickly and accurately. Together, these 
features helped considerably in promoting accep- 
tance of the system. 

The Pride system, on the other hand, presents two 
different (albeit related) user interfaces: The first is a 
goal browser (Figure 2) that lays out the design pro- 
cess as a network of different goals, and displays 
their status; the display is dynamically updated by 
the system as the exploration of the design space 
proceeds. The browser allows more detailed query of 
the goal structure through menu interaction on the 
screen: It allows the user to edit, undo, advise, and 
reexecute goals. 

The second interface is the Active Design Docu- 
ment or “electronic design notebook” given in 
Figure 3, on page 890. It resembles in appearance the 
kind of report engineers typically prepare at the end 
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sehzcf me proper 

This browser shows the relationships between various 
goals-links to the right reflect explicitly known dependen- 
cies between goals. Boxes around the goals indicate 

FIGURE 2. 

of a design cycle to record the major design deci- at user locations to help tune the user interface and 
sions and analyses. However, the electronic version extend the knowledge base as new problems are 
encapsulated in Pride also allows the user to view found and easier ways to interact with the system 
the design as it unfolds, to affect its course, and, in are suggested. When this plan is complete, one can 
future versions, to obtain explanations and modify more easily evaluate the cost of the resources re- 
the design. quired versus the value of solving the problem. 

Testing and Redefinition. Once the prototype system 
has reached the stage where it is possible to go 
through the initial test problems from beginning to 
end, it becomes important to start testing the system 
with friendly users. This will sometimes reveal new 
problems that can cause a rethinking of what the 
entire project is supposed to accomplish. 

In most cases, a second version of the prototype 
system will be built, and sometimes even a third 
version, since, in the process of building the system, 
the knowledge representation and inference proce- 
dures can be changed. Feedback from solving 
real problems often forces reimplementation-a 
cycle that is very characteristic of knowledge 
programming. 

SOFTWARE TECHNIQUES AND THE 
KNOWLEDGE OF EXPERTS 
In this section, we compare the AI programming en- 
vironments-which have contributed to the flurry of 
activity in expert systems-with the techniques and 
languages of more conventional programming, show- 
ing how the differences derive from different as- 
sumptions about the kinds of problems for which 
they are intended. 

Knowledge-Base Maintenance. After friendly users 
have tried the system, a plan must be made for a 
large software project: The plan must provide for 
testing, development, transfer, and maintenance of 
the knowledge base. A process must be put in place 

The Fallibility of Expert Systems 
Public opinion about AI is schizophrenic, ranging 
from “It will never work” to “It might cost me my 
job!” This range of attitude reflects a collective con- 
fusion about AI, where the very words themselves- 
artificial intelligence-raise questions about the na- 
ture of intelligence and the capabilities of machines 

[121. 
Adding to the confusion are two well-known 

mathematical results that are popularly misunder- 

whether a tried goal has succeeded, has failed, is sus- 
pended, or is running now. 

Goal Browser 
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This figure shows the table of contents and one page of the 
Pride elactronic design notebook. Inputs from the user, and 
outputs from the design and analysis are both sho.w~J $21 
these pages. By making this look like the hardacopy report, 

it is easy for designers to find their way around. By allowing 
input through the document, the users can obtain control the 
same way they see results.’ 

FIGURE 3. Active Design Document 

stood as implying that computers cannot achieve kinds of problems. In this sense, the popular misin- 
humanlike intelligence. In the 193os, Kurt Godel’s terpretation of computing theories is very much like 
“incompleteness theorem” and Alan Turing’s the popular misconception about theories from phys- 
“incomputability” theorem [z] showed that there its, where relativity and the uncertainty principles 
are well-defined problems that cannot be solved by are often incorrectly interpreted as implying that 
any computational procedure. These theorems everything is relative and nothing is certain. 
relate to the enumeration of mathematical sentences In the theoretical work underlying AI, a major 
in self-referential systems and involve the demon- theme has been trying to understand how a compu- 
stration that no program can infallibly determine tationally limited machine can behave intelligently 
whether all computer programs will eventually halt at all. This has led to models of resource-limited 
(i.e., be solved). reasoning (e.g., [M]) and to models of belief and 

However, neither the halting problem nor the in- knowledge (e.g., [IS]). This work is generally re- 
computability results go very far in demonstrating garded by AI researchers and cognitive psychologists 
the limitations of computers vis-a-vis humans: We as providing computational insights into the kinds of 
do not really know the limits of people for the same mental processes carried out by humans. 
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In pragmatic work on expert systems, it is com- 
monly believed that knowledge is the key to intelli- 
gence. Indeed, the slogan “knowledge is power,” at- 
tributed to Feigenbaum, is almost a guiding principle 
for work in knowledge engineering. It changes the 
emphasis from a search for general mechanisms of 
intelligence to the development of techniques for 
knowledge acquisition and representation. 

Software Techniques 
Broadly speaking, conventional programming prac- 
tice offers two schools of thought [16] about tech- 
niques for developing reliable and predictable pro- 
grams. One approach is to develop specification lan- 
guages and validation procedures, where programs 
can be annotated with specifications like the type of 
input values and invariants that are intended to hold 
at different points in program execution. The task of 
the programmer or specification processor then be- 
comes ensuring that the program satisfies the speci- 
fications. 

Unfortunately, the challenge in most expert- 
system applications lies elsewhere, that is, in getting 
the specifications right in the first place, rather than 
simply checking the correspondence between speci- 
fications and programs. This brings us back to the 
phrase exploratory programming, which is often used 
to characterize AI programming environments. 
These environments are intended to shorten the 
time of the development cycle in which parts of a 
program are entered, tested, debugged, and modi- 
fied. A systematic analysis of the costs and benefits 
of a prototyping approach is beyond the scope of this 
article, but results and criteria have been reported 
elsewhere (e.g., in [I]]. 

The notion of a development cycle brings us to a 
second school of thought in programming practice- 
software engineering, a discipline that grew out of 
the experience of software vendors trying to deliver 
products. Although there is no single dominating ap- 
proach for managing the program “life cycle,” the 
general principles include the process of obtaining 
feedback from clients at several different stages and 
respect for the notion that a program is seldom fin- 
ished, meaning that it is necessary to plan for con- 
tinued maintenance and service as requirements 
change. 

A development cycle for building expert systems 
(e.g., [8]) is usually described in terms that are some- 
what foreign to traditional software engineering 
practice: AI people, for example, talk about “knowl- 
edge acquisition” and “knowledge bases.” Over the 
past two to three years, AI companies have gained 
considerable experience in delivering expert systems 
to customers. Teknowledge, one of the AI companies 

that delivers expert systems, used to include the 
following as a closing slide in their presentations 
about expert systems: 

“Knowledge engineering is more than software engi- 
neering.” 

Recently, an additional line has been added: 

“(But not much more.)” 

This reflects, perhaps, a fresh convergence of think- 
ing and experience. 

Because tools are so important in the development 
of expert systems, providing tremendous amplifica- 
tion in the programming arena, many companies are 
now selling expert-system environments. However, 
it is important to remember that these tools them- 
selves are not expert systems. Moreover, vendors 
sometimes overstate the power of the tools and un- 
derestimate the work required to create systems that 
are able to solve real problems. Despite the almost 
religious zeal that exists among sellers of various 
systems, it is important also to recognize that a sin- 
gle knowledge representation formalism is usually 
not sufficient for complete problems [3]. “Everything 
can be expressed in logic” or “Everything can be 
expressed in rules” is like saying “Everything can be 
expressed in English.” While these statements may 
have a certain element of truth to them, this kind of 
statement obscures the practical issues of knowledge 
representation, such as “Can the knowledge be ex- 
pressed concisely in symbols (or pictures)?” and 
“Can it be organized so that it can be changed 
easily?” A good environment will provide a number 
of different, complementary, and integrated formal- 
isms to allow easy description of different kinds of 
knowledge. 

The Knowledge of Experts 
To better appreciate the limitations and enabling 
conditions for building expert systems, we describe 
here some basic intuitions guiding the field. 

l Many problems can be solved by applying large 
amounts of appropriately structured knowledge. 

l People become experts at something by starting 
with some basic knowledge. By applying that 
knowledge to solve problems, they create new 
knowledge structures more appropriate to the 
problems. 

l Where task-specific knowledge structures exist, 
they can be documented by suitably questioning 
or otherwise testing the experts in relation to cer- 
tain specific problems. Knowledge thus extracted 
can then be represented in a computer program 
and manipulated by some inference engine or 
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problem-solving framework to solve similar prob- 
lems in much the same way as do the experts from 
whom the knowledge was obtained in the first 
place. 

Given these intuitions, there are some basic rules 
of thumb that govern the acquisition of expert 
knowledge. 

Expert Knowledge Is Expensive. A commitment of 
considerable time from knowledgeable people is es- 
sential to the development of expert systems. Usu- 
ally, the people who make the best experts are the 
ones most highly valued by their own organizations 
and therefore in some respects the least accessible. 
In the case of Caduceus, a system for medical diag- 
nosis developed by Harry Pople and Jack Meyers 
[26], one of the top diagnosticians in internal medi- 
cine in the United States, the success of the system 
is a direct result of the process put in place by 
Meyers to create and test a high-quality knowledge 
base. Meyers made use of his top medical students to 
gather the knowledge. 

Among the experts behind Dendral (an early ex- 
pert system described more fully on p. 881) were 
Joshua Lederberg, a Nobel-prize winning geneticist, 
and Carl Djerassi, a world-class expert on mass spec- 
tral analysis. For its day-to-day development, Den- 
dral also consumed the talents of several profes- 
sional chemists and computer scientists. 

The point of these examples is that getting the 
attention of knowledgeable people for the period of 
time necessary to build expert systems represents a 
very tangible and not inconsiderable cost. However, 
the willingness and availability of experts to par- 
ticipate directly and strongly in the project are 
prerequisites for success. 

Expert Knowledge Is (usually) Not in Textbooks. One 
trap awaiting the unwary is the expectation that 
textbook knowledge is the right stuff for incorporat- 
ing into an expert system. Textbooks are not bad or 
incorrect; the problem is the great deal of practical 
material-obvious to an expert-that never finds its 
way into textbooks. Most textbook knowledge is too 
idealized: For applications of real interest, only an 
expert knows the messy but necessary details of real 
problems and the unpublished rules of thumb. 

Furthermore, textbooks are often not designed to 
teach either problem-solving skills or knowledge 
structuring techniques, both of which seem to be 
essential to the expert. For example, prior to the 
development of Dendral, chemistry books gave ex- 
amples of the interpretation of mass spectral data, 
but never said how to systematically enumerate the 
set of possible molecules. In fact, developing Dendral 

required the construction of some sophisticated 
mathematical theories not previously known. 

Most textbooks try to provide the fundamentals of 
the subject matter. In the process of becoming an 
expert, people learn to use various elements of text- 
book knowledge to create knowledge structures that 
are more suitable for problem solving. Experts use 
these specialized knowledge structures in the com- 
mon cases and tend to reason from fundamentals 
only in the difficult and unusual cases, 

Expert Knowledge Has to Be Acquired Incrementally and 
Tested. Expert knowledge is not acquired all at 
once: The process of building an expert system spans 
several months and sometimes several years. In the 
course of this development, it is typical to expand 
and reformulate the knowledge base many times. In 
the beginning, this is because choosing the terminol- 
ogy and ways of factoring the knowledge base is 
subject to so much experimentation. In the middle 
phases, cases at the limits of the systems capabilities 
often expose the need to reconsider basic categories 
and organization. Approaches viable for a small 
knowledge base and simple test cases may prove im- 
practical as larger problems are attempted. 

The need to modify and change the knowledge 
base provides an enormous incentive to use and cre- 
ate knowledge programming tools. Most knowledge 
programming development systems provide a suite 
of tools for browsing and summarizing a knowledge 
base, tracing and explaining chains of reasoning, in- 
strumenting program state, and graphing program 
structure. These tools make it simpler to both “put 
knowledge in its place” and to understand how 
changing a particular piece of knowledge will affect 
the overall behavior of a system. Tools for analyzing 
and reorganizing expert systems are essential for de- 
veloping “middle-road” systems. 

Even so, expert systems take time to build. Toy 
programs for a small demonstration can be built 
quickly-often in just a few months using current 
technology. However, for large-scale systems with 
knowledge spanning a wide domain, the time 
needed to develop a system that can be put in the 
field can be measured in years, not months, and in 
tens of worker-years, not worker-months. 

Expert Knowledge Is Sometimes Distributed. Experi- 
ence with systems that have survived the feasibility 
demonstration stage suggests that reliance on any 
single expert can either create blind spots in the 
knowledge base or result in a system that will not 
have users. 

Problem solving often takes place in a community 
where many different experts pool their expertise. 
The medical domain, for example, has institutional- 
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ized specialties such as pathology, radiology, gyne- 
cology, and internal medicine, for which there are 
separate training and certification requirements. 
Furthermore, a protocol has developed for referring 
patients to another specialist when the problem 
reaches the limits of any particular expert’s 
knowledge. 

Collectively, these observations point to the need 
for creating community knowledge bases that inte- 
grate expertise from many different sources. The 
MDX system [9] was an early effort at integrating 
different kinds of expertise (diagnosis, pathology, 
radiology) in the same system. The Pride system in- 
tegrates design and analysis knowledge. However, 
we are just beginning to understand how to cope 
with a single expert, and much more work is needed 
before community knowledge bases can be easily 
crafted. 

Thoughts on the Futures of Expert Systems 
One of the dreams of the expert-system community 
is to eventually have knowledge bases created and 
maintained by their users rather than by knowledge 
engineers-a dream that reflects certain financial 
realities. The maintenance cost for expert systems is 
substantial. Once the initial thrill of a prototype sys- 
tem and a fancy interface wears off, some projects 
come abruptly to an end as the expense of develop- 
ing them further and maintaining them is assessed 
all too belatedly. 

Although the dream of community knowledge 
bases is well beyond the current state of the art, 
work on expert-system shells is leading in that di- 
rection [32]. An expert-system shell is an environ- 
ment designed to support applications of a very simi- 
lar nature and represents an intermediate point be- 
tween specific applications and general-purpose 
knowledge engineering environments. Shells could 
be built for such applications as diagnosis, design, 
planning, scheduling, and a variety of specialized 
office tasks. Shells contain several things that knowl- 
edge engineering tools do not: prepackaged represen- 
tations for important concepts, inference and repre- 
sentation tools tuned for efficient and perspicuous 
use in the application, specialized user interfaces, 
generic knowledge for related applications, and spe- 
cialized tools for acquiring and testing knowledge for 
the application. 

A shell for a planning application would have rep- 
resentations that integrate time with possible worlds 
and beliefs; user interfaces for describing plans and 
alternatives; generic categories for things like time, 
tasks, and serially reusable resources; and some ge- 
neric domain knowledge like the fact that an agent 
can be in only one place at a time. Shells provide the 

ability to share and standardize knowledge in larger 
communities than single expert-system projects. 

Advanced shells are just beginning to appear in 
the research laboratories. They are a first step to- 
ward what may be the ultimate promise of expert 
systems: the creation of a medium for the wide- 
spread production, consumption, and distribution 
of human knowledge [32]. 

CONCLUSIONS 
The expression expert system has been used as a 
buzzword for funding and a flag to wave for all sorts 
of projects. In this article, we have tried to capture 
some of the relevant experience with systems that 
clearly fit our model, rather than trying to define 
precisely what is or is not an expert system. The 
emphasis here has been on the explicit representa- 
tion of knowledge in a system, rather than system 
performance. Therefore, no matter how “clever” 
a C-Compiler is, we would not call it an expert sys- 
tem if it were not built in this style (although one 
could imagine a C-Compiler built that way). Expert 
systems need not be rule based or contain a theorem 
prover (e.g., Pride) and can be built in any language 
(e.g., Pascal or C), although it is easier where lan- 
guage and environment readily support the conver- 
sion of user’s intent into programs [5]. Since building 
an expert system is a large software project, standard 
software engineering analyses are useful in under- 
standing the scope and nature of the job. 

Expert systems are neither the answer to all ques- 
tions nor the answer to none. One can build expert 
systems for appropriate problems-ones that are val- 
ued, bounded, routine, and knowledge intensive- 
provided experts are available who are articulate, 
patient, and committed to a project for at least the 
initial phases. One should also ensure that appropri- 
ate hardware and software are available to the de- 
velopers. Finally, if the initial prototyping is success- 
ful, it is important to determine whether manage- 
ment is willing to commit the resources it will take 
to make the demonstration system into a useful 
system for everyday use. 
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