PHE LOOPS MaNUAL

{InstanceVariables (owner ...)})

{(Methods
{Simulate RunSimuliateWMRules)
{(Check RunCheckWMRules

doc (* Rules to Check a washing machine.))
-]

When an instance of the class WashingMachine receives a Simulate message. the RuleSet
SimutateWMRules will be invoked with the instance as its work space.

To simplify the definition of RuleSets intended to be used as Methods. the function De fRSM (for “Define
Rule Set as a Method™) is provided:

{(DefRSM ClassName. Selector RuleSetName) [Function]
[f the optional argument RuleSetName is given, De fRSM installs that RuleSet as a
method using the ClassName and Selector. [t does this by automatically generating
an installation function as a method to invoke the RuleSet. DefRSM automatcally
documents the installation function and the method.

[f the argument RuleSetName is NIL, then De fRSM creates the RuleSet object, puts
the user into an Editor to enter the rules. compiles the rules into a LISP functon.
and installs the RuleSet as before.

12.8 Installing RuleSets in ActiveValues

RuleSets can also be used in data-oriented programming so that they are invoked when data is accessed.
To use a RuleSet as a getFn. the function RSGetFn is used with the property RSGet as follows:

{InstanceVariables
(myVar #(myVal RSGetFn NIL) RSGet RuleSetName))

RSGetFn is a Loops system function that can be used in an active value to invoke a RuleSet in response
1o a Loops get operation (e.g.. GetValue) is performed. [t requires that the name of the RuleSet be
found on the RSGet property of the item. RSGetFn activates the RuleSet using the local state as the
work space. The value returned by the RuleSet is returned as the value of the get operation.

To use a RuleSet as a putFn, the function RSPutFn is used with the property RSPut as follows:

(InstanceVariables
(myVar #{myVal NIL RSPutfn) RSPut RuleSetName))

RSPutFn is a function that can be used in an active value to tnvoke a RuleSet in response to a Loops put
operation (e.g.. PutValue). [t requires that the name of the RuleSet be found on the RSPut property of
the item. RSGetFn activates the RuleSet using the aewValue from the put operation as the work space.
The value returned by the RuleSet is put into the local state of the active value.

Tracing and Breaking RuleSets

2.9 Tracing and Breaking RuleSets

¢ can be used In
conjunction with the auditing fuctlities and the rule exccutive for debugging RuleSews. figure 23 summarizes
the compiler options for breaking and tracing:

Loops provides breaking and tracing tacilities o ald in debugging RuleSets. Thes |
o

T Trace if rule is sausfied. Useful for creating a running display of executed
rules.

TT Trace if rule is tested.

B Break if rule is sarisfied.

BT Break if rule is tested. Useful for stepping through the execution of a
RuleSet.

Figure 23. Compiler options for Breaking and Tracing the execution of RuleSets.
Specifying the declaration Compiler Options: T; in a RuleSet indicates that tracing information
should be displayed when a rule is satisfied. To specifv the tracing of just an individual rule in the
RuleSet, the T meta-descriptions should be used as follows;
(T} IF cond THEMN action;
This tracing specification causes Loops to print a message whenever the LHS of the rule is tested, or
the RHS of the rule is executed. [t is also possible to specify that the values of some variables (and
compound literals) are to be printed when a rule is traced. This is done by listing the variables in the
Debug Vars declaration in the RuleSet:
Debug Vars: a a:b a:b.c;

This will print the values of a, a:b, and a:b.c when any rule i traced or broken.

Analogous specifications are provided for breaking rules. For example, the declaration Compiler
Options: B: indicates that Loops is to enter the rule executive (see next section) after the LHS is
satisfied and before the RHS is executed. The rule-specific form:

{B} I[F cond THEN action:
indicates that Loops is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it is traced or broken.
This can be effected by using the PR compiler option as in

Compiler Options: T PR;:
which prints out the source of a rule when the LHS of the rule is tested and
Compiler Options: B PR;

which prints out the source of a rule when the LHS of a rule is sausfied, and before entering the break.

73

THE LOOPS MAaNUAL

12.10 The Rule Exec

v Read-Compile-Evaluate-Print loop. called the rule executive, is provided for the rule language. The rule
cxecutive can bhe entered during a break by invoking the LISP function RE. During RuleSet execution.

<
the rule executive can be entered by typing +f (<control>-fy on the kevboard.
On the first invocation, RE prompts the user for a window. It then displays a stack of RuleSet invocations
in a menu to the left of this window in a manner similar to the Interlisp-DD Break Package. Using the left
mouse button in this window creates an [nspector window for the work space for the RuleSet. Using the
middle mouse button pretty prints the RuleSet in the default pretwvprint window.
[n the main rule executive window, RE prompts the user with “re:". Anything in the rule language
{other than declarations) that is typed to this executive will be compiled and executed immediately and
its value printed out. For example, a user may type rules to see whether they execute or variable names
to determine their values. For example:

re: trafficlight:color
Red
re:

this example shows how to get the value of the color variable of the trafficLight object. [f the
value of a variable was set by a RuleSet running with auditing, then a why question can be tvped to the
rule executive as follows:

re: why trafficLight:color

IF hightight:color = 'Green farmRoadSensor:cars timer.TL
THEN highbLight:color « 'Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edited: Conway "13-0Oct-82"

re:

The rule executive may be exited by typing OK.

12.11 Auditing RuleSets

Two declarations at the beginning of a RuleSet affect the auditing. Auditing is turned on by the compiler
option A. The simplest form of this is

Compiler Options: A;

The Audit Class declaration indicates the class of the audit record to be used with this RuleSer if it
is compiled in audit mode.

Audit Class: StandardAuditRecord;
A Meta Assignments declaration can be used to ndicate the audit description to be used for the rules

unless overridden by a rule-specific meta-assignment statement in braces.

99

vuditing RuleSers

Meta Assignments: (cfe.5 support«'GroundWif}:

13 USING THE LOOPS SYSTEM

Loops s integrated with Interlisp-D. and makes use of many of its advanced features. In order o run
L.oops one must have the appropriate verston of the [nterlisp- system and the corresponding versions of
a ser of LispUsers packages. The instructions for building the svstem as of February L. 1983 are contained
in a document of export instructions, currently filed on: {MAXC}<LOOPS>EXPORTINSTRUCTIONS . TXT.

13.1 Starting up the System

At PARC. we maintain two version ot Loops most of the time. a current system which s a released
version, an another which is the system under development. There are two command files: loops.cm
and newlLoops.cm which start up a Lisp and fetch the appropriate sysout from a server.

[n the version of the system as loaded at PARC, we include the following Lispusers packages: TTY,
TMENU, GRAPHER, HISTMENU, SINGLEFILEINDEX, PATCHUP

The first four packages must be included in any loadup of Loops: the second are ones we find useful.
Documentation of these facilities are to be found on <LISPUSERS> directories on various servers.

13.2 The Loops Screen Setup

- . .. -~ . . ~. ."
The screen as one sees it set up contains the following windows(top to bottom, left to right):

Prompt Window — Small black window in upper left. Prompts for what will happen in various mouse
interactions appear here. Also various notfications of directory attachment changes. [.abelled with the
date of the Lisp system loadup and of the [Loops system loadup.

Top Level Window — Normal interaction window. [Labelled with the currently connected directory.

User Exec ~ PPDefault Window — Below the EditCommands menu is a title icon of the UserExec
window. When this is expanded it fills the bottom half of the screen. [t can be used for TTY interactions.
[t can be made the primary window for such interactions by calling the function UE. Typing OK when in
that window returns you to the previous TTYDIPLAYSTREAM. This window is also used as the detault
place to prettyprint class and instance descriptions.

There are three icons on the right half of the screen.

[oops [con — This circular icon is active and if buttoned gives the user the option of setting up the
screen again (useful if it has been cluttered with many windows), and of producing a graph browser of
the current classes in the system.

Hisiory [con— This icon will expand to give a History menu list. Sce the write up on <LISPUSERS>HISTMENU.TTY.

Fdit Work Area — This window 1s shown only by a tte icon in the upper right. [t expands when
necessary, and takes up the entire right half of the screen. [t shrinks automatically when Donetdit is
selected from the EditCommand menu. [t can be expanded t allow vou t look at the last expression
being edited. ‘

Using the Browser

133 Lsing the Browser

I'wo special classes in the system are used to build browsers based on the grapher package. he general
class is called LatticeBrowser, and the parvcular subClass that 18 used by the svstem is called
ClassBrowser. We will first describe how to use the class browser which appears when requested by

buttoning in the Loops icon. We then describe how t butld your own browser.
13.3.1 Using the Class Browser

The items in the class browser can be buttoned with ecither the left or middle button. When buttoned a
pop up menu will appear, and the user can make a selection of one of these.

[f a browser menu selection is followed by an asterisk (i.e., Print*), this means that it has a number
of sub-commands. Selecting such a selection with the middle mouse button will present another pop-up
menu of sub-commands. Selecting a “starred” selection with the left mouse button will execute the
“default” sub-command. The left and middle mouse buttons act the same when selecting an un-starred
selection.

The left button menu selections are:

Print* Prints a summary of information about the selected class in the “User Exec -
PPDefault Window™. [f selected with the middle mouse button, another pop-up
menu gives a choice of what to print:

pp PrettyPrint Class definition.

PP PrettyPrint Class definition including inherited information,

pPPV! Same as PP ! without seeing methods.

PPM Puts up a pop-up menu of all of the methods dcﬁned.in the class,

and prettyprints the definition of the selected one.

PrintSummary
Prints a summary of all of the information {instance variables. class
variables, and methods) for the selected class

If Print* is selected with the lett button. PrintSummary is the default sub-
command that is executed.

Doc* Prints documentation for Classes, [Vs, CVs, or Methods. [f selected with the middle
mouse button, another pop-up menu gives a choice of what to print

ClassDoc Prints Class doc information for selected class.

MethodDoc Puts up a pop-up menu of all of the methods defined in the class,
and prints the doc information of the selected one. This pop-up
menu is redisplaved unul the user buttons outside the menu, so that

the user can see the doc information from multiple methods.

IVDaoc Same as MethodDoc, except that it prints the doc information for

102

Wherels

Unread

THE LOOPS MaNUAL

instance variables of the class.

CV¥Doc Same as MethodDoc. except that it prints the do¢ information for
class variables of the class.

If Doc* is selected with the left button. ClassDoc is the default sub-command that
15 executed.

This command is used to find out which super class of the selected class a particular
[V, CV, or Method was inherited from. When selected with the left or middle
mouse button. a pop-up menu is displaved with the clements IVS. CVS. Methods.
Whichever element is selected. a pop-up menu of the class’ instance variables (or
class variables or methods) is displayed. When one of these is selected. the super
class from which that [V, CV or Method was inherited is flashed, and its nameis
printed in the Prompt Window. This final pop-up menu is redisplayed until the user
buttons outside the menu, so that the user select multiple IVs (or CVs or methods).

Unreads $className into the typein buffer. This is useful when typing messages to
particular classes.

The middle button menu selections are:

EM*

Add*

Edit a method in the selected class. [f selected with the middle mouse button. puts
up another pop-up menu:

EM Puts up a pop-up menu of all of the methods defined in the class,
and envokes the editor on the selected method.

EM! Same as EM, except that includes all inherited methods in the list.

[f EM* is selected with the left button. EM is the default sub-command that is
executed.

Add a new method. a specialized class. an IV, or a CV 1o the selected class. or make
a new instance. If selected with the middle mouse button, puts up another pop-up
menu:

Specialize Creates a new subclass of the selected class. giving it a name typed
by the user.

DefMethod Define a new method to the selected class. Asks the user (in the
prompt window) to type the name of a selector, and envokes the
editor on a dummy definition for that new method.

DefRSH Installs a RuleSet as a method in a class. Asks the user (in the
prompt window) to type the name of a selector, and invokes the
RuleSert editor. When the user exits the RuleSet editor. the RuleSet
15 compiled and installed as the method in the class.

AddIV Asks the user to type an instance variable name, and adds it to the
sclected class.

AddCV Asks the user o type a class variable name. and adds 1t to the

Delete

Move*

BoxNode

Rename*

Edit*

o

Using the Class Browser

selected class.
New Sets the [nterlisp varable 1T o a new instance of the sclected class.

If Add=* is selected with the left button. DefMethod s the derault sub-command
that is executed.

Delete a method. 1V, or CV from the selected. or the whole selected class. Puts
up a pop-up menu with clements IVs. CVs. Methods. and Class. If one of the
first three is selected. a menu of the selected class’ instance variables, class variables,
or methods is given. and the selected one s deleted from the class. [f Class is
selected, the whole class is deleted.

Move or copy an [V, CV, method. or super from the selected class to another class.
The destination class is specified by using the BoxNode command, described below.
{f selected with the middle mouse button, puts up another pop-up menu:

MoveTa Puts up a pop-up menu with elements IVS, CVS, Methods, and
Supers. Selecting one of these will put up still another menu.
listing the items of that type. Selecting one of these items will cause
it to be moved to the destination class specified with BoxNode.

CopyTo The same as MoveTo. except that the selected item 1s copied to the
desunation class. -

[f Move* is selected with the left button. MoveTo is the default sub-command that
is executed.

Draws a box around the selected class node. [f the selected class is already boxed. the
box is removed. [f any other class node has been boxed. that hox is removed. This
command is used in conjunction with the Move* command to specify a “destination
class™. as described above.

Renames some part of the selected class. Puts up a pop-up menu with elements
IVS, CVS. Methods. and Class. Selecting one of these will put up stull another
menu, listing the items of that type. Selecting one of these items will cause it to be
renamed to a name typed in by the user.

Edit some part of the selected class. If selected with the middle mouse button, puts
up another pop-up menu:

EditObject Calls the editor to edit the selected class.

EditIVs Calls the editor to edit the instance variables of the selected class.
EditCVs Calls the editor to edit the class variables of the selected class.
Inspect Call the Interlisp inspector to inspect the sclected class.

If Edit*® is selected with the left button. EditObject is the default sub-command
that is executed.

Pressing eicher the left or middle mouse button in the titde region at the top of the class browser brings

104

DeleteRoot
SavelnIT Store this browser object in the Interlisp variable I7.

To create a Class Browser for a small set of classes, send the message Show to the class ClassBrowser:
(=New (3 ClassBrowser) Show browselist window)

This displays the class inheritance lattice starung with the “starting list” of objects browselist. browseList
can be a single className or class, or a list of these. A new browse window will be created which containg
nodes for each class mentoned, and (recursively) all subclasses of those classes in the current environment
which have been accessed. If window is given, then it will be used as the display window.

13.3.2 Building Your Own Browser

* * * The following information is incorrect. [f vou want to build your own browser, try poking around
the class LatticeBrowser. Good Luck. * * * ~

The general class which supports browsing is*LatticeBrowser. The specialization ClassBrowser is
used to generate the Class [nheritance [Lattice Browser that we all use. ClassBrowser provides an
example of how to specialize LatticeBrowser for vour own use. The following is a brief description
of the LatticeBrowser messages. :

[f ($ Lb) is an instance of (any subclass of) (§ LatticeBrowser) then:
(« ($ Lb) Show browseList)

will create a graph of elements starting with those in browseList. browseList should be a list of
objectNames or objects. If browseList is single item. 1t will be treated as list of that item. [he browser
will show a lattice of elements determined by a sub relation implemented by the LatticeBrowser
message GetSub. For each object. (« (3 Lb) GetSubs object) should produce a list of objects
which are the “subs” of object. and (« ($ Lb) Getlabel object) should produce a string to be
used in the graph as a label. The GetSubs method in LatticeBrowser just obtains the value of
the instance variable sub, if it exists in that object (no error otherwise). The Getlabel method in
LatticeBrowser finds the name of the object.

Fach node in the browser graph has actions associated with the left and middle mouse buttons. When
either button is clicked over a node. a menu of actions is brought up. The items on the action menu are
determined bv the class variables LeftButtonItems and MiddleButtonItems.

The value obtained by selecting the menu item will be used as a message selector for an action. The
message will be sent either to the browser or to the object iself. Selectors on the class variable
LocalCommands. or those not undersiood by the object will be sent in a message 0 the hrowser, with
arguments of the object and objectName. Otherwise. the object will be sent that selector as a unary
message (no arguments).

Building Your Own Browser

For o esamples wswme that the value of LeftButtonltems was (PP PP EditObject) and the value
ommands was NIL. and EditObject s not understood by objl selected in the browser.
niig PP for PP the acton menu. objl would be sent the message PP (or PP). Selecting
ot owould result in sending the message (<= (§ Lb) EditObject objl (GetName objl)).

A LatticeBrowser responds to EditObject by sending the object the message Edit 1 a 7TY
process. Phe latter 15 necessary o allow the mouse to continue to work in the process world. [f objI might
have understood the message Edi1t0bject, then that atom should appear on the list LocalCommands
1o ensure that the browser s sent the message rather than objl.

As usual with menus, items need not be atoms. If an item 15 a list. EVAL of the secend element is
returned. Thus one might have theelement ("Edit With EE” "EEObject) on a menu item list
so the string "Edit With EE" will be displayed in the Menu. and the message EEQbject sent when
that item is selected.

[f the result of selecting an item returns a list, the CAR of the list is treated as the selector, and CDR is
an extra argument send. For example, in the class browser MiddleButtonItems contains an item
(EditIVs '(EditObject -2 EE)). Selecting EditIVs in the menu causes-the following message
to be sent: (« (3 Lb EditObject object (-2 EE))

Shified Selections — If one selects a node with the LEFT or MIDDLE mouse button while holding down
the left shift key. then a message is sent to the browser:

(¢« (S Lb) LeftShiftSelect object objName)
(« ($ Lb) MiddleShiftSelect object objName)

The default behavior for LeftShiftSelect istosend PP! to the object, and forMiddleShiftSelect to
send EEOb ject to the browser. '

Woving Nodes — Holding the CTRL key down when selecting allows one to move the selected node in
the browser window. This does not affect the underlying structure. just the display.

Format of the Browser Window — One can obtain a browser display with a specified title or in an existing
window. If one specifies windowOrTitle in

(¢ ($ Lb) Show browselList windowOrTitle)

then if windowOrTitle is a string, it will be used as the title of a new window for the browser. If
windowOrTitle 1s a window. then that window will be used as is. [f windowOrTitle=NIL, then the
title is obtained from the instance variable title, and a new window is created and stored in the
instance variable window. If the instance variable topAlign=T (the default) then GRAPHER will
align the graph to the top of the window. The font used for labels is found in the instance variable
browseFont. At any time, the last object selected is found in TastSelectedObject.

SUMMARY: To specialize a browser, define the method for GetSubs. I[f the browser is not using
object names for s labels, specialize Getlabel. Set up the class variables LeftButtonltems.
MiddleButtonItems and LocalCommands. Specialize LeftShiftSelectandMiddleShiftSelect
1t desired.

LatticeBrowser [Class]

[V's:

THE LOOPS MaNUAL

boxediode [IV of LatticeBrowser|
The last object boxed. if any.

browsafont : [V of LatticeBrowser]
The font used for labels.

lastSelectedObject [IV of LatticeBrowser]
[_ast object selected.

startinglist . IV of LatticeBrowser]
[List of objects used to compute this browser.

title [IV of LatticeBrowser]
Title passed to GRAPHER package.

topAlign [IV of LatticeBrowser]
Flag used to indicate whether graph should be aligned with the top or bottom of the
window. [f topAlign=T (the default) then GRAPHER will align the graph to the
top of the window.

window [TV of LatticeBrowser]
Window for browsing.

CVs:

LeftButtonltems [CV of Lautice Browser]
[tems for left button menu. Value sent as message to object or browser.

LocalCommands ' [CV of LatticeBrowser]
[ist of messages that should be sent to browser when item is selected in menu, even
if uobject does understand them.

MiddleButtonltems [CV of LatticeBrowser]
[tems for middle button menu. Value sent as message (o object or browser.

Titieltems [CV of LaticeBrowser]
ltems for menu in title of window.

Methods:

(« browser BoxNode object) [Method of [atticeBrowser]
Draws a box around the node in the graph representing the object.

(e browser DoSelectedCommand command obj objName) [Method of [atticeBrowser]
Does the selected command or forwards it to the object.

(« browser EEObject object objName) [Method of LatticeBrowser]
Edit object. using the TTYIN editor (in a TTYPROCESS).

{« browser EditObject object objName args) [Method of LatticeBrowser]

bdit object using [isp editor (in a TTYPROCESS). passing the commands args.

Fditing in Looeps

(= browser FlashNode node N flashTime) [Method of LatticeBrowser]
Call FYipNode IN umes. delayving for fash Time milliseconds between Hips. Default
values: N=3. fashTime= 300,

{(« browser FlashNode object) [Method of LatticeBrowser
Inverts the video around the node in the graph represenung object.

(= browser GetlLabel object) [Method of LatticeBrowser]
Returns the label for object displaved in the browser.

{« browser GetNodelist browselList goodList) [Method of [atticeBrowser|
Returns the node data structures of the tree starung at browseList. [f goodList
is given, only include elements of it. {f goodList=T. this is the same as
goodList = browseList.

(« browser GetSubs object) [Method of LatticeBrowser]
Returns a list of the subs from object.

(« browser LeftShiftSelect object objname) [Method of LartticeBrowser]
Called when object is selected with the LEFT mouse button while the shift kev is
down.

(« browser MiddleShiftSelect object objname) [Method of LatticeBrowser]

' Called when object is selected with the MIDDLE mouse button while the shift key is
down.

(« browser ObjNamePair objOrName) [Method of LatticeBrowser]

objOrName may be either an object or a name used to label an object in the browser.
Returns the pair (object . objName).

(« browser Recompute) [Method of LatticeBrowser]
Recompute the browser display using same window and browseList

(« browser Show browseList windowOrTitle goodList) [Method of LatticeBrowser]
Show the items and their subs on a browse window.

(« browser Unread object objName) [Method of LatticeBrowser]
Put $objName into the ty buffer

13.4 Editing in Loops

This section is about editing in Loops. It describes the [.oops interface to the standard Interlisp editors.
In addition 1 the usual teletype oriented editor, Interlisp-D, provides a variety of other editing programs
that make available the benefits of a bitmap display and a mouse. We will describe some of the interfaces
to these editors, but leave the instruction on editing to the appropriate other documents

13.4.1 Editing a Class

The cditor for classes is invoked by sending the message Edit to the class o be edited. The message
Fdit allows an optonal argument. a list of editing commands. as do all the usual Lisp editing functions.

108

THE LOOPS MANUAL

Fxample:r To edit StudentEmployee:
(= ($ StudentEmplioyee) Edit)

An alternative wayv w edit a class s provided by the LISP functon EC (for “edit class™). EC takes the
class name as 15 argument. For this example, the form is:

(EC ($ StudentEmplioyee))
At this point. if vou prettyprint the expression vou will see:

[DEFCLASS StudentEmployee
(MetaCliass Class)
(Supers Student Employee)
(InstanceVariables)
(ClassVariables)
(Methods)]

Suppose now you edit this structure to the one shown below:

[DEFCLASS StudentEmployee
(MetaClass Class)
{Supers Student Employee)
(InstanceVariables (name)
{(project "KBE"))
(ClassVariables (numberEmployees C))
(Methods {(Work StudentEmployee.Work))

This specifies that each instance will have two instance variables. name and project, with default values
of NIL and "KBE", respectively. The class has a class variable numberEmployees. initialized w 0. If

we have an instance of this class bound to the [Lisp variable worker. the following expression causes this
instance to respond to the message Work:
(« worker Work 3)

The result of evaluating this expression is to call the Lisp function StudentEmployee.Work with
arguments (the value of) worker and 3. This is described in more detail in the section on methods.

The normal way to terminate editing is with OK. This causes the revised definition to be installed. If you
exit from this editing session with STOP or tD. all the changes of this session will be lost, since the list
structure is not saved: it is only used to build the new class structure. If vou have made any syntax 2rrors
in editing, warning messages will be printed when you type 0K, and you will be returned o the editor.

13.4.2 FEditing an Instance

To edit an instance, send it the message Edit.
(< object Edit)

This will put vou in the Interlisp editor editing a source for the instance. When vou end with 0K, the
new values will be inserted in the instance.

109

Fditing a Method

An eguivalent way 0 edil an nstance s
[EL objecr)

where object is an nstance. {{F one has an [nterlisp variable, say X1, bound 0 an instance then o edit
one should vpe (EI X1).

When instances refer to other instances, they are printed out in the form #"UI&DII", that is as a hash
mark (#) followed by a string which 15 a unique identifier. When this is read back in from the string
editing butfer of TTYIN, a readmacro for # converts it back nto a pointer to an instance with that unique
identifier. When a class is printed out for TTYIN it prints as #8ClassName. and the # readmacro
converts it bvack into a pownter tw the class.

1343 Editing a Method

Often it is convenient to type to enter only a skeletal definition for a method, and then finish making the
specifications by using an editor. To edit the function for a particular method:

(EM className selector)

This puts you in the Lisp editor, editing whatever function is associated with the selector specified. The
name of the actual function is printed out as vou enter the editing process. Aside from the syntactic
convention of having the first argument 1o a function implementing a method be sel1f, these methods are

perfectly normal Lisp functions. However, special compilations can be done on these using the GLISP
compiler for Loops. This is documented in the section on Lisp interactions.

13.5 [nspecting in Loops

[Loops is integrated into the Lisp system so that one can invoke the Inspector on [oops objects. This
uses the [oops inspect package, which allows a specialized way of viewing the objects in Loops terms as
described in the two sections below.

13.5.1 Inspecting Classes

To inspect a class, send the message Inspect:

(¢« ($ className) Inspect)

13.5.2 Inspecting Instances

An alternative way to modify an instance 1S © inspect it
(¢ object Inspect)

and then vou can set any values and properties. and add or delete any Vs,

110

THE LOOPS MANUAL

13.6 Errors in Loops

“ost errors in Loops which are not errors in Lisp call the function HELPCHECK, which prints out a
message, and zoes intw a Lisp break. The appropriate response to some errors is described helow.

13.6.1 When the Object is Not Recognized

When the value of object in the form

(« object selector argy --- argy)

is not a Loops object. Loops activates the NoObjectForMsg method in the kernel class Object.
The response to this condition can be changed as described below.

This condition can arise if the filler refers to an object that is not in the current environment. For
example,

(¢« ($ FOO) selector arg; --- argy)

will cause the condition if there is no class named FOO in the current environment. [n the default case.
this causes an error. A user can return from the error by typing

RETURN MyValue

to let the process continue. returning My Value as the value that should have been returned had the
method been applied successfully.

Adternatively it is possible to create user-specific responses to this condition by creating a class with a
NoObjectForMsg method and setting the global LISP variable DefaultObject to that class. The

arguments to the NoObjectForMsg method are object and Selector. This method should carry out
whatever response is appropriate, apply the method that was intended. and return the value of that

application.

13.6.2 When the Selector is Not Recognized
If the object is recognized but the selector is not. then the object is sent a MessageNotUnderstood mes-
sage as follows:

(« object MessageNotUnderstood selector)

In most cases. this invokes the default method on the kernel class Object which attempts to perform
spelling correction. If the correction fails. then a break is caused. [f the user then types

RETURN selector
to the Lisp Break Package, the selector so named will be used.

Alternatively itis possible to create user-specific responses to this condition by providing a MessageNotUnderstood

Pl

Breaking und Tracing Methods

method In some super of the object. This method should return a Lisp atom other than NIL. which is
then used as the selector as the SEND 15 tried again.

13.7 Breaking and Tracing Methods

(BreakMethod className selector) [Function]
This function will break the method called by selector in the specified class. [t will
find the function name and break it even if the selector is only found in a superclass.
All calls to that function will be broken, even ones that do not come from className.

(TraceMethod className selector) , [Function]
Similar to BreakMethod. except that it traces the appropriate method.

The Lisp function UNBREAK will unbreak the function which was broken.
13.8 Monitoring Variable Access

(BreaklIt self varName propName type breakOnGetAlsoFlg) [Function]
This function is used for causing an Interlisp break when the value of a variable
or property is set or fetched. The type argument s one of IV. CV, METHOOD, or
CLASS for instance variables. class variables, method properues. or class properties
respectively. If it is NIL, then IV is assumed. [f propName is NIL, then type must
be IV or CV and BreakIt refers to the value of a variable.

If breakOnGetAlsoFLg i1s NIL then the break is only entered when an attempt is
made to store into the value. [f breakOnGetAlsoF'Lg is T, then breaks will also occur
on attempts to fetch the value.

(Tracelt self varName propName type traceOnGetAlsoFlg) ‘ [Function]
Similar 1o BreakIt, except that it will trace the value of a variable or property,
printing the old and new values when the variable or property is accessed.

(UnBreakIt self varName propName type) [Function]
This function is used to remove monitoring (breaking or tracing) for the specified
variable or property. [f selff=NIL. then all known breaks and traces are removed.

>’

14 THE LOOPS KERNEL

14.1 The Golden Braid (Object, Class, Metallass)

All objects are directdy or indirectly a subclass of the object called Object. Object holds all the
methods for the defualt behavior of objects. Heuristics for using these classes. This is the only object
with no super classes.

Class is the class which holds the default behavior for all classes as objects. Class is the default
MetaClass for all classes. If Class is not the MetaClass for a class, it must be on the supers of that
metaClass. There are messages fielded by Class that know how (o create and initialize instances.

MetaClass is the class which holds the default behavior for classes which create classes. MetaClass
is the metaclass for Class, and is the only class which is its own metaClass. In accordance with the
paragraph above Class Is a super of MetaClass.

14.2 Perspectives and Nodes

In many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a father, as an emplovee, and
as a traveler. Each point of view, called a perspective, contains information for a ditferent purpose.
The perspecitives are related to each other in the sense that they collectively provide information about
the same object. Loops supports this organizational metaphor by providing special mixin classes called
Perspective and Node.

Perspective [Class]
[Vs:
perspectiveNode [TV of Perspective]

Indirect pointer to onode containing all perspectives of this object.

Methods:

(« self AddPersp viewName view) [Method of Perspective]
Adds a’perspective to my node. ’

(« self DeleteMeAsPersp) [Method of Perspective]
Delete this object as a perspective of node.

(« self DeletePersp viewName view dontCauseError) [Method of Perspective]
Deletes a perspective from node.

(« self Destroy) [Method of Perspective]

' Destroy self but leave other perspectives on Node.
(« self Destroy!) [Method of Perspecrive]

Destroy self. Node and all other perspectives on Node.

Useful Mixins

{= self GetPersp perspName causefrror) [Method of Perspective]
Returns the perspective of this instance with viewName perspName,

(« self MakePersp viewName nodeType) [Method of Perspective]
If no current perspecuveNode exists, then a node will be created of class nodeType
(or Node if nodeType=NIL}. nodeType should he a subclass of Node. self will
be made the value of the property viewName on IV perspectives of node. [f self
already has a node, then it is used.

Node [Class]
[Vs:
perspectives 4 [TV of Node]

Associated objects are stored on the property list of perspectives under their
perspective names. The value of this [V is irrelevant.

Methods:

(« self AddPersp viewName view dontCauseError) [Method of Node]
Adds a perspective to a node on the [V perspectives as value of property
viewlName.

(« self DeletePersp viewName view dontCauseError) [Method of Node]
Deletes a perspective of a node on the IV perspectives on property viewName.
Checks for consistency. Removes from [V pespectiveNode of view, self as value,
and viewName from property myViewName. [f view is not that perspective, then
causes an error, unless surpressed.

(« self Destroy) [Method of Node]
Destroy the node after detaching all its perspectives.

(¢ self Destroy!) [Method of Node]
Destroy the node and all s perspectives.

(¢ self GetPersp perspName causeError) [Method of Node]

Returns the perspective of this node with viewName of perspName.
/14.3 Useful Mixins

NamedObject and GlobalNamedObject contain only one instance variable. name which holds the
name of this object. Any Loops object can be named. but NamedObject and GlobalNamedObject
both have their names as part of their structure, and if the structure is changed they update their name.
As indicated by its name, instances of GlobaiNamedObject are named in the global name table and
will be known independent of the environment they are in. Instances of NamedObject may only be
known in a single environment, and the name may be reused in another environment.

114

THE LOOPS MANUAL

NamedObject [Class]
GlobalNamedObject {Class]
DatedObject Class]

{
t
DatedObject has appropriate nitial acuve values on its two instance variables so

[Vs:

created [IV of DatedOhject]
Date and tme of creation of object.

creator [TV of DatedObject]
USERNAME of creator of object.

Varlength [Class]
Vartength is a mixin class which allows a class to have indexed instance variables,
from 1 to {« obj Length). These have not vet been extensively used.

[Vs:

indexedVars {[V of Varlength]
Place where indexed variables are stored for VarlLength classes.

Methods:

(+ self Length) [Method of Varlength]

Returns number of indexed variables allocated in this instance.
14.4 The MetaClass Named “Class”

This sections describes the methods defined in the metaClass Class. Anyv of these methods can be
augmented or superceeded in a particular class. The complete list of methods associated with a class can
be determined by using the browser.

The Add. Delete, List and List! methods have an argument type which specifies the type of element
to be added, deleted, or listed. For specifving single items. type should be one of IV. CV. IVPrap.
CVProp. Method, Super, or Meta. For specifying sets of items, type should be IVs, CVs. IVProps.
CVProps. Methods, Supers, Selectors. or Functions.

In the following methods. adding or deleting instance variables and instance variable properties affects
the class, and and therefore affects only instances created after the change. Already existing instances are
not changed.

(« self Add type name value propertyName) [Method of Class]
Add an instance specified by type to the class. E.g. if type= IV then add an instance
variable with the given name using the given value as default. If propertyName IS
given. use value instead as the propertv value on type created or found. The type
must be one of the item tvpes specified above: IV, CV. IVProp. CVProp. Method.
Super. or Meta.

(« self

(¢ self

(« self

(« self

(< self

(& self

(& self

(< self

(¢ self

(¢ self

(¢ self

(« self

The MetaClass Named “Class”™

CommentMethods) [Method o Class]
For each method in the class. obtain its argument list, and insert this in the class
definidon under the method property args. [the source code of a method is In
core. extract the comment which should be the fourth item in the source code. and
insert in the class defintuon under the method property doc. If no comment is
found in the source code, put the user into the editor fooking at that funcuon. When
editing is finished. retricve the comment from the method.

CopyMethod mySelector newClass newSelector) [Method of Class]
Copy the method associated with the selector mySelector from seif 0 newClass
(under the new selector newSelector). newSelector defaults 1o mySelector.

DefMethod selector args exp) Method of Class]
Adds a method for selector 10 class. If args and expr are NIL, puts the user into the
editor)

Delete type name prop) [Method of Class]
Deletes the specified element from class. type must be one of IV, CV, IVProp,
CVProp, Method. Super. or Meta.

Destroy) : [Method of Class]
Destrovs {deletes) a class. ‘

Destroy!) [Method of Class]
Recursive version of Destroy. Destrovs class and its subclasses.

Edit commands) [Method of Class]
Calls the Interlisp Editor on the source for class.

EditMethod selector commands) [Method of Class]
Finds the function associated with selector in class, and- calls the Interlisp Editor on
it.

FetchMethod selector) [Method of Class]
Returns the name of the function which implements this method in this class.

HasCV CVName prop) [Method of Class]
Tests if class has the specified class variable/property.

HasIV [VName prop) [Method of Class]
Tests if class has the specified instance variable/property.

List componentType componentName propName) [Method of Class]

List the immediate components of a class. componentType IS one of the item or
set specifiers described above. [f componentType 1S one of the ttem specifiers. then
componentName should be specified: List will show that item. [f componentType is
IVProps or CVProps. then List will show just the property names of the named
item. Otherwise. for all set descriptors. it will hst all relevant items. propName
must be specified only if component is IVProps or CVProps. Selectors and
Methods are synonyms. returning the list of selectors for the class: Functions
returns the list of names of functons called for methods in this class.

L6

(c—

((—-

(«-

((—-

(4—

(4—

self

self

self

self

self

self

self

self

self

self

self

self

self

self

self

THE LOOPS MANUAL

List! type name verboseFlg) [Method of Class]

Recursive version of List. Omits things inherited from Object and Class unless
verboseflg=1T.

MethodDoc selector) [Method of Class]
Print documentation for the method associated with selector in T1TY window.

MoveMethod newClass selector) [Method of Class]
Moves the method specified by selector from this class to the specified class, changing
the name of the function if 1t is of form className . selector.

New name supers) [Method of Class]
New method for MetaClass. Since MetaClass is its own metaClass, this needs to
work correctly whether self is Class or MetaClass or a subClass of MetaClass.
Work is done by DefineClass in LOOPS.

NewTemp selector superFlg) [Method of Class]
Make a new temporary instance of this class which will not get saved on a database
unless referred to by another saved object.

OnFile file) a [Method of Class]
Rewurns T if self is defined on the file fle.

PP fle) [Method of Class]
Prettyprints the class on the file file.

PP! file) [Method of Class]
PrettyPrints the class at all levels.

PPM selector) ‘) [Method of Class]
Prettyprints the function which implements selector in this class.

PPMethod selector) [Method of Class]
Pretyprints the tunction which implements selector in this class.

Put type name value prop) [Method of Class]
type must be one of IV, CV, IVProp, CVProp, Method, Super, or Meta. Adds
the specified type to the class.

Rename newName environment) [Method of Class]
Give a class a new name, renaming those methods of the form className . selector.

ReplaceSupers supers) [Method of Class]
Replace the entire supers list for this class.

SetMame newName environment) [Method of Class]
Change the name of the class. forgetting old name. Change the names of all methods
which are of the form className. selector. Same as Rename.

SubClasses) [Method of Class]
Returns a list of immediate subclasses currenty known for this class.

143

The Class Named “Object”

The Class Named “Ohject”

Al classes have ject as one of their supers. dirccty or indirectdy. Theretore. all instances know how

Al s have Object g £ th upers, di Iy or indirectdy. Theret 11 st

w respond o the messages defined in Object. [hese can of course be overridden in any class. but
je rovides a set of default behaviors, and generally available subroutines.

Obiect provides a set of default behaviors, and generally available subroutines

{+ self

(« self

(< self

(< self

(« self

(« self

(< self

(e self

(¢ self

(« self

(¢ self

(e self

(« self

AddIV name value prop) [Method of Object]
Adds an IV to instance. [f it is not in regular set, puts it in assoc List on otheriVs.

AssocKB newKBName) [Method of Object]
Change assocKB of this object 0 newKBName.

At varName prop index) [Method of Object]
Returns the value of an “instance variable™ for an object. For an instance object,
instance variables -hold local state. For an object that is a class, we use “instance
variable™ to refer to the variables that are private (o instances of the class. If the
value is an active value, GetValue activates its getF'n.

BreakIt varName propName type brkOnGetAlsoFlg) [Method of Object]
Creates an active value which will cause a break when this value is changed. If
brkOnGetAlsoFlg=T. this will also break when the value is fetched.

Class) [Method of Object]
Returns the class of this object.

ClassName) [Method of Object]
Returns the className of the class of the object.

CopyDeep KBC) . [Method of Object]
Copies the unit, sharing the (Name hst. copying instances, activeValues and lists.

CopyShallow) [Method of Object]
Makes a new instance (a copy of this instance, not copying the values of the instance
variables). with the same contents as self.

DeletelV varName propName) [Method of Object] .
Removes an [V from an instance. No longer shares [VName List with class. Some
programs which depend on [V may not work,

DeletelVProp ivName ivProp) {Method of Object]
Deletes a property of an instance variable.

Destroy) [Method of Object]
Destroy an object in an environment. Removes all [Vs, class pointers, etc. For
garbage collection by user.

DoMethod selector class arg; argy argy argy args argg argy argg argg argyp)

[Method of Object]
Message form of the function DoMethod.

Edit commands) [Method of Object]
Calls the Interlisp ¢ditor on the source of the object.

LS

THE LOOPS MANUAL

(< self HasIV ivName prop) [Method of Object]

%

Returns Tt self contains the specified 1V,

(< self Inspect ASTYPE) [Methed of Objecr]

Calls the Interlisp 1nspector W cxamine self (as an object of ype ASTYPE).

(« seif InstOf className) [Method of Objecy

(< self InstOf!

Retwurns T if self 1S an immediate instance of the class with name className.

className) [Merthod of Object]
Returns T if self is an instance of the class with name className cither directly or
through the supers chain of its class.

(« self IVMissing varName) [Method of Object]

Called from macro FewchlVDescr when there is no [V varName. [f varName 1S 2n
[V of the class, then it adds [V to the instance and returns the [VDescr as requested.
Will also do this if user returns with 0K from HELPCHECK.

(¢« self List typeName) [Method of Object]

(< self List!

List [V properties, [VS of object. or other properties inherited from class.

type name verbosellg) [Method of Object]

Recursive form of List for objects. Omits things inherited from Object unless
verboseFlg is T.

(« self MessageNotUnderstood selector superFlg) [Method of Object]

[nvoked when a selector is not found for an object during a message sending
operation. Attempts o do spelling correction on the selector. Causes an error if this
fails.

(« self NoObjectForMsg selector) [Method of Object]

(< self PP)

(= self PP Ale)

Called from FetchMethodOrHelp when self is not a Loops object with a defined
class. A specialized response [o this can be tilored in a given Loops application by
first reseting the global Interlisp variable DefaultObject to pointto an object. This
default object will field NoObjectForMsg messages from FetchMethodOrHelp.
The method for NoObjectForMsg on DefaultObject should return a default
value, usually dependent on the selector.

This version of NoObjectForMsg just causes an error break. A user can return
from the error by typing RETURN value, where value 1s the value that should have
been returned as the result of sending selector 10 self.

[Method of Object]
PrettyPrints an instance definition on file.

[Method of Object]
PretryPrints an instance to all levels.

(« self PrintOn file) [Method of Object]

This is the default printing funcuon for Ob ject. [t distunguishes between temporary
objects. named objects. and others.

Functions for changing Loons Structure

{ = self Put varName newValue propName index) [Method of Object]
Puts new Value in an instance variable {see GetVatue. page 19). If the value/property
of the vanable conwins an acuve value, the putFa is activated.

(« self Rename newName environment) [Method of Object]
Removes an old name. and gives it new name.

(« self SetMame name environment noBitchFlg) [Method of Object]
Associates a name with an object in an environment. This works for instances and
classes. An object can have more than one name.

(¢ self Tracelt varName propName type traceGetAlsoFlg) [Method of Object]
Creates an active value which will cause tracing when this variable is changed. Will
also trace on fetches if traceGetAlsoFlg=T.

(¢ self UnSetName npame eavironment) [Method of Object]
If name actually names self in environment, then delete the association between self
and name.

(« self Understands selector) [Method of Object]

Tests if self will respond to selector.

(¢« self Wherels name type propName) [Method of Object]
Searches the supers hierarchy unul it finds the class from which type is inherited.
type=NIL defaults to METHODS.

14.6 Functions’for changing Loops Structure

14.6.1 Moving and Renaming Methods

There are a number of Interlisp functions available to help in the process of reorganizing class structures.
[t is often the case in the development of a set of classes for some job that one finds some common super
class of a set of classes, and wants to move a method up to the super, or copy it down from the super.
Also renaming both the selector and the function of a method is sometimes useful.

(RenameMethod className oldSelector newSelector) [Function]
Changes the selector oldSelector 10 newSelector in className and if the function
name is className . oldSelector does a RENAME 10 className . newSelector.

(RenameMethodFunction class oldName newName) [Function]
Renames a funcrion used as a method in class. [Does not change the selector.
Complains if oldName 1s not found.

(MoveMethod oldClassname newClassName selector) [Function]
Moves the method from oldClassname 10 new(ClassName, and renames the function
if it is of the form oldClassname. selector 10 newClassName . selector.

(CalledFns classes definedFlg) [Function]
Given a list of classes, this function computes the list of ail functons called by those

120

THE LOOPS ManNUAL

It definedFig=T.

classes. only returns the Hist of those funcuons which are defined.

14.6.2 Moving and Renaming Variables

[t is sometimes convenient to be able 10 move methods and variables when reconfiguring classes in an

inheritance lattice. The following functions are provided for this.:

(RenameVariable className oldVarName newVarName classFlg) [Function]
Changes the name of the variable from oldVarName 10 newVarName. Changes anv
references 1o these variables in methods of the class.

(MoveVariable oldClassName newClassname variableName) [Function]
Moves the entre description of an instance varniable into the new class.

(MoveClassVariable oldClassName newClassname variableName) [Function]
Moves the entire description of a class variable into the new class.

1 LOOPS AND THE INTERLISP SYSTEM

(91

15.1 Saving Class and [nstance Definitions on Files

Loops has been integrated with the Interlisp file system to allow saving of class definitions on files. The
file command:

(CLASSES * classNamelList)

added to the filecoms of any file will allow one tw dump out the preuyprinted version of the source
vou see when vou edit the class definition. These class names can be listed in any order in a single list
provided that all super classes of a class on the list are on the list as well, or will be previously defined.
(INSTANCES * instanceNamelList)

added to the filecoms of any file will allow one to dump out the prettyprinted versions of named instances.
as well as any unnamed instances that they point to.

Functions used to implement methods are ordinary [nterlisp functions. Those that are named automatically
by Loops as className . selector start with the same characters: they will be found alphabetically together
on any function list which is created. The function CalledFns {page 120) can be used get a list of all
functions used by a list of classes.

15.2 Classes for Lisp Datatypes

One can use the message sending protocol with records (lists) whose first element is a class, or ordinary
Interlisp datatypes. In the first case. the first element is used as the class to look up the method to be
used. In the second case. the class is found using the function (GetLispClass obj). which looks it
up in the hash table LispClassTable, based on the type name of the datatype.

We call datatvpes with associated classes and records with first element a class pseudociasses, and instances
of them pseudoinstances. If GetValue or PutValue are called with self bound to a pseudoinstance.
then the method associated with the selector GetValue in the pseudoclass (call it PC) is called as follows:

(APPLY* (GetMethod PC 'GetValue) instance varName propName)

or
(APPLY* (GetMethod PC 'PutValue) instance varName newValue propName)

[f the associated class PC has a GetValue (PutValue) method. then values of the variables can be
found. This allows a mixture of compiled access to datatype fields. and interpreted access within { oops.

15.3 Some Details of the Loops implementation

Methods are implemented by Lisp functions. 'he message sending expression:

122

THE LOOPS MANUAL

(< object selector arg; --- argy)

is expanded as a compiter MACRO into

{APPLY* (FetchMethodOrHelp object 'selector) object arg; - argy)

GetMethod returns the name of the Interlisp function associated with selector anywhere in the class of
object, or in the superClass chain of that class. Notice that the object is implicitly included as the first
argument of the function. as well as being the argument for GetMethod. By svntactic convention the
first argument (bound to the object) in any function which is being used as a method is called se1f. The
expression for the object 1s evaluated only once.

Objects in Loops are represented in memory as Interlisp datatypes. The datatypes for classes have property
lists for methods, class variables. instance variables, and their propertes. Datatypes for instances have
property lists for instance variables and their properties. [n general, the selector names and variable
names are stored in the class objects. When instances are read in from a data base, they have their local
name tables aligned with the class standards. Special provisions are provided for handling instances whose
variable names do not correspond to current class definitions. [nstances act as if they have local tables for
lookup of variables and properties. but they usually share the class name table and no storage is actually
allocated for local tables unless it is needed.

Default values for instance variables and properties are not copied 1o an instance. No space for instance
variables or properties is allocated until that variable or property has been set individually tor the instance.
This means that the default values are not just inttual values. In particular, if a class is altered to change
the default value of an inséance variable. then all of the instances that do not have individualized values
will reflect the new default value. Also, there is no storage overhead in instances for unchanged properties
(e.g.. for documentation) defined in classes. Since individualized values of variables are stored in the
instances. there is no need to search the class hierarachy after a variable or property has been set in the
instance. In contrast, since class variables are shared among instances it is always necessary to go to the
class (or a super class) to get a value.

Although many of the ideas of the Loops database were inspired by PIE. the implementation differs
along several dimensions. PIE was intended primarily for use with a browser (i.e., an interactive viewing
and editing program), and efficiency was not a primary concern. Since Loops was intended for use by
programs with potentially extensive computational processes. a need for efficient access was perceived and
this led to some different tradeoffs in the choice of implementation.

One difference between PIE and Loops is the grainsize of the changes written in layers. PIE performs
separate bookkeeping on changes to values of every variable in objects. Loops avoids the storage penalty
of this by keeping track only of which objects have been changed. This means that file layers in PIE
contain partial objects (e.g.. a change to a single variable) while layers in Loops contain complete objects.
In effect, [.oops economizes on space (and time) in memory instead of space in the databases.

Another difference is that the Loops implementation tries to reduce the cost of references to values
by snapping links to references. However. link snapping is fundamenually in conflict with a lookup
process that takes an environment as an argument. Link snapping precludes the sharing of objects
hetween environments in those cases where the interpretation of the references in the shared objects is
sensitive to the environment. Loops preserves a complete isolation of environments, with exchange of
information permitted only as a knowledge base transaction. In general. realigning an environment to
incorporate changes from another environment requires writing out the changes, clearing the memory
in the cnvironments., and re-opening the associated knowledge bases. In contrast. PIE alwavs shared
information between contexts. but it paid the overhead of reinterpreting the symbolic addresses repeatedly

Some Details of the Loops implementation

124

INDEX

A (RuleSer Compiler Option) 99 audit mode 73

access expressions 18 audit records 73

active values 9.19-20 auditObject (Varable) 382

(« self Add type name value auditVarName (Variable) 82
propertyName) (Method of Class)
115

Add* (Browser Command) 103 B (RuleSet Compiler Option) 98

AddCV (Browser Command} 103 boot lavers 44

(« self AddEntities entityList) boxedNode (/V of LaiticeBrowser) 107

(Method of KBSiate}) 37

(« self AddEntities entityList)

(11/[8[/’10(1 Of Layer) 61 (“' browser BoxNode Objt?Ct)
(Method of LarticeBrowser) 107

BoxNode (Browser Command) 104

AddIV (Browser Command) 103
(BreakIt self varName propName type

. (« self AddIV name value prop) breakOnGetAlsoFlg) 112

(Method of Object) 118 _
(<« self Breaklt varName

(¢ self AddPersp viewName vie?v) propName type brkOnGetAlsoFlg)
?fthauseEmor) (Method of Node) (Method of Object) 118
. (BreakMethod className selector) 112
(« self AddPersp viewName view)
(Method of Perspective) 113 browseFont (IV of LatticeBrowser) 107:

106
(« self AddToContents newAddition)
(Method of KB) 38; 464850 BT (RuleSet Compiler Option) 98

(« self AddToContents newAddition)
(Method of KBState) 57

(AddValue object varName newValue
propName) 20

(Cal ledFns classes definedFlg) 120
caller (Variable) 82

(ApplyMethod object selector arglist (¢ 581_{' Cancel) (Method of Environment)
class) 33 59. 51
args (Method Property) 116 (¢ self ChangedKBs)

Method of Envi) 59 57
assocKkB (IV of Environment) 59 (Method of Environment) 3
1 “las 1
assocKB (IV of Layer) 61 Class (Class) 5
. / . bl
(« self AssocKB akb) Class (MewaClass) 1157 113

(Method of Environment) 359:. 4954 (« self Class) (Method of Object) 118

(¢ self AssocKB newKBName) class variables 13.18
(Method of Object) 118
CtassBrowser (Class) 105
(¢ self At varName prop index)

(Method of Object) 118 ClassDoc (Browser Command) 102
AtCreation (Function) 35 classes 7.13
Audit Class 81,89 CLASSES (File Package Command) 122

Index.i

(= self ClassiName) (Verhad of Object)
118

(= seif Cleanup
KBNames noBootlayerFlz)
{Method of Fnavironment) — 60:
45.51.54

(« self Cleanup)
{Method of Environmentdeta) 62:
50

(« self ClearObjectMemory)
(Method of Environment) 60

(< self Close assocKBs)
(Method of Environment) 60:
45-46.49-50

(¢ self Close leaveKBattachedFlg)
(Method of EnvironmentMeta) 61;
50

(¢« self CommentMethods)
{(Method of Class) 116

compound literals 33

(¢« self Connect nameTable)
(Method of KBState) 357

(¢ self Connect nameTable)
{(Method of Laver) 61

connectedEnvs (/V of KB) 38

(¢ self ConnectForOutput pameTable)
(Method of KB) 58

(« self ConnectOutput KB)
(Method of Environmeni) 60

contents (/V of KB) 38
contents (/V of KB)} 43
contents (IV of KBState) 57
contents (IV of KBStare)) 43
Copy (Method of KB) 54

(¢« self CopyDeep KBC(C)
(Method of Object) 118

(< self CopyFilelayer layer)
(Method of KB) 358

(« self CopyFilelLayers
layerDescription) (Method of KB)
38; 52

(« self CopyMethod mySelector newlass
newSelector} (Method of Class) -116

{— self CopyObjects objList)
(Method of Environment) 607 30-31

{« oldRuleSet CopyRules
newRuleSetName) (Message) 95

{(« self CopyShallow)
(Method of Object) 118

CopyTo (Browser Command) 104
created (/V of DatedObject) 115
creator (IV of DatedObject) 115
CurrentEnvironment (Variable) 14.50

(¢« self CurrentState)
(Method of KBState} 57

currentWriter (IV of KB) 38
CVDoc (Browser Command) 103

DatedObject (Class) 115
(DC className supersList) 13
DefaultObject (Variable) 111119
(DefAVP faName putFlg) 29
DefineClass (Function) 117
DefMethod (Browser Command) 103
DefMethod (Message) 16

{« self DefMethod selector args exp)
(Method of Class) 116

DefRSM (Browser Command) 103

(DefRSM C(ClassName Selector
RuleSetName) 97

Delete (Browser Command} 104

(« self Delete type name prop)
(Method of Class) 116

{« self DeletelV varName propName)
(Method of Object) 118

{« self DeletelIVProp ivName ivProp)
(Method of Object) 118

(« self DeleteMeAsPersp)
(Method of Perspecrive) 113

(= self DeletePersp viewName view
dontCausefrrory (Method of Node)
114

{«< self DeletePersp
viewName view dontCauseError)

(Method of Perspective) 113

(« self Describelayers dateOrDays
assocKBY (Method of KBState}) 37:
52

Destroy (Message) 56

(« self Destroy) (Method of Class) 116

(¢ self Destroy) (Method of Node) 114

(« self Destroy) (Method of Object)
118 ,

(« self Destroy) (Method of Perspective)
i13 '

(« self Destroy!) (Method of Class)
116

(« self Destroy!) (Method of Node)
114

(¢« self Destroy!)
(Method of Perspective) 113

(« self Disconnect) (Method of KB)

58
(DM className selector argsOrFnName
form) 16

Dol (RuleSet Control Structure) 66
DoAY (RuleSet Control Structure) 66
116

102

doc (Method Property)
Doc* (Browser Command)

(DoFringeMethods object selectorExpr

argy - argy) 33

(DoMethod object selectorExpr class argy
- argy) 32

(« self DoMethod selector class arg; argy
args argy arg5 argg argy argg argg

argyg) (Method of Object) 118

DoNext (RuleSet Control Struciure) 72

DoSelectedCommand
obj
{(Method of Latiice Browser)

(= browser

command objName)

147
dot 85

(= self DumpToKB
kbName assocKBNames)
{Method of Environment) 60; 53

(EC ciassName —) 13, 109
Edit (Message) 15.108-109

(¢ self Edit
(Method of Class)

(¢ self Edit commands)

{Method of Object)

Edit* (Browser Command)

commands)

116

118

104
104
104

(¢ ClassName EditMethod selector)
(Message) 94

{« self EditMethod selector commands)
{(Method of Class) 116

EditObject (Browser Command)

EditCVs (Browser Command)
EditIVs (Browser Command)

104

(« browser EditObject object objName

args) (Method of Lattice Browser)

107
EditRules (Message) 94
(¢ browser EEObject object objName)

{Method of LatticeBrowser) 107
ET (Function) 110
EM (Browser Command) 103
(EM ClassName selector) 94
(EM className selector —) 17; 110

103
103

EM! (Browser Command)
EM* (Browser Command)
Environment (Class) 39
environmental objects 42

EnvironmentMeta (Class) 62

&

[ndex.3

11.42-45

cnvironments
ER (Message) 94

ErrorOnNameConflict (Furiable) 14

{« self FetchMethod selector)
(Method of Class) 116

FetchMethodOrHelp (Function)
file (IV of Layer) 61
fileName (IV of KB) 38

(¢« self Files fileLst)
(Method of Environment) 60

(¢ self Files fleList)
(Method of KBState) 357

(¢ self Files fileLst) (Method of Laver)
61

FirstFetch (Active Value) 35

119.123

FirstFetch (Function)- 26.35

(¢« browser FlashNode
node N flashTime)
(Method of LaiticeBrowser) 108

(¢ browser FlashNode object)
(Method of LatticeBrowser) 108

(¢ self FreezeKB name) (Method of KB)
58: 47

{GetClass class propName) 12
(GetClassHere class propName) 212

(GetClassIV class varName propName)
2

(GetClassOnly class propName —) 11

(GetClassValue object varName
propName) 19

{GetClassValueOnly object varName
propName) 21

(GetCVHere object varName propName)
21

(GetIt object varOrSelector propName
type) 23

INDEX

(GetltHere object varOrSelector

propName type) 13

{GatltOnly object varOrSelector

propName typej 13

(GetIVHers object varName propName)

21

(« browser Getlabel objéca)
(Method of LatticeBrowser) 108

GetlLispClass (Function) 122

(GetlLocalState activeValue self
varName propName type) 28

(GetlLocalStateOnly activeValue) 28

(GetMethod class selector propName)
22

(GetMethodHere class selector
propName) 23

(GetMethodOnly class selector
propName) 13

{« browser GetNodelist browselList
goodList) (Method of [atticeBrowser)
108

(« self GetPersp perspName causeFrror)
(Method of Node) 114

(< self GetPersp perspName causefrror)
(Method of Perspective) 114

(¢ browser GetSubs object)
(Method of LatticeBrowser) 108

(GetValue object varName propName)
19

(GetValueOnly object varName
propName) 11

global name table 44

GlobalNamedQObject (Class) 115

{« self HasCV (CVName prop)
(Method of Class) 116

(« self HasIV [VName prop)
(Method of Class) 116

(« self HasIV ivName prop)
(Method of Object) 119

Index. 4

HELPCHECK /(Funciion) 111

indexedVars (/V of Varlengih) 113
inheritance newworks 8

Inspect (Browser Command) 104
Inspect (Message) 110

(¢« self Inspect ASTYPE)
{Method of Object) 119

instance variables 13,18

instances 13

INSTANCES (File Package Command) 122

(¢« self InstOf className)
(Method of Object) 119

(« self InstOf! className)
(Method of Object) 119

(¢« self IsCurrent)
(Method of Environment) 60; 50

IT (Variabley 104
IVDoc (Browser Command) 102

(e self IVMissing varName)
(Method of Object) 119

KB (Class) 58

KBMeta (Class) 61
kbName (/V of Laver) 61
KBs 43

KBState (Class) 57
KBStates 43
knowledge bases 1041

“©

lastSelectedObject ([V of LatticeBrowser)
107, 106
LatticeBrowser (Class) 106: 105

Layer (Class) 61

s Index.

Voof Latiice Browser)

(« browser LeftShiftSelect object
objname) (Method of aitice Browser)

108; 106

(= self Leagth) (Method of Varlength)
115

LHS 30

LispClassTable (Variable) 122

(« self List componentType
componentName propName)

(Method of Class) 116

(+ self List typeName)
{Method of Object) 119

(« self List! type name verboseFlg)
(Method of Class) 117

(« self List! type name verboseFlg)
(Method of Object) 119

ListRuleSets (Function) 96

LocalCommands (CV of LatticeBrowser)
107, 105

{MakeActiveValue self varOrSelector
new(GetF'n newPutFn npewlLocalSt
propName type} 29

{« self MakeCurrent)
(Method of Environment) 60;
50-51.54

{« self MakeNotCurrent
bitchlfNotCurrent) (Method of Environment)
60: 350

{« self MakePersp viewName nodeType)
(Method of Perspective) 114

(< self MapObjectNames
mapfn assocKBs noUlDs)
(Method of Environmenr) 60; 53-34

(« self MapObjectNames mapFn
nolUIDs) (Method of Layer) 61;

A
[y

LAy

{« self MarkDeleted chjToBeDeleted)
(Method op Eaviroumeni) 66
MDD H0

[
il

MessageNotUnderstood (Vessage)

{« seif MessageNotUnderstood selector

superFlg) (Method of Object) 119
meta-description 80 |
MetaClass (Metaclass) 36,113
metaclasses 7.13
MethodDoc (Browser Command) 102
(¢« self MethodDoc selector)
(Method of Class) 117
methods 7,13
MiddleButtonItems (CV of LatticeBrowser)
107; 105

(« browser MiddleShiftSelect object
objname) (Method of LatticeBrowser)

108; 106
Move* (Browser Command) 104

(MoveClassVariable oldClassName
newClassname variableName) 111

(MoveMethod cldClasspame newClassName
selector) 120

(« self MoveMethod newClass selector)
{Method of Class) 117

MoveObjects (Wessage) 54

MoveTo (Browser Command} 104

(MoveVariable oldClassName
newClassname variableName)

multiple alternatives 12.42
(« self MyKB) (Method of KBState)

121

Lo
—1

name ([V of GlobalNamedObject) 114
name (IV of KBSiate) 37
name ([V of NamedObject)

115:

114
NamedObject (Class) 15

nameTable ([V of Environment)

INDEX

New (Srowser Conunand) 104

(< class New) (Message) 14

{« metaClass New className superslist)
{Vessage) 150 3436

(e self New name supers)
(Method of Class) 117

(« self New kbName envName
newVersionFlg) (Method of KBMeta)
61 44.46.50

NewTemp (MWessage) 55

(« self NewTemp selector superFlg)
(Method of Class) 117

class NewWithValues
valDescriptionList) (Message) 34;

Node (Class) 114

(<-

b
NoObjectForMsg (Wessage) 111

(¢ self NoObjectForMsg selector)
(Method of Object) 119: 111

NotSetValue (Variable) 19.21-23

.NoUpdatePermitted (Function) 26

Object (Class) 118: 113

{Object? X) 14

objects 13

(« browser ObjNamePair objOrName)

(Method of LatticeBrowser) 108

self 01d kbName envName)
(Method of KBMeta) 61 45-48 .52

self OnFile file) (Method of Class)
17

((—

(4—

self Open) (Method of Fnvironment)
60; 45-46,48.50

(<~

opentnvironments (Variable) 50

(¢« self Openfiles)

{Method of EnvironmentMeta) 62
outputkB (IV of FEnvironment) 39

owners (/V of KB) 38

index.6

Perspective (Class) 113

parspactiveNode (V' uf Perspective)
113

e

perspecuves 37
perspectives /11 of Node) 114
‘position (IV of Layer) 61

PP (Browser Command) 102

PP (Message) 56

(« self PP file) (Method of Class) 117
(« self PP) (Method of Object) 119

PPt (Browser Command) 102

(« seif PP! fle) (Method of Class) 117
(« self PP file) (Method of Object) 119
PPM (Browser Command) 102

(« self PPM selector) (Method of Class)
117

(« self PPMethod selector)
(Method of Class) 117

(¢ RuleSet PPR) (Yessage) 96

(¢ RuleSet PPRules) (Message) 96
PPV (Browser Command) 102

PR (RuleSet Compiler Option) 98
Print* (Browser Command) 102

(« self PrintContents fle)
(Method of KB) 38

(¢ self PrintOn file) (Method of Object)
119

PrintSummary (Browser Command) 102
properties 7

propName (Variable) 35

pseudoclasses 122

pseudoinstances 122

(PushClassValue object varName
newValue propName) 20

(PushValue object varName newValue
propName) 20

(< self Put type name value prop)

(Meithod of Class) 117

{« self Put varName newValue propName

index) (Method of Objecty 120

{PutClass class newValue propName)
7

(PutClassIV class varName newValue
propName) 21

(PutClassOnly class newValue
propName) 12

(PutClassValue object varName
newValue propName) 20

(PutClassValueOnly object varName
newValue propName) 21

(Putlt object varOrSelector newValue
propName type) 23

(PutlItOnly object varOrSelector
newValue propName type) 13

(PuttocalState activeValue newValue
self varName propName type) 28

(PutlocalStateOnly activeValue
newValue) 28

(PutMethod class selector newValue
propName) 213

(PutMethodOnly class selector newValue
propName) 13

(PutValue object varName newValue
propName) 20

(PutValueOnly object varName newValue
propName) 11

RE (Function) 99

(¢ self ReadBoot) (Method of KBMeta)
62

(« self ReadBoot) (Method of KBState)
57

(¢ self ReadOldBootlayer kbName
numBack) (Method of KBMeta) 61;
54

reason (Property Name} T3

Index.7

INDEX

reasons (Vuerabdie) 81 {RunRS RuleSet workSpace args -

: 96
f argay
{« browser Recompute gN)

(Method of LaiiceBrowser) 108 (RunTogether taskList) 92

(= self Rename newName environment)
(Method of Class) 117
selectors 7
(« self Rename newName environment)

(Method of Object) 120 self (Variable) 82 3531
Rename* (Browser Command) 104 SEND (Function) 13
{RenameMethod className oldSelector SENDSUPER Mac 32
)
newSelector) 120 (« self SetContents Ist)
(RenameMethodFunction class oldName (Method of KB) 39
newName) 120 (¢« self SetContents Ist)
(RenameVariable className oldVarName ~ (Method of KBSiate) 57
J 3
newVarName classFlg) 121 (« object SetName name) (Vessage)
(ReplaceActiveValue activeVal C 140 3439
aewVa]ue?SSelf varName propName (« self SetName newName environment)
type) 2 (Method of Class) 117
' on) 2
ReplaceMe (Function) 27 (« self SetName pame environment
(« self ReplaceSupers supers) noBitchFlg) (Method of Object) 120
(Method of Class) 117 Shared (Liatom) 26
RHS 80 (¢« browser Show

right hand side 80 browseList windowQrTitle goodList)

(Variable) 82 (Method of LatticeBrowser) 108
rs (Variable 2

Specialize (Browser Command) 103
RSGet (Property Name) 97

Specialize (Message) 39
(Startl taskList) 92
(StartAll taskList) 92

RSGetFn (Function) 97
RSPut (Property Name) 97

RSPutfn (Function) 97
startingbList (/V of LatticeBrowser)

Rule Class 81 107

ruleApplied (Variable) 82 6772 status (IV of Environmeny 39
ruleLabel (Varable) 82 status (IV of KB) 38

ruleNumber (Variable) 82 (Stop value status reason)
ruleObject (Variable) 82 (RuleSet Statement) 93

RuleSet (Class) 94 (« selfl_}%ub(ﬁiasses) (Method of Class)

RuleSets 65
(Runl taskLiss) 92

SubRuleSets 65

(« self Summarize
{(RunAl11l taskList) 92 fromKBName toKBName

[ndex.8

zssccBNames namedObjectsOnly)

(Vethod of KBMeta) 62
13

")
b

super classes

supers 13

supers list 8

T (RuleSer Compiler Option) 93

task (Variable} 82

Task Class 81

Tasks 69

Template (MetaClass) 38

(¢ self ThawKB name) (Method of KB)
59. 48 7

title (IV of LatticeBrowser) 107; 106

107

topAlign (IV of LatticeBrowser) 107;

Titleltems (CV of LatticeBrowser)

106
(Tracelt self varName propName type
traceOnGetAlsoFlg) 112

{(« self Tracelt varName propName type
traceGetAlsoFlg) (Method of Object)

120
(TraceMethod className selector) 112

TT (RuleSet Compiler Option) 98

UE (Function) 101

{UnBreakIt self varName propName
type) 112

{« self Understands
(Method of Object)

selector)
120
Unread (Browser Command) 103

(< browser Unread object objName)
(Method of LatticeBrowser) 108

{+ self UnSetName name environment)

(Method of Object) 120

variables

Vartength (Class)

variName (Variable) 35
(Waitl taskList) 92
(WaitAll taskList) 92

Wherels (Browser Command) 103

(« self Wherels pame type propName)
{Method of Object) 120

Whilel (RuleSet Control Structure) 67
WhileAll (RuleSet Control Structure) 67

WhileNext (RuleSet Control Structure)
72
107:

window (IV of LarticeBrowser) 106

(« self WriteBoot)
(Method of Environment) 60

(« self WriteBoot) (Method of KB} 39

(¢ self WriteEntityFile
changedEntities namedFEntities
assockbName) (Method of KB) 39

(¢ self WriteFilelLayer kbName

nameTable) (Method of KBE)

self WriteUpdate kbName)
(Method of Environment) 61

(o 1]
=

((—

(e—

«t

object Selector arg; ---
13

(Rule [nfix Operator) 90

(Rule Infix Operator) 90

arg)

.

+

i

fom

{«B accessExpr newValue) (Macro) 18

(<@ object accessExpr newValue) (Muacro)

18
«New (Macro) 34

(«Super object selector arg;
argy) 31

(«Superfringe object selector arg
argn) 32

Index.9

~ (Rule Unarv Operator) 84

~= (Rule Infix Operator) 84

S {(Funcrion) 13-14
St (Function) 15

* (Rule Infix Operator) 83

+ (Rule Infix Operator) 83
++ (Rule Infix Operator) 83

= (Rule Infix Operator} 83
" = (Rule Unary Operator) 84
~~ (Rule Infix Operator) 83

!/ (Rule [afix Operator) 84

< (Rule Infix Operator) 84

<< (Rule [nfix Operator) 84
<= (Rule Infix Operator) 84

= (Rule Infix Operator) 84
== (Rule [nfix Operator) 84

> (Rule I[nfix Operator) 84
>= (Rule Infix Operator) 84

(@ accessExpr) (Macro) 18
(@ object accessExpr) (Macro) 18

INDEX

Index.10

Filed on: {Indigo<Loops>LoopsCourse>l vopsCourseSummary.bravo
[astedited: GB fune 14, 1983 647 PM

LOOPS Course Summary

\ccessing Objects and Variables
(S namej evaluates to the object or class named name.
(SY arom) evatuates o the object or class whose name s the value of arom
evaluates to the value of the instance variable. class variable, or property or these

(@ accessFxpr)
eterred to by accessExprin self.
(@ obj accessExpr) evaluates to the value of the instance variable, class variable, or property of these
r\,rerred o by accesstxprin obj
(=@ accessfxpr newValue) sets the value of the variable accessed by accessFE xprin self to newlalue

(«@ obj accessExpr newValuey sets the value of the variable accessed bv accessExprin obj 1o newbualue
accessE xpris the concatenation of any combination of the following with evaluation strictly left to right

viName instance variable viVame
eviVame class variable cvName
,propName value of property propName

.selector value returned by sending the unary message selector
N.B. a!(bang) after any of the puctuation in the four lines above will cause the atom following it 10 be evaluated
and that value to be used as the name. Within an accessf xpra lisp variable is prefixed with a backslash "\"
(i.e. ::fee.fie:!\foe:, fum will get the value of CV fee of self and send it the message fie, then it will get the instance
variable whose name is the value of the lisp variable foe from the object returned by the message fie, then it
will get the value of property fum of that [V)

Defining and Editing Classes .

(DC className supersi isty (= (8 Classy New className superslist) create a class with name className and
supers supersi_ist

(EC className) (« (S className) Edit) edit the class defininon of class className

Defining and Editing Methods ;
(DM className selector) creates a function with the name className.selector to be used hy the method

called by selector and puts you in the editor

(DM className selector fniName) causes the function with the name /aName to be used by the method called
by selector

(EM className selector) edit the method used by selecror in class className

Creating, Kditing, and [nspecting [nstances

{« class New) creates a new instance of class
(« class New ‘name) creates a new instance of ¢lass with the name name
{« obj Edit) (El 0b)) edit oby

{« objInspect) (INSPECT o0bj) create an inspect window for obf
(«New class selector argl ... arglN) create a new instance of class and sends it the the message selector with
arguments arg/ ... arghV

Sending Messages

{« obj selector arg! ... argN) send ob/ the message selector with arguments arg! ... argV

(«Super obj selector argl ... argiV) in method selector invokes super method for that selecior with arguments

. argl ... arghN

(«SuperFringe obj selector argl ... argN}y invokes all the immediate super methods of 0bj for that selector with the
arguments arg/ ... argN

(«1objexprargl ... argN) send obj the messag whose selector is the value of expr with the
arguments arg/ ... argA\«

Active Values

#(localState getFn putFny localState is where the value 18 stored (this may be another active value)
gerFn is the function called on read access and puiFn is called on write access
the value returned by getfn in the value of the get operation and putFn has
responsibility for changing the value of localStare using the function Putl ocalState

{Breakic ofy varName) broak whenever the instance vanable wrNgoe of ubj s
‘/ wccessed
romaove the break
2ClOF) break whenever
instance of olas
{ TraceMethod clussNaine selector) rrace whenever .

INSTANCE OF Cluss L/ds

{UNBREAK onlyMosiRecentFlo) standard Lisp runcuon o unbreak or
(Breaklt obj varName propName tvpe breakOnel Alsof g} break whenever the vanable vurName
{Tracelt obf varName propName type breakOntel Aisollg) trace whenever the vartable warNarte of obi s accessed
(UnBreaklt 0bf varNawme propName 1vpe) remove the break on variable varNaime or ohjf
[0 attach a gauge and monitor a vartable:
(= New {5 gaugelypey Attach obj ivName selector) attaches a gauge of type gauge [vpe 1o the instance
variable ivName of 0bj
Rules

tF gets you into the Rule Executive
{OK gets you out of it and UE puts you in the User Executive (where OK will get you back again)}
Variables are accesed by using the access expressions as defined above

accessF xpr gets value of variable {do not use @)
accessExprenewValue variable accessed gets newlV alue
\lispVarName for referring to lisp variables use backslash
selector sends unary message to self
(unary message 1s one that requires no arguments besides self)
{DefRSM className selector) creates a new rule set for the class classiVame invoked by selector and
places vou in the rule editor
(¢ ruleSer CopyRules newRuleSetName) copies the ruleset ruleSer into a new one called newRuleSetName
(« ruleSer ER) ER(ruleSer) edit ruleSer
{ListRuleSets classVame) generates a listing of all the rule sets defined for the class
className
Browsers
(Browse classlist) creates a browser window for the class lattice structure of the classes in class/.ist and their
descendants
left or middle hutton in title area of the browser window updates the lattice structure
[eft Mouse Bution gets pop-up menu o print information about class structure and methods

Middle Mouse Button gets pop-up menu to aid in generatng new classes or methods

An asterisk at the end of the name of any item in the menu signifies that there are multiple options for this item

To use the default opuon, click the left button. for a menu of options click the middle button (i.e. EM* will get
amenu with EM and EM1)}

To copy from class to class use the left button to "BoxNode™ of recepient class then with the middle button
menu select the "Move" item with the middle button to get a menu for either copying of moving of [Vs, CVs,
Methods. or RuleSets

"Specialize” on the middle button menu will create a new subclass of the one selected and ask for a name in the
prompt window

"DefineMethod” on the middle button menu will create a new method for that class and prompt for its selector

Saving and Restoring Files

(FILEST) Lisp will ask vou to assign a filename to each entity it does not already have a file name for
Type yes to specify the file names. For each entity type the jilename 1o save it or | to not
have it saved
[LineFeed (LF) means the same as the previous entity

(MAKEFILE filename} saves the file on the file server on the directory currently connected

(LOAD filename) loads the file from the file server on the directory currently connected

