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Perspectiveson
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DANIEL G. BOBROW AND M~iu<J. STEFIK

Programsarejudgednot only by whether they faithfully
carry out the intended processing but also by whether
they are understandableand easily changed. Program-
ming systemsfor artificial inteffigence applications use
specialized languages, environments, and knowledge-
basedtools to reducethe complexityof the programming
task. Language stylesbasedon procedures,objects, logic,
rules, andconstraints reflect different models for organiz-
ing programsandfacilitate program evolution andunder-
standability. To make progranmiing easier, multiple
styles can be integrated as sublanguagesin a program-
ming environment. Programming environments provide
tools that analyzeprograms and create informative dis-
plays of their structure. Programs can be modified by
direct interaction with these displays. These tools and
languages are helping computer scientists to regain a
senseof control over systemsthat have become increas-
ingly complex.

PEOPLE WHO DEVELOP PROGRAMMING SYSTEMS NEED TO

organizethem in ways that makethem comprehensibleto
other peopleand easy to modify. We will be concerned

mainly with the practiceof artificial intelligence(Al) programming
andabouttheargumentsandtensionsthat haveshapedthecurrent
stateof the art. An intelligent system should embodyand apply
information about itself so that it can assistin its own continuing
development.

The programmingcultureof theAT communityhas asomewhat
different emphasisthan most “production” programming.The Al
programmingprocessis not asequentialprogressionfrom specifica-
tion to implementation,testing,and release.Instead,anexploratory
approachis usedin which specificationand implementationevolve
togetheras the problemis understoodand tested.Anotherdiffer-
enceis thefrequentdesignof experimentalspecializedsublanguages
that make it easier to expresssolutions to the problems being
attacked.

List processing(1) is fundamentalto AT programming(2). As an
example,the list

(IBM (A-Kind-Of ComputerCompany)(HeadquartersNYC))

canbe usedto representrelationsbetweenthe thing representedby
the symbol IBM and other things representedby the symbols
ComputerCompanyor NYC. Manipulationsof theselist structures
candeduceimplicit relations(3), for example,that IBM produces
computers(becauseit is A-Kind-OfComputerCompany).Programs
canuse lists to build structuresof unpredictablesizes andshapes
during executionwithout predeterminedor artificial limits.

List structuresarealsousedto representprogramsin AT systems,
andhencetheyareoftenusedto build toolsto inferimplicit features

aboutprogramsthemselves.This contrastswith typical program-
ming systemsthatdealwith programsas a sequenceof characters;
program changesare made by adding and deletingcharacters.
Higherlevel organizationsof programs,suchasthemodulebound-
ariesandthecallsbetweenpackagesandsoon, areparsedfromthese
charactersbut madeavailablein very limited ways to the users.Al
systemsprovideuserswith interactivedisplaysthatdescribesystems
in theseterms.A usercanunderstandasystemandchangeit directly
through these displays rather than indirectly by manipulation of
text.

A programmingstyle is awayoforganizingprogramson thebasis
of someconceptualmodel of programmingand an appropriate
languageto make programswritten in the style clear. We will
describestylesorganizedaroundprocedures,objects,logic, rules,
andconstraints.Eachstyle is aspecializedlanguageor sublanguage
that shapesthe organizationof programswritten in that style.

Differentstylesdiffersubstantiallyin whatcanbe statedconcisely.
Significant appealarisesfrom what does not haveto be stated.By
eliminating redundancy,the intentof the codecan be more easily
understood.This is animportant virtueof, for example,automatic
storagemanagementfacilities that allow omission of code for
freeing storage.Differentstylesfacilitate differentkindsof program
changethat ensureappropriatepropertiesof the program remain
invariant. Experimentshaveled to systemsin which a numberof
stylesare integratedandto othersin whichonestyle dominates.

ProgrammingStyles
Procedure-onentedprogramming.In this style,subroutinesanddata

structuresarethetwo (separate)primitive elements.Subroutinecalls
arethe primarymechanismfor programcomposition.Subroutines
have the property that they carry out the samealgorithm when
calledfrom differentplaces.Adding a line to acalling program,and
thus changingthe position of the call to a subroutine,does not
changethealgorithm executedby the subroutine.

Datastructuredeclarationsallow programsto referencepartsof a
complexdatastructureby nameratherthan, for example,by index
position in an array.In the declaration,a programmercan specify
oncethe methodfor looking up thenamedsubstructureratherthan
specifyingit in everyplacethat thestructureis referencedin the
procedures.To changethe lookup process,a programmerneed
only changethespecification.Al systemsprovide automaticstorage
managementfacilities thatensurethat anydatastructureno longer
referenceddirectly or indirectly by the programis reclaimed.This
avoidsproblemsthat occurin systemswherea programmermust

DanielG. Bobrowis a researchfellow and Mark 5. Stefik is a principalscientistin the
IntelligentSystemsLaboratoryofthe Xerox PaloAlto ResearchCenter,PaloAlto, CA
94304.

28 FEBRUARY 1986 ARTICLES 951



takeresponsibilityfor storagemanagement,suchasfailure to return
unusedstorageor inappropriatedeallocationof referencedstorage.

Although programmersdo not usually think aboutthe invariants
associatedwith subroutinecall, dataaccess,orstoragemanagement,
they are essentialfor the compositionof large programs.They
confine and control the effects of change. To the extent that
common changesare local, a languageprovides insulationfrom
change-inducedbugs.

Somelanguagesaugmentthe notion of subroutinewith features
intendedto support betterthe sharingof codeby severalpeople.
Modula-2 (4) and Ada (5), for example,provide mechanismsfor
defining modules—collectionsof related proceduresand structure
definitions—andinterfaces—descriptionsof elementsof a module
that may be used from outside that module. The interfacesare
intendedto minimize interferenceaspeoplechangedifferentpartsof
a system.

The interfacedefinition providesinformationaboutmoduledata
types and procedurerequirementsthat can be used for module
optimization.An implementationof amodule is freeto changeany
featuresnot “advertised”in the interface.With theserestrictions,
independentlydeveloped,debugged,andcompiledmodulescanbe
loaded together.The interface definition is the defined narrow
pathwayof interaction.

Object-orientedprogramming: This style (6, 7) hasoften been
advocatedfor simulation programs,systemsprogramming,graph-
ics, andAl programming.Although therearevariationsin exactly
what is meantby object-orientedprogramming(8), in all these
languagesthereareobjectsthat combinestate andbehavior.

Therearethreemajorideasin object-orientedprogramming:(i)
objectsaredefinedin termsof classesthatdeterminetheir structure
and behavior;(ii) behavioris invokedby sendinga messageto an
object; and (iii) descriptionsof objectsmaybeinheritedfrom more
generalclasses.Uniform useof objectscontrastswith thedistribu-
tion of informationinto separateproceduresand datain procedural
programming.

A messageto an objectcontainsa namefor a behavior (often
called its selector) andsomeother parameters.For example,in a
traffic simulationwe couldhaveclassesof vehiclessuchas Carand
Truck.To causeCar-i, an instanceof the classCar, to movein the
simulation,a Loops(9) programwould senda “Move” messageto
Car-i:

(sendCar-i Move400 50)

Associatedwith the classCaris a particularmethodfor Movethat
is run for this invocation.The classTruck hasa different method,
sincetrucksmust obeydifferent traffic rules andconsumedifferent
fuel. The“messagepassing”style allowseachclassto implementits
responseto a messagein its own way. Thesemethods can be
changedindependently.In contrast,procedure-orientedprogram-
ming would requirethat all thevariationsof Movebe incorporated
into the singleprocedurethat implementsMove.

Classescan inherit descriptionfrom other classes.PoliceCarcan
bedefinedasaspecializationof theclassCar.ThenPoliceCarhasall
of the structureandbehaviorof Carexceptthatwhich is explicitly
overriddenor addedin PoliceCar.For example,PoliceCarcanadda
two-way radio and a methodfor Move that can exceedthe speed
limit or interact with traffic light control. Such inheritanceof a
specializedclass from its “superclass”reducesthe needto specify
redundantinformationand simplifies updatingand modification,
sinceinformationcan be enteredandchangedin oneplace.

Specializationandmessagesendingsynergizeto supportprogram
extensionsthat preserveimportantinvariants.For example,splitting
aclass,renamingaclass,or addinga newclassdoesnot affectsimple

messagesendingunlessanewmethodis introduced.Instancesof a
specializedclass follow exactly the same protocolsas a superclass
until local specializedmethodsaredefined.Similarly, deletingaclass
doesnot affectmessagesendingif the deletedclassdoesnot havea
local methodinvolved in the protocol.

Changesto the inheritancenetwork are common in program
reorganization.Programmersoften createnew classesandreorga-
nizetheir classesas theyunderstandthe opportunitiesfor factoring
partsof their programs.Together,messagesendingandspecializa-
tion provide a robust framework for extending and modifying
programs.

Access-orientedprogramming. In object-oriented programming,
when an objectis senta messageit may changethevaluesof some
variablesthatmakeup its internalstate.In access-orientedprogram-
ming (10), whenan objectchangesthevalueof avariableamessage
may be sentto anotherobjectasa side effect if thevalue associated
with thatvariableis an “annotatedvalue.” In termsof actionsand
side effects this is dual to object-orientedprogramming. The
annotatedvalue is a specializedobjectandcan containstateother
thanthe value.

Access-orientedprogramsarefactored into partsthat compute
andpartsthatmonitor thecomputations.For example,supposeone
wereto buildatraffic simulationprogramwith aninteractivedisplay
showingthe stateof the simulation. By dividing it into asimulator
anda display-controller,onecan separateprogrammingconcerns.

Thesimulatorrepresentsthedynamicsoftraffic. It hasobjectsfor
suchthings as automobiles,trucks, roads,andtraffic lights. These
objects exchangemessagesto simulate traffic interactions. For
example,whenatraffic light objectturnsgreen,it sendsmessagesto
starttraffic moving.

The display-controllerhas objects representingimages of the
traffic and provides an interactive user interface for scaling and
shifting theviews. It hasmethodsfor presentinggraphicsinforma-
tion. The simulator and the display-controllercan be developed
separately,providedthat thereis agreementon the strucmreof the
simulationobjects.

Access-orientedprogrammingprovidesthe “glue” for connecting
the simulator and display-controller.The processof connectionis
dynamicandreversible.Whena usertells the display-controllerto
change the views, it can make and break connectionsto the
simulatorasneededfor its monitoring. Thusat onetime ausercan
monitor the simulation asif looking at a mapof the town andat
anothertime asif lookingattheinstrumentpanelof aparticularcar.
For the former, active values attachedto the positions of each
vehicleareusedto updatethedisplay; for the latter, probeson the
speedof the auto andlevel of the gas tank can updatepictorial
gauges.Attachingsuchgaugesdoesnot changethe behaviorof the
programbeingmonitored.

Propertyannotationsin annotatedvaluescan be used to store
usefulbut subsidiaryquantities.Somesystemsstoreameasureofthe
certaintyof that value beingcorrect. A reasoningsystemcan store
thIs annotationwithout having to changethe structure of the
representedobject. Other valuesandrules usedin computingthis
value could be stored as annotations,as in truth maintenance
systems(11). Annotationsalso providea placefor documentation
for humanreadabilityof datastructures.

Access-orientedprogrammingsupportsseveral invariants under
programchange.Annotationscan be addedto programswithout
causingthem to stop working. Annotatedvaluesare invisible to
programsthat arenot looking for them.Theycan beaddedto data
that are alreadyannotated.The sameinvariantshold for recursive
annotatedvalues,that is, for descriptionsof descriptions.Nested
active valuesenablemultiple independentside effects on variable
access.
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Logic programming. There are both declarativeand proced
interpretationsof logic statements(12). Thesimpleststatement
Prolog, the mostpopular logic-basedlanguage,is a statementof a
relation; for example:

Brother(Danny,Rusty)

As adeclarativestatement,it hasatruth value;procedurallyit is a
requestto checkthetruthof thestatement.Prologusesadatabaseof
factsenteredby statementsof the form

Assert(Brother(Danny,Rusty))

to store this relation in a database.A query Brother(Danny,X)
searchesthe databaseandreturnsX = Rusty.The sameelementary
fact couldalso be usedto answerthe query Brother(X,Rusty).

In addition to simple statementsand queries,Prolog programs
consistof setsof statementsstoredin thedatabase.Eachstatement
hasthe form

consequent:- antecedent-i,. . . , antecedent-n

This is read declarativelyas, consequentis true if (:-) each of
antecedent-ito antecedent-nis true. In a proceduralreading,the
consequentis takenasagoalto be achieved,andtheantecedentsare
subgoalsto be tried in order.The declarativeinterpretationof the
statement,

Uncle(X, Y) :- Brother(X, Z), Father(Z,TI)

is “X is anUncleofY if thereis someZ, suchthatX is aBrotherof
Z, andZ is the Fatherof Y.”

This statementcan be read as directions for achievinga goal
Uncle(X, Tfl: first find aZ suchthatBrother (X, Z),andthenprove
that Z is a Father of Y. To verify the truth of Uncle(Danny,
Johanna), the system could find Brother(Danny,Rusty) and Fa-
ther(Rusty,Johanna).

Unlike ordinary procedures,any number of the inputs to a
programcan be left unspecified.The systemsearchesfor one (or
uponrequest,more) bindingsof theinput parametersthatmakethe
consequenttrue. By repeatedapplicationof theUncle rule, starting
with Uncle(Danny,X), the systemwill find all the nephewsand
niecesof Danny; Uncle(X, Johanna)can be used to find all the
unclesofJohanna.

Sincethe givenUncle ruledoesnot completelyspecify theUncle
relation,a secondrule can be addedafter thefirst:

Uncle(X, Y) :- Brother(X, Z), Mother(Z, Y)

After searchingthedatabase(or using otherrules) with thefirst
rule, Prolog would then “backtrack” to use the secondrule. In
general, any number of orderedrules can be used to specify a
relation.AnadvantageofusingPrologis thatnewrulescanbeeasily
addedto modify the system behavior.The system will perform
exhaustivesearchwith all the rules,andwith all clausesfrom the
database,to find appropriatebindings for input parametersthat are
unspecified.

Oneof the important featuresof logic programmingis that is
separatesthe ideaof goalsfrom the statementsof how to satisfy
them. This reificationof goals, ratherthanexplicit calls to particular
methodsfor achievingthem (subroutines),allowsnewmethodsto
beaddedwithout theneedto changethegoalstatements.This is an
advantagein the incrementaldevelopmentof a system,but it may
makeprogrambehaviorhardto understand.

Automatic searchthrough the databaseof rules rather than
explicit controlhasanotherdisadvantage.Someobviousandinno-
cent-lookingrules,suchasthatexpressingthe commutativityof the
Brotherrelation,

Brother(X, TI) :- Brother(Y,X)

i causethe system to go into an infinite loop. The problem of
rch control is an areaofactiveresearchin the logic programming

community.
BecauseProlog providessimple rules with clear declarativese-

manticsandaconvenientinterpretationfor databasesearch,it was
chosenas the starting point for the fifth-generation computer
project in Japan(13).

Rule-basedprogramming.The widespreaduseof the term rule-
basedprogrammingbelies the considerablediversity in what it is
usedto mean(14, 15). Rule languagesare used to supportthe
building of knowledgebases.Rule environmentsinclude tools for
generatingexplanationsof program behavior,tools for answering
questions,andtools for acquiringandintegratingnew rules into a
program.

Rule languagesuseif-then statementsas shownin this rulefrom
Mycin (16):

If the Gram stain of theorganismis Gram-negative,
the morphologyof theorganismis rod, and
the aerobicityof the organismis anaerobic,

then thereis suggestiveevidence(0.7) that the identity of the
organismis bacteriodes.

This rulecanbe usedby reasoningforwardfrom laboratorytests to
accumulateevidenceaboutthe identity of a diseaseorganism.It is
alsousedto reasonbackwardfrom a goalof finding theidentity of
the invading organismto determinewhat testsshould berun. The
(0.7) in theaboverule is aweightingfor theevidencementionedin
the preconditionsof the rule. Extensivework hasbeendonein the
contextof rule-basedsystemson techniquesfor combiningmultiple
pieces of evidence (17). Uncertain information is not usually
handledin logic-basedsystems.

Rule-basedsystemsprovide explanationsof resultsto users by
keepingtrackofwhichruleswereinvokedin aconsultation.After a
consultationthey can explain the reasoningthe system used. A
fundamentalassumptionin thesesystemsis that the displayofrules
appliedis areasonableexplanationof systembehavior.Explanations
do not reflect assumptionsunderlyingrules,causalmechanisms,or
the currentknowledgeof the user.

Forsmall tasks,rulesareviewedasindependent,andgettingthem
right is easybecauserulesaresmallandmanageable.For largetasks,
the interactionsof rules must be considered.Some rule languages
organizerulesinto hierarchical rulesetsthat describehow the rules
are to be applied. Someprovide problem-solvingframeworksin
which rules can be organized. For example, each subtaskin a
network can carry its own relevant rules, as in Pride, an expert
systemfor aiding in a mechanicaldesign(18). In Blackboards(19),
rulesare attachedto nodesof ageneralproblem-solvingmodel. In
structuredsystems,the programmingtaskof addingnew rules also
requiresdecidingwhereto put them.

In summary,theavailablerulelanguagesareimportantin narrow,
carefullychosenapplications,often for expertsystems.Their funda-
mentalstrength—theconstructionin termsof independentindivid-
ual rules—isalsotheir limiting factor.

Constraint-orientedprogramming. The idea of developingpro-
gramminglanguagesaroundthe conceptof constraintsatisfaction
hasappealedto computerscientistsfor years(20). Theideais thata
programmerneedonly declarecertain relations amongprogram
variableswithoutsayingpreciselyhow theyshouldbeachieved.The
detailsof the computationcanthen befiguredout by thesystemby
meansof implicit, automaticconstraintsatisfactiontechniques.

For example,theequationx + y = 5canbeviewedasaconstraint
on possiblevaluesfor thevariablesx andy. If numericvaluesfor x
andyaregiven,we cansubstitutethosevaluesinto theequationand
determinewhetherthe constraint is satisfied. In this example, a
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Fig. 1. A browser,showingtheinheritanceofclassesfor thesimulation.On
theright is an interactivemenufor someoftheoperationsthatcanbe done
by pointing to elementsof this browser.TheAdd item on themenuallows
additionof structure,methods,orclasses.As indicated,thedefaultoperation
is to add a method. Such browsersprovide a simple way of specifying
common changesand maintain an up-to-datedisplay of the program
structurethroughoutthe process.

numeric value for either variable togetherwith the constraint is
enoughto determinethe valueof theothervariable.

The mostwidely usedandpracticalsystemsbasedon constraints
arethespread-sheetprogramsthat havebeenpopularon personal
computers.Spread-sheetprogramsprovide a matrix of rows and
columns for organizingvalues and constraintsamongthem. For
example,in a rentalincomeapplication,columnsofthematrixcould
correspondto months of a year androws could correspondto
incomeandcategoriesof expense.Constraintsconnectdependent
elements,so that total monthly expenseis maintainedasthe sumof
the individual expensesin the samecolumn. When monthly rental
rate, taxes,andutilities variablesare filled in’ for the first month,
constraintsin aspread-sheetfill in asmuchof the table as possible,
including varioussubtotals.

The constraintsin aspread-sheetprogramdifferentiatebetween
dependentandindependentvariables.Whenthe independentvaria-
bles are filled in, values for dependentvariables are updated
immediately. Reasoningin both directions is provided in some
applications,for example,in graphicsandsimulation (21).

Constraintsatisfactionsystemshave always beenspecializedto
exploit the natureof the particularkindsof constraintsandhence
have not beenconsideredgeneralpurpose.Nonetheless,thereare
severalresearchefforts aimedatincreasingthe breadthof applicabil-
ity of constraintlanguagesfor specifyingthe behaviorofcomputers
(22).

UseofMultiple Paradigms
Programminglanguagedevelopmenthasoften consistedof the

honing of a particular paradigm for organizing programs (23).
Advocatesof multiple styles in asinglesystem(24, 25) arguethat,
just astherearemanytoolsin acarpenter’stoolbox,eachspecialized
to its purpose,thereshould be manytools in the programmer’skit.
One should not be forced to pry up nails with a screwdriver.
However,useof multiple paradigmsdoesinvolve anadditionalcost
of learningmore than onestyle, andprogramsmay be requiredto
transformbetweendifferentrepresentationsof thesameinformation
chosento optimizeprocessingwithin a style.

When a problemdoesnot fit well in a style, resulting programs
may beboth awkwardandlong. For largeapplications,thevarious
costsfor usingaparticularstyle canvaryacrosspartsof theprogram.
In addition to the costof theinitial writing of the programandthe

costof runningthe program,the costsof debuggingandchangeas
the programandits specificationsevolvemust be considered.The
totalcostof asystemcanbelower whenmorethanonestyle is used.
For example,manyexpertsystemsaredevelopedin which object-
orientedprogrammingis usedfor representingthe basicconcepts,
rules are used to specify the inferences,access-orientedprogram-
ming is usedto drive the graphicsdisplay, andproceduresareused
for the overall control structure.

Sometimesthe searchfor integrationcan leadto a languagethat
gracefully subsumesthe different styles. This is illustrated in the
deepintegrationof procedure-orientedprogrammingandobject-
orientedprogrammingin CommonLoops(26). In ordinaryproce-
durecalls,the codeto carry out an operationis looked up by using
only the nameof the procedure.In object-orientedprogramming,
thecodelookupprocessfor messagesendingusesboth anoperation
name(the selector)andalso the classof the first argument.

Procedurecall andmessagesendingaregeneralizedin Common-
Loops, so that code lookup usesthe selectorandthe typesof as
manyargumentsasdesired(multimethods).Thus, CommonLoops
doesmore than just provide both messagesendingandprocedure
call. Theintegrationyieldsacontinuumof methoddefinitions from
simple proceduresto methodswith many argumentswhosetypes
arespecified.Thefamiliar methodsofobject-orientedprogramming
fall out as a specialcase where the type (class) of only the first
argumentis used.A programmerusingcodedevelopedby others
neednot be awareof whetherthereare multiple implementations
thatdependon the typesof multiple arguments.

Computerscientistsarejust beginningto developexamplesof the
integrationof styles in hybrid or integratedlanguagesand criteria
for judging them (25). Different programminglanguagesare no
longerjust focusingon a particularstyle; stylesnow coexistandare
beginningto evolvetogether(27).

Programming Environments
Programminglanguagesreducethe complexity of programming

by simplifying the expressionof instructions. Programmingenvi-
ronmentsare the setof tools usedto build, change,and debug
programs.Operatingsystemshaveplayedthis role, but now special-
izedenvironments(28) thatknowaboutthelanguageandprogram
structurereducecomplexity by takingsomeresponsibilityfor man-
agingchangesto programs.

Al programmingenvironmentsprovide tools that analyzepro-
gram structureandcreateinformative displaysthat helpprogram-
mers to developmentalmodelsof the systems.They also provide
simplified meansfor specifying changesto a program that free a
programmerfrom specifyingmanyof thedetails.Tools mayalsobe
used to compensatefor a particular distribution of information
imposedby oneor more stylesof programming.Thesetools are
particularly important in the exploratoryprogrammingstyle (29)
usedin AT, wherethespecificationsfor ataskaredevelopedas parts
of it are implemented.

Understanding and changing the static structure of a program.
Traditionally, the main descriptionsof programsavailableto pro-
grammershave beenthetextof programinstructions.This is useful
when aprogramfits on a few pages,but stacksof programlistings
are inadequatefor visualizing largeprograms.Nor is the situation
muchimprovedby computerizingthesameview with text editors
andwindowsystems.Texteditorsdo notprovideaflexibleoverview
andareoflimited usein makingmanyimportantkindsof systematic
changes.

The primary struggle is often to simplify the organizationof a
system. Simplification may require exploring and changing the
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boundariesbetweenandwithin subsystems.It is now possibleto
createautomaticallymoreinformativeviews ofprogramsthatreflect
thekinds of questionsthatprogrammersaskwhen theyaremodify-
ing or trying to understanda largesystem.

For procedure-orientedprogramming,tools can display interac-
tive graphsthat showwhereproceduresandvariablesaredefined
and used (30). In object-orientedprogramming,changesto the
inheritancenetwork arecommon in program reorganization.An
interactiveclassbrowsersuchas that shownin Fig. 1 can makeit
easyto add, delete, and renameclassesand methods,examine
documentation,trace the inheritance of particular methods or
variables, and move definitions of methodsand variables in the
inheritancelattice.

Understandingand changing the dynamicstructureof a program.
Testing,debugging,andperformancetuning areall importantparts
of the taskof programming.In the current stateof the art, these
tasks cannotbe done practicallyby an analysis,of staticprogram
structure,and so programmingenvironmentsprovide interactive
toolsfor them.

Conventionalprogrammingpracticehaslong includedmeansfor
tracing the executionof programsto aid in debugging. In the
simplest case, tracing is achievedby inserting statementsinto a
program to causeprinting whenvarious parts of a program are
activatedandto print out indicationsof the internal state.Other
capabilitiesallow interruptionof programexecutionwhen certain
conditions arise,such as when a particular procedureis called, a
variableis accessed,or avalue is setthat is outsideaspecifiedrange.

An improvementon tracingis theuseof gauges,asshownin Fig.
2. Severalsystemsthat supportaccess-orientedprogrammingpro-
vide asuiteof gaugesthatcanbe attachedto thevariablesof running
programsto display themonitoredvalues.Attaching a gaugeto a
programvariableis analogousto attachinga voltmeterto acircuit.
Thegaugedoesnot interferewith theoperationof theprogram,and
it is not necessaryto searchthrougha longlisting to find valuesfor
variables.A programmercancreateanarrayof gaugesonthedisplay
andwatchthem while the programruns.

Modern environmentslet a programmerexaminethe stateof a
computationwhena programis interrupted,eitherby anerrororby
auserrequest.If abugis foundandafix made,theusercanbackup
from a nestedcomputationto a call that invoked it and try the
computationagain from that point. Somesystemscan also run a
programat slowspeedor onestepat atime.The ability to interrupt
a program’s execution to make changescan make a dramatic
differencein the overall productivity of programmingbecausethis
enablesa programmerto identify and correct severalerrors in a
singleshort session.

Manyof theseinteractivecapabilitiesfor controllingexecutionare
not new ideas.Someof themhavebeenavailablein BasicandLisp
systemsfor severalyears.They are mentionedbecausetheyare less
common in productionprogrammingenvironmentsfor large sys-
tems, they areimportant for incrementaldebugging,andthey are
usefully combinedwith toolsfor analyzingandmodifying program
structure.

Al programmingenvironmentstend to do late-binding by de-
fault. This means that they usually provide the flexibility for
programmersto changearunningprogramwithout losing thestate
of thecomputation.Programmersareconcernedaboutthe time it
takesto completeacycleof revision:discoveraproblem,find abug,
makea revision, andtestagain.Late-bindingsystemstendto speed
up this cycle.

Late-bindingcan slow programexecution.Optimizationfacilities
in Al systemsallow compilation of efficientprogramsbeforerelease
for wide use. Exploratory programmingencouragesa style of
programmingin which explorationis followed by analysis,whichis
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Fig. 2. Gauges,which canbe attachedto anyobjectvariableat any time to
view the changingvalue of a variable. A setof attachedgaugesallows a
simultaneousview ofthe dynamicstateof aprogram.

then followed by optimization. In this approach,optimization is
focusedwhere it is needed.This leads to effective optimization
guidedby realmeasurementsratherthan beingbasedonpreconcep-
tions (often misconceptions)of system designers.A program’s
performancecan be largely determinedby the performanceprofile
of underlying system facilities, whoseperformanceon particular
casesmay not be known aheadof time.

A graphicalview of timing analysis,as shownin Fig. 3, can be
usefulfor understandingthe incrementalandintegratedtime spent
in any partof the systemduring a particularcomputation.

Narrow Knowledge-BasedSystems
Work on programmingenvironmentscan be understoodas an

applicationof computer technologyto the task of writing and
maintainingprograms.The samethemecan beseenin the work on
compilers.Compilersconvert high-level languagedescriptionsinto
specificinstructions.They usetheirknowledgeof machinearchitec-
ture to yield efficient implementations.Compilers, like program-
ming environments,are intended to be used for all kinds of
programmingtasks.

An important strategy for making tools that can give more
comprehensivekindsof assistanceis to incorporatespecificknowl-
edgeinto them. In the 1960’s work on compilerswassometimes
called automatic programming. Current researchon automatic
programming(31, 32) follows this direction of incorporating
increasingamountsof knowledgeaboutprogramming.The most
successfulusesof automaticprogrammingareevenmore narrowly
focused;thesearethe applicationgeneratorsnowusedcommercially
for creatingspeciallytailoredsystemsfor businessapplications,such
asaccountingandinventory.

The sametrend towardknowledge-intensivesystemscan beseen
in the creationof so-calledshells for expert systems.An expert
systemshell is a specializedsublanguageandenvironmentdesigned
to support a set of closely related applications. Shells are an
intermediatepoint betweenspecificapplicationsandgeneral-pur-
pose“knowledge-engineering”environments.Shells canbebuilt for
suchapplicationsasplanning,scheduling,anda varietyof special-
ized office tasks.

Shells havefour things that generalprogrammingtools do not:

I ~ — ~ ~ ....~.
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prepackagedrepresentationsfor important concepts,inferenceand
representationtools tunedfor efficient andperspicuoususein the
applications, specialized user interfaces,and generic knowledge
abouttheapplication.Forexample,ashellfor aplanningapplication
could have representationsfor modeling goals and agents. Its
specializedknowledgecould include rules,such as one specifying
that an agentcan be only at one place at a time. Jt would have
genericcategoriesfor things such as time, tasks, serially reusable
resources(such as a room), and interfacesfor interacting with
alternativeplans.

Theseknowledge-intensivesystemsblur the boundariesbetween
environmentsandlanguages,sincethey combinefeaturesof both.
Domain-specificknowledgeenablesasystemto takeon moreof the
responsibility for checkingandinstalling changes.Domain-specific
knowledgealsoenablessystemsto providespecializeduserinterfaces
that are intendedto be closer to the conceptsof the application.
General-purposeenvironmentshavebroadapplicability;specialized
systemscan do more in a narrowerdomain.

Directions andThemesRevisited
Thedevelopmentswe havediscussedin programminglanguages,

environments,andknowledgesystemsprovidedifferentperspectives
on what a program is. Conventionally, a program is a set of
instructionsfor a machinethat specifieshow information is to be
processed.Programmingis theprocessof translatinguserintentions
and requirementsinto a formal languageunderstandableby a
computer.

Variations in programming languagesdeterminewhat can be
statedconcisely,what must be statedin multiple places,andwhat
need not be stated in a program. Objects, rules, procedures,
constraints,andother programmingconceptsmakedifferenttrade-
offs in the way that they organizeinformation. If a programming
languageallows oneto write proceduresbut not constraints,then
expressingdesiredrelationsamongvariablesrequireshaving state-
mentsin all thosepartsof the programthat can potentiallychange
thevaluesof thevariables.Inheritanceallows structuraldescription

andmethodsto be sharedby classeswithout redundantspecifica-
tion.

When a system makesdirectly manipulatablethe conceptsof an
application,programsbecomemore understandable.For example,
somebookkeepingand accountingconceptsare representedand
manipulateddirectly in spread-sheetprograms.While the stateof
thearthasno dependablecognitivemetricfor how muchthis helps,
the issue is a recurring themein the design of languagesand
knowledge-basedsystems.It hasto do with reducingthe levelsof
abstractionthatmustbe penetratedto understandsystembehavior.

In contrast,many of the programsfor modernphysics experi-
mentshave becomelargeandperhapsunmanageable.Thereareso
manylevelsof mathematicaltechniqueandabstractionbetweenthe
terminologyof physicsandthe text of theprogramsthattheyhave
becomeunwieldy andhardto understand.Indeed,oneimportant
role for Al systemsis as an impedancematcher,or naturalbridge,
betweenmentalconceptsandprogramsymbols.TheSophiesystem
(33) is anexampleof a programthat, amongotherthings, provides
aninterfacebetweendescriptionsofcircuitsandSpice, theunderly-
ing simulationprogramfor modelingcircuit behavior.Hybridslike
this suggestways of using programsin different contexts, thus
“preservingprogrammingcapital.”

Programmingenvironmentsprovide us with anotheranswerto
what a programis. Environmentsdeterminewhat a programmer
seeswhenwriting or modifying a program.They includedifferent
kinds of interactivebrowsers,asseenin Figs. 1 to 3, that provide
different views of a programbasedon automaticanalysis.These
visualizationsaredesignedto helpprogrammersgainperspectiveon
their programs,andin doingthis they blur the boundarybetween
languageandenvironment.

As browsersareincreasinglyusedfor understandingandchanging
systems,they displaceprogram listings. Ultimately they aremore
powerful (becausethey areactive),can employ specializedknowl-
edge,andcanprovide alternativeviews.Today’sprogramsareparts
of largercomplexsystems,andthemain activity of programming
hasmovedfrom the originationof newprogramsto themodifica-
tion ofexistingones(34). Programsareincreasinglyjudgednotonly
by whethertheyfaithfully carryouttheintendedprocessingbut also

Fig. 3. Spy timing-analysis
treein Interlisp-D (35). The
height of each box is pro-
portional to the fraction of
the time spentin the rou-
tine. Largeboxesare associ-
ated with potential candi-
datesfor optimization. The
borderofeachboxis usedto
indicate modes, such as
“time includes called sub-
routines,” “appears else-
whereon display,” and so
forth.
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by whetherthey are understandableand easily changed. Thus
cothputertools that bring computationalleverageto programming
are helping computerscientists to regain a senseof control over
systemsthat havebecomeincreasinglycomplex.
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